--- library_name: transformers language: - lg license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - named-entity-recognition - luganda - african-languages - pii-detection - token-classification - generated_from_trainer datasets: - Beijuka/Luganda_Monolingual_PII_dataset metrics: - precision - recall - f1 - accuracy model-index: - name: luganda-ner-bert-v7 results: - task: name: Token Classification type: token-classification dataset: name: Beijuka/Luganda_Monolingual_PII_dataset type: Beijuka/Luganda_Monolingual_PII_dataset args: 'split: train+validation+test' metrics: - name: Precision type: precision value: 0.8336713995943205 - name: Recall type: recall value: 0.8162859980139027 - name: F1 type: f1 value: 0.8248871048670346 - name: Accuracy type: accuracy value: 0.9459025442866462 --- # luganda-ner-bert-v7 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the Beijuka/Luganda_Monolingual_PII_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3195 - Precision: 0.8337 - Recall: 0.8163 - F1: 0.8249 - Accuracy: 0.9459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 261 | 0.4382 | 0.5831 | 0.5124 | 0.5455 | 0.8761 | | 0.4959 | 2.0 | 522 | 0.2885 | 0.7147 | 0.7289 | 0.7217 | 0.9171 | | 0.4959 | 3.0 | 783 | 0.2778 | 0.7592 | 0.7200 | 0.7390 | 0.9308 | | 0.1547 | 4.0 | 1044 | 0.2552 | 0.8016 | 0.7865 | 0.7940 | 0.9389 | | 0.1547 | 5.0 | 1305 | 0.2718 | 0.7908 | 0.7885 | 0.7897 | 0.9389 | | 0.061 | 6.0 | 1566 | 0.2881 | 0.8360 | 0.7795 | 0.8068 | 0.9426 | | 0.061 | 7.0 | 1827 | 0.2908 | 0.8008 | 0.8143 | 0.8075 | 0.9446 | | 0.023 | 8.0 | 2088 | 0.3195 | 0.8337 | 0.8163 | 0.8249 | 0.9459 | | 0.023 | 9.0 | 2349 | 0.3190 | 0.8208 | 0.8143 | 0.8175 | 0.9476 | | 0.0088 | 10.0 | 2610 | 0.3318 | 0.8354 | 0.7964 | 0.8155 | 0.9458 | ### Framework versions - Transformers 4.53.0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2