--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/hiera-base-224-in1k-hf tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: hiera-finetuned-stroke-binary-ultrasound results: [] --- # hiera-finetuned-stroke-binary-ultrasound This model is a fine-tuned version of [facebook/hiera-base-224-in1k-hf](https://huggingface.co/facebook/hiera-base-224-in1k-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0098 - Accuracy: 0.9951 - F1: 0.9951 - Precision: 0.9951 - Recall: 0.9951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.038 | 0.8753 | 100 | 0.0184 | 0.9938 | 0.9938 | 0.9939 | 0.9938 | | 0.0468 | 1.7440 | 200 | 0.0206 | 0.9926 | 0.9926 | 0.9927 | 0.9926 | | 0.0445 | 2.6127 | 300 | 0.0225 | 0.9901 | 0.9901 | 0.9902 | 0.9901 | | 0.0415 | 3.4814 | 400 | 0.0187 | 0.9889 | 0.9889 | 0.9889 | 0.9889 | | 0.0465 | 4.3501 | 500 | 0.0098 | 0.9951 | 0.9951 | 0.9951 | 0.9951 | | 0.0397 | 5.2188 | 600 | 0.0286 | 0.9901 | 0.9901 | 0.9903 | 0.9901 | | 0.0257 | 6.0875 | 700 | 0.0188 | 0.9926 | 0.9926 | 0.9927 | 0.9926 | | 0.0434 | 6.9628 | 800 | 0.0209 | 0.9938 | 0.9938 | 0.9939 | 0.9938 | | 0.0261 | 7.8315 | 900 | 0.0154 | 0.9926 | 0.9926 | 0.9926 | 0.9926 | | 0.0198 | 8.7002 | 1000 | 0.0094 | 0.9951 | 0.9951 | 0.9951 | 0.9951 | | 0.0207 | 9.5689 | 1100 | 0.0122 | 0.9938 | 0.9938 | 0.9939 | 0.9938 | | 0.0157 | 10.4376 | 1200 | 0.0101 | 0.9951 | 0.9951 | 0.9951 | 0.9951 | | 0.0188 | 11.3063 | 1300 | 0.0104 | 0.9951 | 0.9951 | 0.9951 | 0.9951 | ### Framework versions - Transformers 4.53.1 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.2