File size: 1,598 Bytes
31fe4cc
 
 
 
 
 
4752b9d
7abe323
4752b9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
license: cc-by-sa-4.0
language:
- tig
base_model:
- meta-llama/Llama-3.2-1B
---
```python
import torch, logging
from transformers import AutoModelForCausalLM, AutoTokenizer

tig_model_path = "BeitTigreAI/tigre-llm-Llama3.2-1B"

# Set the device for computation
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the tokenizer and model from the specified path
tokenizer = AutoTokenizer.from_pretrained(tig_model_path)
model = AutoModelForCausalLM.from_pretrained(tig_model_path, device_map="auto")
model = model.to(device)

# Suppress some of the logging for a cleaner output
logging.getLogger("transformers").setLevel(logging.ERROR)

# Example 1: Generate text in Tigre (written in Ethiopic script)
prompt = "[tig_Ethi]መርሐበ ብኩም"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50)
print("Tigre Output:")
print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:]))

# Example 2: Generate text in Arabic
prompt = "ما الذي يميز لغة التغري؟"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=40)
print("\nArabic Output:")
print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:]))

# Example 3: Generate text in English
prompt = "[eng_Latn] What is interesting about the Tigre language?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=40)
print("\nEnglish Output:")
print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:]))