Beijuka commited on
Commit
1a705e7
·
verified ·
1 Parent(s): 1b764fe

End of training

Browse files
Files changed (2) hide show
  1. README.md +97 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: xlm-roberta-large
5
+ tags:
6
+ - named-entity-recognition
7
+ - lumasaba
8
+ - african-language
9
+ - pii-detection
10
+ - token-classification
11
+ - generated_from_trainer
12
+ datasets:
13
+ - Beijuka/Multilingual_PII_NER_dataset
14
+ metrics:
15
+ - precision
16
+ - recall
17
+ - f1
18
+ - accuracy
19
+ model-index:
20
+ - name: multilingual-xlm-roberta-large-lumasaba-ner-v1
21
+ results:
22
+ - task:
23
+ name: Token Classification
24
+ type: token-classification
25
+ dataset:
26
+ name: Beijuka/Multilingual_PII_NER_dataset
27
+ type: Beijuka/Multilingual_PII_NER_dataset
28
+ args: 'split: train+validation+test'
29
+ metrics:
30
+ - name: Precision
31
+ type: precision
32
+ value: 0.25703485930281395
33
+ - name: Recall
34
+ type: recall
35
+ value: 0.46788990825688076
36
+ - name: F1
37
+ type: f1
38
+ value: 0.3317972350230415
39
+ - name: Accuracy
40
+ type: accuracy
41
+ value: 0.25703485930281395
42
+ ---
43
+
44
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
45
+ should probably proofread and complete it, then remove this comment. -->
46
+
47
+ # multilingual-xlm-roberta-large-lumasaba-ner-v1
48
+
49
+ This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the Beijuka/Multilingual_PII_NER_dataset dataset.
50
+ It achieves the following results on the evaluation set:
51
+ - Loss: 2.4160
52
+ - Precision: 0.2570
53
+ - Recall: 0.4679
54
+ - F1: 0.3318
55
+ - Accuracy: 0.2570
56
+
57
+ ## Model description
58
+
59
+ More information needed
60
+
61
+ ## Intended uses & limitations
62
+
63
+ More information needed
64
+
65
+ ## Training and evaluation data
66
+
67
+ More information needed
68
+
69
+ ## Training procedure
70
+
71
+ ### Training hyperparameters
72
+
73
+ The following hyperparameters were used during training:
74
+ - learning_rate: 5e-05
75
+ - train_batch_size: 4
76
+ - eval_batch_size: 4
77
+ - seed: 42
78
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
79
+ - lr_scheduler_type: linear
80
+ - num_epochs: 20
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
+ | 2.4785 | 1.0 | 796 | 2.2775 | 0.2916 | 0.5325 | 0.3768 | 0.2916 |
87
+ | 2.3894 | 2.0 | 1592 | 2.4192 | 0.2916 | 0.5325 | 0.3768 | 0.2916 |
88
+ | 2.3051 | 3.0 | 2388 | 2.3613 | 0.2916 | 0.5325 | 0.3768 | 0.2916 |
89
+ | 2.3278 | 4.0 | 3184 | 2.8233 | 0.2916 | 0.5325 | 0.3768 | 0.2916 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.55.4
95
+ - Pytorch 2.8.0+cu126
96
+ - Datasets 4.0.0
97
+ - Tokenizers 0.21.4
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4b4cea6b9b8e6340da202b0041bfc77ddd1f5ddf92e48d1f94ea9c89b58cb03a
3
  size 2235530764
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96599b377314065ea25458c303bde10cebef3a9b82e6d0bc91ae2db6aae79661
3
  size 2235530764