--- library_name: transformers license: mit base_model: EleutherAI/gpt-neo-1.3B tags: - generated_from_trainer datasets: - Ben10x/MedMentions-MTI881-NER metrics: - precision - recall - f1 - accuracy model-index: - name: gpt-medmentions results: - task: name: Token Classification type: token-classification dataset: name: Ben10x/MedMentions-MTI881-NER type: Ben10x/MedMentions-MTI881-NER metrics: - name: Precision type: precision value: 0.4453316069630269 - name: Recall type: recall value: 0.5247499576199356 - name: F1 type: f1 value: 0.48178988326848243 - name: Accuracy type: accuracy value: 0.8454107464662687 --- # gpt-medmentions This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the Ben10x/MedMentions-MTI881-NER dataset. It achieves the following results on the evaluation set: - Loss: 0.5111 - Precision: 0.4453 - Recall: 0.5247 - F1: 0.4818 - Accuracy: 0.8454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5307 | 1.0 | 5850 | 0.5369 | 0.4129 | 0.4711 | 0.4401 | 0.8341 | | 0.3585 | 2.0 | 11700 | 0.5111 | 0.4453 | 0.5247 | 0.4818 | 0.8454 | | 0.1758 | 3.0 | 17550 | 0.6349 | 0.4718 | 0.4900 | 0.4807 | 0.8497 | | 0.0751 | 4.0 | 23400 | 0.9264 | 0.4628 | 0.5208 | 0.4901 | 0.8497 | | 0.0387 | 5.0 | 29250 | 1.0903 | 0.4758 | 0.5181 | 0.4960 | 0.8518 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1