import torch from torch import nn import torch.nn.functional as F class CustomLinear(nn.Linear): def __init__(self, *args, init_eye_val=0.0, is_diagonal=False, **kwargs): super().__init__(*args, **kwargs) self.init_eye_val = init_eye_val class CustomLinearInitialized(nn.Linear): def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None, init_fun=None) -> None: super().__init__(in_features, out_features, bias, device, dtype) self.init_fun = init_fun class CustomDiagonalLinear(nn.Module): def __init__(self, d_model, bias=True, init_eye_val=0.0): super().__init__() self.init_eye_val = init_eye_val self.weight = nn.Parameter(torch.full((d_model,), init_eye_val)) self.bias = nn.Parameter(torch.zeros(d_model)) if bias else None def forward(self, input): out = input * self.weight if self.bias is not None: out += self.bias return out class Gate(nn.Module): def __init__(self, items, init_val=0.0): super().__init__() self.init_val = init_val self.gate = nn.Parameter(torch.full((items,), init_val)) def forward(self, input, dim): if input.ndim != 4: raise ValueError('input must be a 4D tensor') shape = [1] * 4 shape[dim] = -1 return input * self.gate.view(*shape)