AbirMessaoudi commited on
Commit
685d14a
·
verified ·
1 Parent(s): c63f950

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -3
README.md CHANGED
@@ -252,7 +252,7 @@ model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to("cuda")
252
 
253
  #Load the dataset
254
  from datasets import load_dataset, load_metric, Audio
255
- ds=load_dataset("projecte-aina/3catparla_asr",split='test')
256
 
257
  #Downsample to 16kHz
258
  ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
@@ -289,7 +289,9 @@ print(WER)
289
 
290
  ### Training data
291
 
292
- The specific datasets used to create the model are [Common Voice 17.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0) and ["3CatParla"](https://huggingface.co/datasets/projecte-aina/3catparla_asr).
 
 
293
 
294
  ### Training procedure
295
 
@@ -341,4 +343,4 @@ Copyright(c) 2025 by Language Technologies Laboratory, Barcelona Supercomputing
341
  ### Funding
342
  This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).
343
 
344
- The training of the model was possible thanks to the compute time provided by [Barcelona Supercomputing Center](https://www.bsc.es/) through MareNostrum 5.
 
252
 
253
  #Load the dataset
254
  from datasets import load_dataset, load_metric, Audio
255
+ ds=load_dataset("projecte-aina/parlament_parla",split='test')
256
 
257
  #Downsample to 16kHz
258
  ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
 
289
 
290
  ### Training data
291
 
292
+ The specific datasets used to create the model are:
293
+ - [Common Voice 17.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0)
294
+ - ["3CatParla"](https://huggingface.co/datasets/projecte-aina/3catparla_asr). (soon to be published)
295
 
296
  ### Training procedure
297
 
 
343
  ### Funding
344
  This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).
345
 
346
+ The training of the model was possible thanks to the computing time provided by [Barcelona Supercomputing Center](https://www.bsc.es/) through MareNostrum 5.