update
Browse files
README.md
CHANGED
@@ -76,6 +76,33 @@ generation_config = GenerationConfig(
|
|
76 |
|
77 |
repo_name = "BeardedMonster/SabiYarn-125M"
|
78 |
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
# Test on English
|
81 |
input_ids = tokenizer("How are you?", return_tensors="pt")["input_ids"]
|
@@ -106,6 +133,24 @@ print(tokenizer.decode(output[0][input_len:]))
|
|
106 |
Nkọwapụta
|
107 |
Ebe nrụọrụ weebụ na-ahụ maka gburugburu ebe
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
# Test on Hausa
|
110 |
input_ids = tokenizer("Ministan ya ƙara da cewa dole ne Mista Netanyahu ya sanya ranar da", return_tensors="pt")["input_ids"]
|
111 |
output = model.generate(input_ids, generation_config=generation_config, max_new_tokens=50)
|
|
|
76 |
|
77 |
repo_name = "BeardedMonster/SabiYarn-125M"
|
78 |
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
|
79 |
+
tokenizer= AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
|
80 |
+
|
81 |
+
#Test on Urhobo
|
82 |
+
input_ids = tokenizer("Eshare nana ri vwo ẹguọnọ rẹ iyono rẹ Aristotle vẹ Plato na,", return_tensors="pt")["input_ids"]
|
83 |
+
output = model.generate(input_ids, generation_config=generation_config, max_new_tokens=50)
|
84 |
+
input_len = len(input_ids[0])
|
85 |
+
print(tokenizer.decode(output[0][input_len:]))
|
86 |
+
|
87 |
+
#Output
|
88 |
+
ọ da tobọ dianẹ ayen rhọnvwe kerhọ-ọ. Ọtiọyena, e de ruiruo aghwoghwo ọkieje. (1 Kọr. 7:9; 1 Kọr. 12:2) Vwọrẹ uyota
|
89 |
+
|
90 |
+
#Test on Efik
|
91 |
+
input_ids = tokenizer("Ke eyo Jesus ye mme mbet esie, etop emi ama ada ifụre ọsọk", return_tensors="pt")["input_ids"]
|
92 |
+
output = model.generate(input_ids, generation_config=generation_config, max_new_tokens=50)
|
93 |
+
input_len = len(input_ids[0])
|
94 |
+
print(tokenizer.decode(output[0][input_len:]))
|
95 |
+
|
96 |
+
#Output
|
97 |
+
. Edi ediwak nditọ Israel ẹtịn̄ ẹnọ nnyịn mîkemeke ndinam n̄kpọ Abasi.|end_of_text|Ebe foto si, Getty Images Ebe foto si, Getty Images Nkọwa foto, Ndị
|
98 |
+
|
99 |
+
input_ids = tokenizer("Ke eyo Jesus ye mme mbet esie, etop emi ama ada ifụre ọsọk mme Jew oro esịt okobụn̄ọde ke ntak idiọkido ke Israel, oro ẹkenyụn̄ ẹdude ke mfụhọ ke itie-ufụn mme nsunsu ido edinam Ido Ukpono Mme Jew eke akpa isua ikie.", return_tensors="pt")["input_ids"]
|
100 |
+
output = model.generate(input_ids, generation_config=generation_config, max_new_tokens=50)
|
101 |
+
input_len = len(input_ids[0])
|
102 |
+
print(tokenizer.decode(output[0][input_len:]))
|
103 |
+
|
104 |
+
#Output
|
105 |
+
Kûsịn idem nnyịme ndifiọk nditọete nnyịn inemesịt onyụn̄ anam nnyịn ikpọn̄utom nnyịn. (Matt. 26:31; Luke 22:42
|
106 |
|
107 |
# Test on English
|
108 |
input_ids = tokenizer("How are you?", return_tensors="pt")["input_ids"]
|
|
|
133 |
Nkọwapụta
|
134 |
Ebe nrụọrụ weebụ na-ahụ maka gburugburu ebe
|
135 |
|
136 |
+
|
137 |
+
# Test on FulFulde/Fulah
|
138 |
+
input_ids = tokenizer("Jos un peeta gallure nɗer ɗi woyla caaka ɓanngeere lardu Naajeeriya. Gelle ɗen haa e ɗuuɗiri ɗun kamano", return_tensors="pt")["input_ids"]
|
139 |
+
output = model.generate(input_ids, generation_config=generation_config, max_new_tokens=50)
|
140 |
+
input_len = len(input_ids[0])
|
141 |
+
print(tokenizer.decode(output[0][input_len:]))
|
142 |
+
|
143 |
+
#Output
|
144 |
+
jogiiji maɓɓe nder lesdi Naajeeriya. |end_o|end_of_text|** Muhammadu_Buhari ** Muhammadu Buhari ko leydi e hukuma pamarun e hukuma pamarun e hukuma pamarun e hukuma pamarun e hukum
|
145 |
+
|
146 |
+
input_ids = tokenizer("Si hooreejo leydi on (himo wi’ee kadi persidan) accitii laamu, ko woote waɗetee, ɓurɗo jogaade yimɓe on halfinee laamu yeru happu.", return_tensors="pt")["input_ids"]
|
147 |
+
output = model.generate(input_ids, generation_config=generation_config, max_new_tokens=50)
|
148 |
+
input_len = len(input_ids[0])
|
149 |
+
print(tokenizer.decode(output[0][input_len:]))
|
150 |
+
|
151 |
+
#Output
|
152 |
+
|end_of_text|So en nganndii e hitaande 2010, o wiyi : “ko ñalawma hannde golle pulaar walla mbiyen jogiiɗo”. Eɗen mbaawi wiyde «u2008
|
153 |
+
|
154 |
# Test on Hausa
|
155 |
input_ids = tokenizer("Ministan ya ƙara da cewa dole ne Mista Netanyahu ya sanya ranar da", return_tensors="pt")["input_ids"]
|
156 |
output = model.generate(input_ids, generation_config=generation_config, max_new_tokens=50)
|