Upload transcribe.ipynb
Browse files- transcribe.ipynb +683 -1
transcribe.ipynb
CHANGED
@@ -1 +1,683 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"machine_shape": "hm"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"widgets": {
|
17 |
+
"application/vnd.jupyter.widget-state+json": {
|
18 |
+
"ce0bb5a384f24c0e8a1d1b2620d34f6b": {
|
19 |
+
"model_module": "@jupyter-widgets/controls",
|
20 |
+
"model_name": "HBoxModel",
|
21 |
+
"model_module_version": "1.5.0",
|
22 |
+
"state": {
|
23 |
+
"_dom_classes": [],
|
24 |
+
"_model_module": "@jupyter-widgets/controls",
|
25 |
+
"_model_module_version": "1.5.0",
|
26 |
+
"_model_name": "HBoxModel",
|
27 |
+
"_view_count": null,
|
28 |
+
"_view_module": "@jupyter-widgets/controls",
|
29 |
+
"_view_module_version": "1.5.0",
|
30 |
+
"_view_name": "HBoxView",
|
31 |
+
"box_style": "",
|
32 |
+
"children": [
|
33 |
+
"IPY_MODEL_33cc7addcccd495f820391aeb5d08dd0",
|
34 |
+
"IPY_MODEL_ca564eec03874e6487ab7559580bba74",
|
35 |
+
"IPY_MODEL_143a309bafb64dca81327f331ace379e"
|
36 |
+
],
|
37 |
+
"layout": "IPY_MODEL_f6db87a6251145f08348dfe0fd503ac1"
|
38 |
+
}
|
39 |
+
},
|
40 |
+
"33cc7addcccd495f820391aeb5d08dd0": {
|
41 |
+
"model_module": "@jupyter-widgets/controls",
|
42 |
+
"model_name": "HTMLModel",
|
43 |
+
"model_module_version": "1.5.0",
|
44 |
+
"state": {
|
45 |
+
"_dom_classes": [],
|
46 |
+
"_model_module": "@jupyter-widgets/controls",
|
47 |
+
"_model_module_version": "1.5.0",
|
48 |
+
"_model_name": "HTMLModel",
|
49 |
+
"_view_count": null,
|
50 |
+
"_view_module": "@jupyter-widgets/controls",
|
51 |
+
"_view_module_version": "1.5.0",
|
52 |
+
"_view_name": "HTMLView",
|
53 |
+
"description": "",
|
54 |
+
"description_tooltip": null,
|
55 |
+
"layout": "IPY_MODEL_77ad67ab59704d4abff46bbde1fdf8cc",
|
56 |
+
"placeholder": "β",
|
57 |
+
"style": "IPY_MODEL_8807473008224ebb92932a247d95ad6b",
|
58 |
+
"value": "Fetchingβ12βfiles:β100%"
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"ca564eec03874e6487ab7559580bba74": {
|
62 |
+
"model_module": "@jupyter-widgets/controls",
|
63 |
+
"model_name": "FloatProgressModel",
|
64 |
+
"model_module_version": "1.5.0",
|
65 |
+
"state": {
|
66 |
+
"_dom_classes": [],
|
67 |
+
"_model_module": "@jupyter-widgets/controls",
|
68 |
+
"_model_module_version": "1.5.0",
|
69 |
+
"_model_name": "FloatProgressModel",
|
70 |
+
"_view_count": null,
|
71 |
+
"_view_module": "@jupyter-widgets/controls",
|
72 |
+
"_view_module_version": "1.5.0",
|
73 |
+
"_view_name": "ProgressView",
|
74 |
+
"bar_style": "success",
|
75 |
+
"description": "",
|
76 |
+
"description_tooltip": null,
|
77 |
+
"layout": "IPY_MODEL_4ac03a80fc1a45fc80a9bbc1e746ab21",
|
78 |
+
"max": 12,
|
79 |
+
"min": 0,
|
80 |
+
"orientation": "horizontal",
|
81 |
+
"style": "IPY_MODEL_fd67dc9a87864db6998a5d0de5b7cc59",
|
82 |
+
"value": 12
|
83 |
+
}
|
84 |
+
},
|
85 |
+
"143a309bafb64dca81327f331ace379e": {
|
86 |
+
"model_module": "@jupyter-widgets/controls",
|
87 |
+
"model_name": "HTMLModel",
|
88 |
+
"model_module_version": "1.5.0",
|
89 |
+
"state": {
