Update README.md
Browse files
README.md
CHANGED
|
@@ -28,8 +28,8 @@ It may produce some harmful output.
|
|
| 28 |
|
| 29 |
Examples:
|
| 30 |
|
| 31 |
-
| Prompt | BrtGPT-1-Pre |
|
| 32 |
-
| :------------: | :------------: |
|
| 33 |
| "Write me a code that prints "Hello World". | "Here's a code that prints "Hello World" in a list of words:```for i in range(1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5," |
|
| 34 |
| "Write me a code that generates random number."| Code: |
|
| 35 |
|
|
@@ -67,3 +67,100 @@ def generate_random_number(num):
|
|
| 67 |
# Create a new
|
| 68 |
```
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
Examples:
|
| 30 |
|
| 31 |
+
| Prompt | BrtGPT-1-Pre |
|
| 32 |
+
| :------------: | :------------: |
|
| 33 |
| "Write me a code that prints "Hello World". | "Here's a code that prints "Hello World" in a list of words:```for i in range(1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5," |
|
| 34 |
| "Write me a code that generates random number."| Code: |
|
| 35 |
|
|
|
|
| 67 |
# Create a new
|
| 68 |
```
|
| 69 |
|
| 70 |
+
|
| 71 |
+
## How to use?
|
| 72 |
+
|
| 73 |
+
You can run this code to use:
|
| 74 |
+
|
| 75 |
+
```
|
| 76 |
+
import torch
|
| 77 |
+
from transformers import PreTrainedTokenizerFast, GPT2LMHeadModel
|
| 78 |
+
|
| 79 |
+
def extract_response_between_tokens(text: str) -> str:
|
| 80 |
+
|
| 81 |
+
start_token = "<|im_start|>assistant<|im_sep|>"
|
| 82 |
+
end_token = "<|im_end|>"
|
| 83 |
+
try:
|
| 84 |
+
start_idx = text.index(start_token) + len(start_token)
|
| 85 |
+
end_idx = text.index(end_token, start_idx)
|
| 86 |
+
return text[start_idx:end_idx]
|
| 87 |
+
except ValueError:
|
| 88 |
+
# Tokenlar bulunamazsa orijinal metni döndür
|
| 89 |
+
return text
|
| 90 |
+
|
| 91 |
+
if __name__ == "__main__":
|
| 92 |
+
model_name_or_path = "Bertug1911/BrtGPT-1-Pre"
|
| 93 |
+
|
| 94 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name_or_path)
|
| 95 |
+
model = GPT2LMHeadModel.from_pretrained(model_name_or_path)
|
| 96 |
+
|
| 97 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 98 |
+
model.to(device)
|
| 99 |
+
model.eval()
|
| 100 |
+
|
| 101 |
+
user_input = input("Enter something to ask model: ")
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
messages = [{"role": "user", "content": user_input}]
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
formatted_prompt = tokenizer.apply_chat_template(
|
| 108 |
+
messages,
|
| 109 |
+
tokenize=False,
|
| 110 |
+
add_generation_prompt=True
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
|
| 115 |
+
generated = inputs["input_ids"]
|
| 116 |
+
|
| 117 |
+
# Generate config
|
| 118 |
+
max_new_tokens = 128
|
| 119 |
+
do_sample = True
|
| 120 |
+
top_k = 40
|
| 121 |
+
temperature = 0.8
|
| 122 |
+
|
| 123 |
+
im_end_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
| 124 |
+
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
for i in range(max_new_tokens):
|
| 127 |
+
outputs = model(generated)
|
| 128 |
+
logits = outputs.logits[:, -1, :]
|
| 129 |
+
logits = logits / temperature
|
| 130 |
+
|
| 131 |
+
if top_k > 0:
|
| 132 |
+
top_k_values, top_k_indices = torch.topk(logits, top_k)
|
| 133 |
+
logits_filtered = torch.full_like(logits, float('-inf'))
|
| 134 |
+
logits_filtered.scatter_(1, top_k_indices, top_k_values)
|
| 135 |
+
logits = logits_filtered
|
| 136 |
+
|
| 137 |
+
probs = torch.softmax(logits, dim=-1)
|
| 138 |
+
|
| 139 |
+
if do_sample:
|
| 140 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 141 |
+
else:
|
| 142 |
+
next_token = torch.argmax(probs, dim=-1, keepdim=True)
|
| 143 |
+
|
| 144 |
+
generated = torch.cat([generated, next_token], dim=1)
|
| 145 |
+
|
| 146 |
+
if next_token.item() == im_end_token_id:
|
| 147 |
+
break
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
output = tokenizer.decode(generated[0], skip_special_tokens=False)
|
| 152 |
+
|
| 153 |
+
# Special token conversions
|
| 154 |
+
no_spaces = output.replace(" ", "")
|
| 155 |
+
step2 = no_spaces.replace("Ġ", " ")
|
| 156 |
+
formatted_output = step2.replace("Ċ", "\n")
|
| 157 |
+
|
| 158 |
+
if not formatted_output.strip().endswith("<|im_end|>"):
|
| 159 |
+
formatted_output += "<|im_end|>"
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
assistant_response = extract_response_between_tokens(formatted_output)
|
| 163 |
+
print("\nModel output:\n", assistant_response)
|
| 164 |
+
|
| 165 |
+
```
|
| 166 |
+
|