Delete inference.py
Browse files- inference.py +0 -31
inference.py
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
|
2 |
-
# inference.py
|
3 |
-
from transformers import Wav2Vec2BertForCTC, Wav2Vec2BertProcessorWithLM
|
4 |
-
import torchaudio
|
5 |
-
import torch
|
6 |
-
|
7 |
-
# Load model
|
8 |
-
model_id = "BeitTigreAI/tigre-asr-w2v2-bert-lm"
|
9 |
-
processor = Wav2Vec2BertProcessorWithLM.from_pretrained(model_id)
|
10 |
-
model = Wav2Vec2BertForCTC.from_pretrained(model_id).to(
|
11 |
-
"cuda" if torch.cuda.is_available() else "cpu")
|
12 |
-
|
13 |
-
# Load audio (16kHz mono expected)
|
14 |
-
|
15 |
-
|
16 |
-
def load_audio(path):
|
17 |
-
waveform, sr = torchaudio.load(path)
|
18 |
-
if sr != 16000:
|
19 |
-
waveform = torchaudio.transforms.Resample(sr, 16000)(waveform)
|
20 |
-
return waveform.mean(dim=0) # Convert to mono
|
21 |
-
|
22 |
-
|
23 |
-
# Transcribe
|
24 |
-
audio = load_audio("your-audio.mp3") # Replace with your file
|
25 |
-
inputs = processor(audio, sampling_rate=16000,
|
26 |
-
return_tensors="pt").to(model.device)
|
27 |
-
with torch.no_grad():
|
28 |
-
logits = model(**inputs).logits
|
29 |
-
transcription = processor.batch_decode(logits.cpu().numpy()).text[0]
|
30 |
-
|
31 |
-
print("Transcription:", transcription)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|