|
90 |
+
"_dom_classes": [],
|
91 |
+
"_model_module": "@jupyter-widgets/controls",
|
92 |
+
"_model_module_version": "1.5.0",
|
93 |
+
"_model_name": "HTMLModel",
|
94 |
+
"_view_count": null,
|
95 |
+
"_view_module": "@jupyter-widgets/controls",
|
96 |
+
"_view_module_version": "1.5.0",
|
97 |
+
"_view_name": "HTMLView",
|
98 |
+
"description": "",
|
99 |
+
"description_tooltip": null,
|
100 |
+
"layout": "IPY_MODEL_50586c1a6dc340e5aba4e8dd6a1e2fcb",
|
101 |
+
"placeholder": "β",
|
102 |
+
"style": "IPY_MODEL_a51b63ac35054c1786e6b9d032fdc2ca",
|
103 |
+
"value": "β12/12β[00:00<00:00,β812.26it/s]"
|
104 |
+
}
|
105 |
+
},
|
106 |
+
"f6db87a6251145f08348dfe0fd503ac1": {
|
107 |
+
"model_module": "@jupyter-widgets/base",
|
108 |
+
"model_name": "LayoutModel",
|
109 |
+
"model_module_version": "1.2.0",
|
110 |
+
"state": {
|
111 |
+
"_model_module": "@jupyter-widgets/base",
|
112 |
+
"_model_module_version": "1.2.0",
|
113 |
+
"_model_name": "LayoutModel",
|
114 |
+
"_view_count": null,
|
115 |
+
"_view_module": "@jupyter-widgets/base",
|
116 |
+
"_view_module_version": "1.2.0",
|
117 |
+
"_view_name": "LayoutView",
|
118 |
+
"align_content": null,
|
119 |
+
"align_items": null,
|
120 |
+
"align_self": null,
|
121 |
+
"border": null,
|
122 |
+
"bottom": null,
|
123 |
+
"display": null,
|
124 |
+
"flex": null,
|
125 |
+
"flex_flow": null,
|
126 |
+
"grid_area": null,
|
127 |
+
"grid_auto_columns": null,
|
128 |
+
"grid_auto_flow": null,
|
129 |
+
"grid_auto_rows": null,
|
130 |
+
"grid_column": null,
|
131 |
+
"grid_gap": null,
|
132 |
+
"grid_row": null,
|
133 |
+
"grid_template_areas": null,
|
134 |
+
"grid_template_columns": null,
|
135 |
+
"grid_template_rows": null,
|
136 |
+
"height": null,
|
137 |
+
"justify_content": null,
|
138 |
+
"justify_items": null,
|
139 |
+
"left": null,
|
140 |
+
"margin": null,
|
141 |
+
"max_height": null,
|
142 |
+
"max_width": null,
|
143 |
+
"min_height": null,
|
144 |
+
"min_width": null,
|
145 |
+
"object_fit": null,
|
146 |
+
"object_position": null,
|
147 |
+
"order": null,
|
148 |
+
"overflow": null,
|
149 |
+
"overflow_x": null,
|
150 |
+
"overflow_y": null,
|
151 |
+
"padding": null,
|
152 |
+
"right": null,
|
153 |
+
"top": null,
|
154 |
+
"visibility": null,
|
155 |
+
"width": null
|
156 |
+
}
|
157 |
+
},
|
158 |
+
"77ad67ab59704d4abff46bbde1fdf8cc": {
|
159 |
+
"model_module": "@jupyter-widgets/base",
|
160 |
+
"model_name": "LayoutModel",
|
161 |
+
"model_module_version": "1.2.0",
|
162 |
+
"state": {
|
163 |
+
"_model_module": "@jupyter-widgets/base",
|
164 |
+
"_model_module_version": "1.2.0",
|
165 |
+
"_model_name": "LayoutModel",
|
166 |
+
"_view_count": null,
|
167 |
+
"_view_module": "@jupyter-widgets/base",
|
168 |
+
"_view_module_version": "1.2.0",
|
169 |
+
"_view_name": "LayoutView",
|
170 |
+
"align_content": null,
|
171 |
+
"align_items": null,
|
172 |
+
"align_self": null,
|
173 |
+
"border": null,
|
174 |
+
"bottom": null,
|
175 |
+
"display": null,
|
176 |
+
"flex": null,
|
177 |
+
"flex_flow": null,
|
178 |
+
"grid_area": null,
|
179 |
