--- library_name: transformers language: - en license: apache-2.0 base_model: BEE-spoke-data/tFINE-680m-e32-d16-gqa-1024 tags: - flan - t5 - gqa - instruct datasets: - pszemraj/flan-subsets-deduped --- # tFINE-680m-e32-d16-gqa-flan FLAN-tuned variant of a tFINE (t5) model with GQA. - 32 encoder layers - 16 decoder layers - 1024 hidden size ## testing install [transformers fork with GQA updates for t5](https://github.com/pszemraj/transformers/tree/t5-gqa) (⚠️WIP🚧): ```sh pip install -U git+https://github.com/pszemraj/transformers.git@t5-gqa ``` then ```py # pip install -U git+https://github.com/pszemraj/transformers.git@t5-gqa from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("BEE-spoke-data/tFINE-680m-e32-d16-gqa-flan") model = AutoModelForSeq2SeqLM.from_pretrained( "BEE-spoke-data/tFINE-680m-e32-d16-gqa-flan" ) prompt = "What is the capital of France?" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=64, no_repeat_ngram_size=3) print( tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True )[0] ) ``` ## Quick eval Quick eval for: `BEE-spoke-data/tFINE-680m-e32-d16-gqa-flan` hf (pretrained=BEE-spoke-data/tFINE-680m-e32-d16-gqa-flan,trust_remote_code=True,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 8 | Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |-------------|------:|------|-----:|--------|---|-----:|---|------| |boolq | 2|none | 0|acc |↑ |0.7040|± |0.0080| |openbookqa | 1|none | 0|acc |↑ |0.1580|± |0.0163| | | |none | 0|acc_norm|↑ |0.2420|± |0.0192| |piqa | 1|none | 0|acc |↑ |0.6132|± |0.0114| | | |none | 0|acc_norm|↑ |0.6159|± |0.0113| |social_iqa | 0|none | 0|acc |↑ |0.4319|± |0.0112| |tinyArc | 0|none | 25|acc_norm|↑ |0.2898|± | N/A| |tinyHellaswag| 0|none | 10|acc_norm|↑ |0.3295|± | N/A| |tinyMMLU | 0|none | 0|acc_norm|↑ |0.2980|± | N/A| |winogrande | 1|none | 0|acc |↑ |0.5020|± |0.0141| ## Training and evaluation data used config 'all' ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 17868 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - total_eval_batch_size: 4 - optimizer: Use paged_ademamix_32bit and the args are: No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0