--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: hiera-finetuned-stroke-multi-ultrasound-combined results: [] --- # hiera-finetuned-stroke-multi-ultrasound-combined This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3436 - Accuracy: 0.8661 - F1: 0.8650 - Precision: 0.8650 - Recall: 0.8661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5712 | 1.7964 | 100 | 0.4956 | 0.7923 | 0.7933 | 0.7973 | 0.7923 | | 0.4495 | 3.5792 | 200 | 0.4193 | 0.8309 | 0.8315 | 0.8325 | 0.8309 | | 0.4266 | 5.3620 | 300 | 0.4364 | 0.8150 | 0.8091 | 0.8221 | 0.8150 | | 0.3375 | 7.1448 | 400 | 0.3775 | 0.8513 | 0.8473 | 0.8535 | 0.8513 | | 0.2979 | 8.9412 | 500 | 0.3360 | 0.8627 | 0.8617 | 0.8614 | 0.8627 | | 0.2703 | 10.7240 | 600 | 0.3436 | 0.8661 | 0.8650 | 0.8650 | 0.8661 | ### Framework versions - Transformers 4.53.1 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.2