+
"grid_auto_columns": null,
|
180 |
+
"grid_auto_flow": null,
|
181 |
+
"grid_auto_rows": null,
|
182 |
+
"grid_column": null,
|
183 |
+
"grid_gap": null,
|
184 |
+
"grid_row": null,
|
185 |
+
"grid_template_areas": null,
|
186 |
+
"grid_template_columns": null,
|
187 |
+
"grid_template_rows": null,
|
188 |
+
"height": null,
|
189 |
+
"justify_content": null,
|
190 |
+
"justify_items": null,
|
191 |
+
"left": null,
|
192 |
+
"margin": null,
|
193 |
+
"max_height": null,
|
194 |
+
"max_width": null,
|
195 |
+
"min_height": null,
|
196 |
+
"min_width": null,
|
197 |
+
"object_fit": null,
|
198 |
+
"object_position": null,
|
199 |
+
"order": null,
|
200 |
+
"overflow": null,
|
201 |
+
"overflow_x": null,
|
202 |
+
"overflow_y": null,
|
203 |
+
"padding": null,
|
204 |
+
"right": null,
|
205 |
+
"top": null,
|
206 |
+
"visibility": null,
|
207 |
+
"width": null
|
208 |
+
}
|
209 |
+
},
|
210 |
+
"8807473008224ebb92932a247d95ad6b": {
|
211 |
+
"model_module": "@jupyter-widgets/controls",
|
212 |
+
"model_name": "DescriptionStyleModel",
|
213 |
+
"model_module_version": "1.5.0",
|
214 |
+
"state": {
|
215 |
+
"_model_module": "@jupyter-widgets/controls",
|
216 |
+
"_model_module_version": "1.5.0",
|
217 |
+
"_model_name": "DescriptionStyleModel",
|
218 |
+
"_view_count": null,
|
219 |
+
"_view_module": "@jupyter-widgets/base",
|
220 |
+
"_view_module_version": "1.2.0",
|
221 |
+
"_view_name": "StyleView",
|
222 |
+
"description_width": ""
|
223 |
+
}
|
224 |
+
},
|
225 |
+
"4ac03a80fc1a45fc80a9bbc1e746ab21": {
|
226 |
+
"model_module": "@jupyter-widgets/base",
|
227 |
+
"model_name": "LayoutModel",
|
228 |
+
"model_module_version": "1.2.0",
|
229 |
+
"state": {
|
230 |
+
"_model_module": "@jupyter-widgets/base",
|
231 |
+
"_model_module_version": "1.2.0",
|
232 |
+
"_model_name": "LayoutModel",
|
233 |
+
"_view_count": null,
|
234 |
+
"_view_module": "@jupyter-widgets/base",
|
235 |
+
"_view_module_version": "1.2.0",
|
236 |
+
"_view_name": "LayoutView",
|
237 |
+
"align_content": null,
|
238 |
+
"align_items": null,
|
239 |
+
"align_self": null,
|
240 |
+
"border": null,
|
241 |
+
"bottom": null,
|
242 |
+
"display": null,
|
243 |
+
"flex": null,
|
244 |
+
"flex_flow": null,
|
245 |
+
"grid_area": null,
|
246 |
+
"grid_auto_columns": null,
|
247 |
+
"grid_auto_flow": null,
|
248 |
+
"grid_auto_rows": null,
|
249 |
+
"grid_column": null,
|
250 |
+
"grid_gap": null,
|
251 |
+
"grid_row": null,
|
252 |
+
"grid_template_areas": null,
|
253 |
+
"grid_template_columns": null,
|
254 |
+
"grid_template_rows": null,
|
255 |
+
"height": null,
|
256 |
+
"justify_content": null,
|
257 |
+
"justify_items": null,
|
258 |
+
"left": null,
|
259 |
+
"margin": null,
|
260 |
+
"max_height": null,
|
261 |
+
"max_width": null,
|
262 |
+
"min_height": null,
|
263 |
+
"min_width": null,
|
264 |
+
"object_fit": null,
|
265 |
+
"object_position": null,
|
266 |
+
"order": null,
|
267 |
+
"overflow": null,
|
268 |
+
"overflow_x": null,
|
269 |
+
"overflow_y": null,
|
270 |
+
"padding": null,
|
271 |
+
"right": null,
|
272 |
+
