BekirTaha commited on
Commit
39884f8
·
1 Parent(s): 8d8fb46

Added LunarLander-v2 video

Browse files
Files changed (2) hide show
  1. README.md +1 -49
  2. replay.mp4 +0 -0
README.md CHANGED
@@ -1,51 +1,3 @@
1
  ---
2
- tags:
3
- - deep-reinforcement-learning
4
- - reinforcement-learning
5
- - stable-baselines3
6
  ---
7
- # "Beyko7/ppo-LunarLander-v2"
8
-
9
- This is a pre-trained model of a PPO agent playing LunarLander-v2 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library.
10
-
11
- ### Usage (with Stable-baselines3)
12
- Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
13
-
14
- ```
15
- pip install stable-baselines3
16
- pip install huggingface_sb3
17
- ```
18
-
19
- Then, you can use the model like this:
20
-
21
- ```python
22
- import gym
23
-
24
- from huggingface_sb3 import load_from_hub
25
- from stable_baselines3 import PPO
26
- from stable_baselines3.common.evaluation import evaluate_policy
27
-
28
- # Retrieve the model from the hub
29
- ## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
30
- ## filename = name of the model zip file from the repository
31
- checkpoint = load_from_hub(repo_id="Beyko7/ppo-LunarLander-v2", filename="LunarLander-v2.zip")
32
- model = PPO.load(checkpoint)
33
-
34
- # Evaluate the agent
35
- eval_env = gym.make('LunarLander-v2')
36
- mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
37
- print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
38
-
39
- # Watch the agent play
40
- obs = env.reset()
41
- for i in range(1000):
42
- action, _state = model.predict(obs)
43
- obs, reward, done, info = env.step(action)
44
- env.render()
45
- if done:
46
- obs = env.reset()
47
- env.close()
48
- ```
49
-
50
- ### Evaluation Results
51
- Mean_reward: 248.30 +/- 23.32882124373712
 
1
  ---
2
+ {}
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
replay.mp4 ADDED
Binary file (215 kB). View file