File size: 5,137 Bytes
59a5d65
444cc11
 
 
59a5d65
 
 
 
 
444cc11
 
59a5d65
 
444cc11
 
 
 
 
 
 
88b23f9
 
59a5d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddca950
 
 
 
444cc11
 
 
 
ddca950
 
c6e20af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444cc11
 
c6e20af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b452c4
 
 
 
 
 
 
 
 
 
 
 
 
c6e20af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
base_model:
- google/siglip-so400m-patch14-384
- Qwen/Qwen2.5-7B-Instruct
datasets:
- THUdyh/Oryx-SFT-Data
language:
- en
- zh
library_name: transformers
license: cc-by-nc-4.0
metrics:
- accuracy
pipeline_tag: video-text-to-text
tags:
- llava
- llava-scissor
- llava-onevision
- llava-ov
- token-compression
- video-understanding
- multimodal
model-index:
- name: llava-onevision-qwen-7b-ov
  results:
  - task:
      type: multimodal
    dataset:
      name: MVBench
      type: mvbench
    metrics:
    - type: accuracy
      value: 62.425
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: NextQA
      type: nextqa
    metrics:
    - type: accuracy
      value: 81.33
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: EgoSchema
      type: egoschema
    metrics:
    - type: accuracy
      value: 58.08
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: VideoMME
      type: videomme
    metrics:
    - type: accuracy
      value: 57.96
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MLVU
      type: mlvu
    metrics:
    - type: accuracy
      value: 62.48
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: VideoMMMU
      type: videommmu
    metrics:
    - type: accuracy
      value: 40.55
      name: accuracy
      verified: true
---

# LLaVA-Scissor-baseline-7B

This repository contains the baseline model for [LLaVA-Scissor: Token Compression with Semantic Connected Components for Video LLMs](https://huggingface.co/papers/2506.21862).

Code: https://github.com/HumanMLLM/LLaVA-Scissor

## Model Summary
This repository contains the baseline model used in LLaVA-Scissor.
This model is an enhanced version of [LLaVA-OneVision](https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov) model with [SIGLIP](https://huggingface.co/google/siglip-so400m-patch14-384) vision encoder and [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) large language model and is finetuned with [Oryx](https://huggingface.co/datasets/THUdyh/Oryx-SFT-Data) data.

## Quick Start
Here we provide a script for LLaVA-Scissor full token inference (without token compression).
```python
from operator import attrgetter
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle

import torch
import cv2
import numpy as np
from PIL import Image
import requests
import copy
import warnings
from decord import VideoReader, cpu

warnings.filterwarnings("ignore")
# Load the OneVision model
pretrained = "model_zoo/BBBBCHAN/LLaVA-Scissor-baseline-7B"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map, attn_implementation="sdpa")

model.eval()


# Function to extract frames from video
def load_video(video_path, max_frames_num):
    if type(video_path) == str:
        vr = VideoReader(video_path, ctx=cpu(0))
    else:
        vr = VideoReader(video_path[0], ctx=cpu(0))
    total_frame_num = len(vr)
    uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
    frame_idx = uniform_sampled_frames.tolist()
    spare_frames = vr.get_batch(frame_idx).asnumpy()
    return spare_frames  # (frames, height, width, channels)


# Load and process video
video_path = "Your/path/to/the/video"
video_frames = load_video(video_path, 16)
print(video_frames.shape)
image_tensors = []
frames = image_processor.preprocess(video_frames, return_tensors="pt")["pixel_values"].half().cuda()
image_tensors.append(frames)

# Prepare conversation input
conv_template = "qwen_2"
question = f"{DEFAULT_IMAGE_TOKEN}
Describe this video."
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()

input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [frame.size for frame in video_frames]

# Generate response
cont = model.generate(
    input_ids,
    images=image_tensors,
    image_sizes=image_sizes,
    do_sample=False,
    temperature=0,
    max_new_tokens=4096,
    modalities=["video"],
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs[0])
```

## Citation

If you find our repo useful for your research, please consider citing our paper:

```bibtex
@article{sun2025llava,
  title={LLaVA-Scissor: Token Compression with Semantic Connected Components for Video LLMs},
  author={Sun, Boyuan and Zhao, Jiaxing and Wei, Xihan and Hou, Qibin},
  journal={arXiv preprint arXiv:2506.21862},
  year={2025}
}
```