"top": null,
|
273 |
+
"visibility": null,
|
274 |
+
"width": null
|
275 |
+
}
|
276 |
+
},
|
277 |
+
"fd67dc9a87864db6998a5d0de5b7cc59": {
|
278 |
+
"model_module": "@jupyter-widgets/controls",
|
279 |
+
"model_name": "ProgressStyleModel",
|
280 |
+
"model_module_version": "1.5.0",
|
281 |
+
"state": {
|
282 |
+
"_model_module": "@jupyter-widgets/controls",
|
283 |
+
"_model_module_version": "1.5.0",
|
284 |
+
"_model_name": "ProgressStyleModel",
|
285 |
+
"_view_count": null,
|
286 |
+
"_view_module": "@jupyter-widgets/base",
|
287 |
+
"_view_module_version": "1.2.0",
|
288 |
+
"_view_name": "StyleView",
|
289 |
+
"bar_color": null,
|
290 |
+
"description_width": ""
|
291 |
+
}
|
292 |
+
},
|
293 |
+
"50586c1a6dc340e5aba4e8dd6a1e2fcb": {
|
294 |
+
"model_module": "@jupyter-widgets/base",
|
295 |
+
"model_name": "LayoutModel",
|
296 |
+
"model_module_version": "1.2.0",
|
297 |
+
"state": {
|
298 |
+
"_model_module": "@jupyter-widgets/base",
|
299 |
+
"_model_module_version": "1.2.0",
|
300 |
+
"_model_name": "LayoutModel",
|
301 |
+
"_view_count": null,
|
302 |
+
"_view_module": "@jupyter-widgets/base",
|
303 |
+
"_view_module_version": "1.2.0",
|
304 |
+
"_view_name": "LayoutView",
|
305 |
+
"align_content": null,
|
306 |
+
"align_items": null,
|
307 |
+
"align_self": null,
|
308 |
+
"border": null,
|
309 |
+
"bottom": null,
|
310 |
+
"display": null,
|
311 |
+
"flex": null,
|
312 |
+
"flex_flow": null,
|
313 |
+
"grid_area": null,
|
314 |
+
"grid_auto_columns": null,
|
315 |
+
"grid_auto_flow": null,
|
316 |
+
"grid_auto_rows": null,
|
317 |
+
"grid_column": null,
|
318 |
+
"grid_gap": null,
|
319 |
+
"grid_row": null,
|
320 |
+
"grid_template_areas": null,
|
321 |
+
"grid_template_columns": null,
|
322 |
+
"grid_template_rows": null,
|
323 |
+
"height": null,
|
324 |
+
"justify_content": null,
|
325 |
+
"justify_items": null,
|
326 |
+
"left": null,
|
327 |
+
"margin": null,
|
328 |
+
"max_height": null,
|
329 |
+
"max_width": null,
|
330 |
+
"min_height": null,
|
331 |
+
"min_width": null,
|
332 |
+
"object_fit": null,
|
333 |
+
"object_position": null,
|
334 |
+
"order": null,
|
335 |
+
"overflow": null,
|
336 |
+
"overflow_x": null,
|
337 |
+
"overflow_y": null,
|
338 |
+
"padding": null,
|
339 |
+
"right": null,
|
340 |
+
"top": null,
|
341 |
+
"visibility": null,
|
342 |
+
"width": null
|
343 |
+
}
|
344 |
+
},
|
345 |
+
"a51b63ac35054c1786e6b9d032fdc2ca": {
|
346 |
+
"model_module": "@jupyter-widgets/controls",
|
347 |
+
"model_name": "DescriptionStyleModel",
|
348 |
+
"model_module_version": "1.5.0",
|
349 |
+
"state": {
|
350 |
+
"_model_module": "@jupyter-widgets/controls",
|
351 |
+
"_model_module_version": "1.5.0",
|
352 |
+
"_model_name": "DescriptionStyleModel",
|
353 |
+
"_view_count": null,
|
354 |
+
"_view_module": "@jupyter-widgets/base",
|
355 |
+
"_view_module_version": "1.2.0",
|
356 |
+
"_view_name": "StyleView",
|
357 |
+
"description_width": ""
|
358 |
+
}
|
359 |
+
}
|
360 |
+
}
|
361 |
+
}
|
362 |
+
},
|
363 |
+
"cells": [
|
364 |
+
{
|
365 |
+
"cell_type": "code",
|
366 |
+
