--- library_name: transformers language: - lg license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - named-entity-recognition - luganda - african-languages - pii-detection - token-classification - generated_from_trainer datasets: - Beijuka/Luganda_Monolingual_PII_dataset metrics: - precision - recall - f1 - accuracy model-index: - name: luganda-ner-bert-v7 results: - task: name: Token Classification type: token-classification dataset: name: Beijuka/Luganda_Monolingual_PII_dataset type: Beijuka/Luganda_Monolingual_PII_dataset args: 'split: train+validation+test' metrics: - name: Precision type: precision value: 0.8317757009345794 - name: Recall type: recall value: 0.7954319761668321 - name: F1 type: f1 value: 0.8131979695431472 - name: Accuracy type: accuracy value: 0.9486124353891705 --- # luganda-ner-bert-v7 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the Beijuka/Luganda_Monolingual_PII_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3956 - Precision: 0.8318 - Recall: 0.7954 - F1: 0.8132 - Accuracy: 0.9486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 261 | 0.4093 | 0.6488 | 0.4697 | 0.5449 | 0.8871 | | 0.5031 | 2.0 | 522 | 0.3278 | 0.6709 | 0.6842 | 0.6775 | 0.9099 | | 0.5031 | 3.0 | 783 | 0.2721 | 0.7816 | 0.7071 | 0.7424 | 0.9317 | | 0.1642 | 4.0 | 1044 | 0.2540 | 0.7776 | 0.7776 | 0.7776 | 0.9399 | | 0.1642 | 5.0 | 1305 | 0.3182 | 0.7473 | 0.7607 | 0.7539 | 0.9280 | | 0.0775 | 6.0 | 1566 | 0.3038 | 0.7843 | 0.7944 | 0.7893 | 0.9409 | | 0.0775 | 7.0 | 1827 | 0.3407 | 0.8504 | 0.7567 | 0.8008 | 0.9400 | | 0.0362 | 8.0 | 2088 | 0.3267 | 0.7886 | 0.8004 | 0.7945 | 0.9429 | | 0.0362 | 9.0 | 2349 | 0.3229 | 0.8316 | 0.7845 | 0.8074 | 0.9499 | | 0.0201 | 10.0 | 2610 | 0.3521 | 0.8475 | 0.7726 | 0.8083 | 0.9476 | | 0.0201 | 11.0 | 2871 | 0.3629 | 0.8126 | 0.8054 | 0.8090 | 0.9468 | | 0.0095 | 12.0 | 3132 | 0.3817 | 0.8012 | 0.8083 | 0.8047 | 0.9466 | | 0.0095 | 13.0 | 3393 | 0.3956 | 0.8318 | 0.7954 | 0.8132 | 0.9486 | | 0.0057 | 14.0 | 3654 | 0.3798 | 0.8219 | 0.7974 | 0.8095 | 0.9458 | | 0.0057 | 15.0 | 3915 | 0.4196 | 0.8166 | 0.7825 | 0.7992 | 0.9445 | ### Framework versions - Transformers 4.53.0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2