|
from transformers import SpeechEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer |
|
|
|
|
|
encoder_checkpoint = "facebook/wav2vec2-base-en-voxpopuli-v2" |
|
|
|
decoder_checkpoint = "facebook/bart-base" |
|
|
|
|
|
|
|
|
|
INITIAL_MODEL_SAVE_PATH = "path_to_save_initial_model" |
|
|
|
model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained( |
|
encoder_checkpoint, |
|
decoder_checkpoint, |
|
encoder_add_adapter=True, |
|
encoder_num_adapter_layers=3, |
|
) |
|
|
|
|
|
model.config.encoder.feat_proj_dropout = 0.0 |
|
|
|
|
|
|
|
model.config.decoder_start_token_id = model.decoder.config.bos_token_id |
|
model.config.pad_token_id = ( |
|
model.decoder.config.pad_token_id |
|
) |
|
model.config.eos_token_id = ( |
|
model.decoder.config.eos_token_id |
|
) |
|
|
|
|
|
model.config.max_length = 128 |
|
model.config.encoder.layerdrop = 0.0 |
|
model.config.use_cache = False |
|
|
|
|
|
model.save_pretrained(INITIAL_MODEL_SAVE_PATH) |
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_checkpoint) |
|
feature_extractor.save_pretrained(INITIAL_MODEL_SAVE_PATH) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) |
|
tokenizer.save_pretrained(INITIAL_MODEL_SAVE_PATH) |
|
|
|
print( |
|
f"Initialized model, feature extractor, and tokenizer saved to {INITIAL_MODEL_SAVE_PATH}" |
|
) |
|
|