"source": [],
|
367 |
+
"metadata": {
|
368 |
+
"id": "Pj64tkijY4tT"
|
369 |
+
},
|
370 |
+
"execution_count": null,
|
371 |
+
"outputs": []
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"cell_type": "code",
|
375 |
+
"source": [
|
376 |
+
"%%capture\n",
|
377 |
+
"# Core libraries\n",
|
378 |
+
"!pip install torch torchaudio transformers pydub numpy pyctcdecode\n",
|
379 |
+
"# If you need mp3 input support\n",
|
380 |
+
"!sudo apt-get update -qq\n",
|
381 |
+
"!sudo apt-get install -y ffmpeg\n",
|
382 |
+
"# For KenLM ARPA/bin support\n",
|
383 |
+
"!pip install https://github.com/kpu/kenlm/archive/master.zip"
|
384 |
+
],
|
385 |
+
"metadata": {
|
386 |
+
"id": "d6IIQn8_hEAy"
|
387 |
+
},
|
388 |
+
"execution_count": 9,
|
389 |
+
"outputs": []
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"cell_type": "code",
|
393 |
+
"source": [
|
394 |
+
"local_dir = \"/content/tigre-asr-Wav2Vec2Bert\" # or any local path\n",
|
395 |
+
"OUTPUT_TXT = None # e.g., \"/path/to/out.txt\" or None to just print"
|
396 |
+
],
|
397 |
+
"metadata": {
|
398 |
+
"id": "5j0nwQYG2B4T"
|
399 |
+
},
|
400 |
+
"execution_count": 21,
|
401 |
+
"outputs": []
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"cell_type": "code",
|
405 |
+
"source": [
|
406 |
+
"from huggingface_hub import snapshot_download\n",
|
407 |
+
"\n",
|
408 |
+
"MODEL_PATH = \"BeitTigreAI/tigre-asr-Wav2Vec2Bert\"\n",
|
409 |
+
"PROCESSOR_PATH = MODEL_PATH\n",
|
410 |
+
"\n",
|
411 |
+
"snapshot_download(\n",
|
412 |
+
" repo_id = MODEL_PATH,\n",
|
413 |
+
" repo_type = \"model\",\n",
|
414 |
+
" local_dir = local_dir,\n",
|
415 |
+
" local_dir_use_symlinks = False # copies files fully\n",
|
416 |
+
")\n",
|
417 |
+
"\n",
|
418 |
+
"AUDIO_FILE = f\"{local_dir}/sample.wav\"\n",
|
419 |
+
"KENLM_ARPA = f\"{local_dir}/lm.arpa\" # if uploaded\n",
|
420 |
+
"LEXICON_TXT = f\"{local_dir}/lexicon.txt\""
|
421 |
+
],
|
422 |
+
"metadata": {
|
423 |
+
"colab": {
|
424 |
+
"base_uri": "https://localhost:8080/",
|
425 |
+
"height": 49,
|
426 |
+
"referenced_widgets": [
|
427 |
+
"ce0bb5a384f24c0e8a1d1b2620d34f6b",
|
428 |
+
"33cc7addcccd495f820391aeb5d08dd0",
|
429 |
+
"ca564eec03874e6487ab7559580bba74",
|
430 |
+
"143a309bafb64dca81327f331ace379e",
|
431 |
+
"f6db87a6251145f08348dfe0fd503ac1",
|
432 |
+
"77ad67ab59704d4abff46bbde1fdf8cc",
|
433 |
+
"8807473008224ebb92932a247d95ad6b",
|
434 |
+
"4ac03a80fc1a45fc80a9bbc1e746ab21",
|
435 |
+
"fd67dc9a87864db6998a5d0de5b7cc59",
|
436 |
+
"50586c1a6dc340e5aba4e8dd6a1e2fcb",
|
437 |
+
"a51b63ac35054c1786e6b9d032fdc2ca"
|
438 |
+
]
|
439 |
+
},
|
440 |
+
"id": "WNhgqJET08VF",
|
441 |
+
"outputId": "559f767c-d269-4908-ca5e-1bffb8c39395"
|
442 |
+
},
|
443 |
+
"execution_count": 22,
|
444 |
+
"outputs": [
|
445 |
+
{
|
446 |
+
"output_type": "display_data",
|
447 |
+
"data": {
|
448 |
+
"text/plain": [
|
449 |
+
"Fetching 12 files: 0%| | 0/12 [00:00<?, ?it/s]"
|
450 |
+
],
|
451 |
+
"application/vnd.jupyter.widget-view+json": {
|
452 |
+
"version_major": 2,
|
453 |
+
"version_minor": 0,
|
454 |
+
"model_id": "ce0bb5a384f24c0e8a1d1b2620d34f6b"
|
455 |
+
}
|
456 |
+
},
|
457 |
+
"metadata": {}
|
458 |
+
}
|
459 |
+
]
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"cell_type": "code",
|
463 |
+
"source": [
|
464 |
+
"import warnings\n",
|
465 |
+
"import logging\n",
|
466 |
+
"\n",
|
467 |
+
"# Silence all Python warnings\n",
|
468 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
469 |
+
"# Silence pyctcdecode logger\n",
|
470 |
+
"logging.getLogger(\"pyctcdecode\").setLevel(logging.ERROR)\n",
|
471 |
+
"# Silence torchaudio warnings (optionally all)\n",
|
472 |
+
"logging.getLogger(\"torchaudio\").setLevel(logging.ERROR)"
|
473 |
+
],
|
474 |
+
"metadata": {
|
475 |
+
"id": "Y90co7BOmK9n"
|
476 |
+
},
|
477 |
+
"execution_count": 23,
|
478 |
+
"outputs": []
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"cell_type": "code",
|
482 |
+
"source": [
|
483 |
+
"# Audio / chunking\n",
|
484 |
+
"TARGET_SR = 16000\n",
|
485 |
+
"CHUNK_SEC = 5 # chunk length in seconds\n",
|
486 |
+
"OVERLAP_SEC = 0 # overlap between chunks in seconds (0 for minimal code)\n",
|
487 |
+
"# Beam search params\n",
|
488 |
+
"BEAM_WIDTH = 150\n",
|
489 |
+
"LM_ALPHA = 0.5\n",
|
490 |
+
"LM_BETA = 1.0"
|
491 |
+
],
|
492 |
+
"metadata": {
|
493 |
+
"id": "7DOmsFxbnzwK"
|
494 |
+
},
|
495 |
+
"execution_count": 24,
|
496 |
+
"outputs": []
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"cell_type": "code",
|
500 |
+
"source": [
|
501 |
+
"import os\n",
|
502 |
+
"import torch\n",
|
503 |
+
"import numpy as np\n",
|
504 |
+
"import torchaudio\n",
|
505 |
+
"from typing import List, Optional\n",
|
506 |
+
"\n",
|
507 |
+
"# Use pydub for robust mp3 handling\n",
|
508 |
+
"from pydub import AudioSegment\n",
|
509 |
+
"\n",
|
510 |
+
"from transformers import Wav2Vec2BertForCTC, Wav2Vec2BertProcessor\n",
|
511 |
+
"\n",
|
512 |
+
"# Optional LM decoding\n",
|
513 |
+
"try:\n",
|
514 |
+
" from pyctcdecode import build_ctcdecoder\n",
|
515 |
+
" _HAS_PYCTC = True\n",
|
516 |
+
"except Exception:\n",
|
517 |
+
" _HAS_PYCTC = False\n",
|
518 |
+
"\n",
|
519 |
+
"# Pick device\n",
|
520 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
521 |
+
"\n",
|
522 |
+
"def _load_audio(path: str, target_sr: int = 16000) -> torch.Tensor:\n",
|
523 |
+
" \"\"\"Load WAV or MP3 to mono float32 tensor [1, T] at target_sr.\"\"\"\n",
|
524 |
+
" ext = os.path.splitext(path)[1].lower()\n",
|
525 |
+
" if ext == \".mp3\":\n",
|
526 |
+
" audio = AudioSegment.from_file(path, format=\"mp3\")\n",
|
527 |
+
" audio = audio.set_channels(1).set_frame_rate(target_sr)\n",
|
528 |
+
" samples = np.array(audio.get_array_of_samples()).astype(np.float32)\n",
|
529 |
+
" # pydub gives int PCM range; normalize if needed (assume 16-bit)\n",
|
530 |
+
" if samples.dtype != np.float32:\n",
|
531 |
+
" samples = samples.astype(np.float32)\n",
|
532 |
+
" # If sample_width==2 (16-bit), divide by 32768\n",
|
533 |
+
" if audio.sample_width == 2:\n",
|
534 |
+
" samples /= 32768.0\n",
|
535 |
+
" return torch.from_numpy(samples).unsqueeze(0)\n",
|
536 |
+
" else:\n",
|
537 |
+
" wav, sr = torchaudio.load(path)\n",
|
538 |
+
" if wav.shape[0] > 1:\n",
|
539 |
+
" wav = wav.mean(dim=0, keepdim=True) # stereo -> mono\n",
|
540 |
+
" if sr != target_sr:\n",
|
541 |
+
" wav = torchaudio.transforms.Resample(sr, target_sr)(wav)\n",
|
542 |
+
" # ensure float32 in [-1,1]\n",
|
543 |
+
" if wav.dtype != torch.float32:\n",
|
544 |
+
" wav = wav.to(torch.float32)\n",
|
545 |
+
" return wav\n",
|
546 |
+
"\n",
|
547 |
+
"def _chunks(wave: torch.Tensor, sr: int, chunk_sec: int, overlap_sec: int):\n",
|
548 |
+
" \"\"\"Yield possibly-overlapping chunks [1, T_chunk].\"\"\"\n",
|
549 |
+
" chunk = int(chunk_sec * sr)\n",
|
550 |
+
" step = max(1, chunk - int(overlap_sec * sr))\n",
|
551 |
+
" T = wave.size(-1)\n",
|
552 |
+
" for start in range(0, T, step):\n",
|
553 |
+
" end = min(start + chunk, T)\n",
|
554 |
+
" yield wave[:, start:end]\n",
|
555 |
+
" if end >= T:\n",
|
556 |
+
" break\n",
|
557 |
+
"\n",
|
558 |
+
"def _load_unigrams(lexicon_path: Optional[str]) -> List[str]:\n",
|
559 |
+
" \"\"\"Read first token per line from lexicon into a unigram list.\"\"\"\n",
|
560 |
+
" if not lexicon_path or not os.path.exists(lexicon_path):\n",
|
561 |
+
" return []\n",
|
562 |
+
" words = set()\n",
|
563 |
+
" with open(lexicon_path, \"r\", encoding=\"utf-8\") as f:\n",
|
564 |
+
" for line in f:\n",
|
565 |
+
" w = line.strip().split()\n",
|
566 |
+
" if w:\n",
|
567 |
+
" words.add(w[0])\n",
|
568 |
+
" return sorted(words)\n",
|
569 |
+
"\n",
|
570 |
+
"def _build_decoder(model, processor):\n",
|
571 |
+
" \"\"\"Build a pyctcdecode decoder from model vocab + KenLM (if configured).\"\"\"\n",
|
572 |
+
" # Build vocab (id -> token)\n",
|
573 |
+
" vocab_size = model.lm_head.out_features\n",
|
574 |
+
" labels = []\n",
|
575 |
+
" for i in range(vocab_size):\n",
|
576 |
+
" tok = processor.tokenizer.convert_ids_to_tokens([i])[0]\n",
|
577 |
+
" # remove common BPE markers\n",
|
578 |
+
" tok = tok.lstrip(\"Δ \").lstrip(\"β\")\n",
|
579 |
+
" labels.append(tok)\n",
|
580 |
+
"\n",
|
581 |
+
" # No LM? Use labels only; with LM? also pass unigrams + alpha/beta\n",
|
582 |
+
" if not _HAS_PYCTC:\n",
|
583 |
+
" return None\n",
|
584 |
+
"\n",
|
585 |
+
" if KENLM_ARPA and os.path.exists(KENLM_ARPA):\n",
|
586 |
+
" unigrams = _load_unigrams(LEXICON_TXT)\n",
|
587 |
+
" return build_ctcdecoder(\n",
|
588 |
+
" labels=labels,\n",
|
589 |
+
" kenlm_model_path=KENLM_ARPA,\n",
|
590 |
+
" unigrams=unigrams if unigrams else None,\n",
|
591 |
+
" alpha=LM_ALPHA,\n",
|
592 |
+
" beta=LM_BETA\n",
|
593 |
+
" )\n",
|
594 |
+
" else:\n",
|
595 |
+
" # Fallback to lexicon-less decoder (greedy-ish beam without LM)\n",
|
596 |
+
" return build_ctcdecoder(labels=labels)\n",
|
597 |
+
"\n",
|
598 |
+
"def _postprocess(text: str) -> str:\n",
|
599 |
+
" \"\"\"Light cleanup: strip special markers, collapse dup words, ensure end punctuation.\"\"\"\n",
|
600 |
+
" text = text.replace(\"<|\", \"\").replace(\"|>\", \"\").replace(\"<>\", \"\").strip()\n",
|
601 |
+
" words, cleaned = text.split(), []\n",
|
602 |
+
" for w in words:\n",
|
603 |
+
" if not cleaned or cleaned[-1] != w:\n",
|
604 |
+
" cleaned.append(w)\n",
|
605 |
+
" out = \" \".join(cleaned).strip()\n",
|
606 |
+
" if out and out[-1] not in \".!?\":\n",
|
607 |
+
" out += \".\"\n",
|
608 |
+
" return out\n",
|
609 |
+
"\n",
|
610 |
+
"def transcribe_one_file() -> str:\n",
|
611 |
+
" # Load model + processor\n",
|
612 |
+
" model = Wav2Vec2BertForCTC.from_pretrained(MODEL_PATH).to(device).eval()\n",
|
613 |
+
" processor = Wav2Vec2BertProcessor.from_pretrained(PROCESSOR_PATH)\n",
|
614 |
+
"\n",
|
615 |
+
" # Optional decoder\n",
|
616 |
+
" decoder = _build_decoder(model, processor)\n",
|
617 |
+
"\n",
|
618 |
+
" # Load audio\n",
|
619 |
+
" wav = _load_audio(AUDIO_FILE, TARGET_SR)\n",
|
620 |
+
"\n",
|
621 |
+
" # Transcribe by chunks\n",
|
622 |
+
" pieces = []\n",
|
623 |
+
" for chunk in _chunks(wav, TARGET_SR, CHUNK_SEC, OVERLAP_SEC):\n",
|
624 |
+
" # processor for Wav2Vec2Bert expects raw audio -> input_features\n",
|
625 |
+
" inputs = processor(chunk.squeeze().numpy(), sampling_rate=TARGET_SR, return_tensors=\"pt\").to(device)\n",
|
626 |
+
" with torch.no_grad():\n",
|
627 |
+
" logits = model(input_features=inputs.input_features).logits # [1, T, V]\n",
|
628 |
+
" logp = logits[0].cpu().numpy()\n",
|
629 |
+
"\n",
|
630 |
+
" if decoder is not None:\n",
|
631 |
+
" hypo = decoder.decode(logp, beam_width=BEAM_WIDTH)\n",
|
632 |
+
" else:\n",
|
633 |
+
" # Greedy fallback if pyctcdecode not available\n",
|
634 |
+
" ids = logp.argmax(axis=-1)\n",
|
635 |
+
" tokens = processor.tokenizer.convert_ids_to_tokens(ids.tolist())\n",
|
636 |
+
" hypo = \"\".join(tokens)\n",
|
637 |
+
"\n",
|
638 |
+
" if hypo.strip():\n",
|
639 |
+
" pieces.append(hypo.strip())\n",
|
640 |
+
"\n",
|
641 |
+
" # cleanup per chunk\n",
|
642 |
+
" del inputs, logits, logp\n",
|
643 |
+
"\n",
|
644 |
+
" text = _postprocess(\" \".join(pieces))\n",
|
645 |
+
" return text\n",
|
646 |
+
"\n",
|
647 |
+
"if __name__ == \"__main__\":\n",
|
648 |
+
" out = transcribe_one_file()\n",
|
649 |
+
" if OUTPUT_TXT:\n",
|
650 |
+
" os.makedirs(os.path.dirname(OUTPUT_TXT), exist_ok=True)\n",
|
651 |
+
" with open(OUTPUT_TXT, \"w\", encoding=\"utf-8\") as f:\n",
|
652 |
+
" f.write(out + \"\\n\")\n",
|
653 |
+
" print(out)\n"
|
654 |
+
],
|
655 |
+
"metadata": {
|
656 |
+
"colab": {
|
657 |
+
"base_uri": "https://localhost:8080/"
|
658 |
+
},
|
659 |
+
"id": "W1rQvavueaBI",
|
660 |
+
"outputId": "76136358-df59-4f98-bfcc-8e01dc51ed6d"
|
661 |
+
},
|
662 |
+
"execution_count": 25,
|
663 |
+
"outputs": [
|
664 |
+
{
|
665 |
+
"output_type": "stream",
|
666 |
+
"name": "stdout",
|
667 |
+
"text": [
|
668 |
+
"αααα αα αα αα α α α΅α«α α₯αα΄ α αα α°α΅ α₯α₯ αα¨α£α€α αα©α αα΅αα αα²αα΅ α°.\n"
|
669 |
+
]
|
670 |
+
}
|
671 |
+
]
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"cell_type": "code",
|
675 |
+
"source": [],
|
676 |
+
"metadata": {
|
677 |
+
"id": "qs6x1lHOlthS"
|
678 |
+
},
|
679 |
+
"execution_count": null,
|
680 |
+
"outputs": []
|
681 |
+
}
|
682 |
+
]
|
683 |
+
}
|