--- license: cc datasets: - MBZUAI/LaMini-instruction language: - en pipeline_tag: text-generation metrics: - accuracy new_version: Bertug1911/BrtGPT-1-Pre-Code library_name: adapter-transformers tags: - text-generation-inference - transformers --- # BrtGPT-1-Pre ## 1. Introduction ***NEW USE CODE!*** (Shorter and faster than the first code!) We're introducing our first question-and-answer language model, "BrtGPT-1-Preview." The model was trained using GPT-2-sized question-and-answer data (~150M tokens, 1 epoch) using a "chat template" instead of plain text. The model performed surprisingly well in simple question-and-answer, creativity, and knowledge-based chat. It's quite good for general/everyday chat. But it has some shortcomings: - Simple math, - Code, - High school and college-level science and engineering questions However, if necessary, deficiencies can be corrected with fine-tuning in areas of concern. Furthermore, while generally avoiding harmful responses, caution should still be exercised regarding potentially damaging responses. ## 2. Technical Specifications Model specifications: - Context length: 1024 tokens (~768 words) - Maximum output length: 128 tokens (~96 words) - Parameter count: ~90 Million - Architecture type: Transformer (Decoder-only) ## 3. USE For use, you can use this code: ``` from transformers import pipeline # Pipeline pipe = pipeline( "text-generation", model="Bertug1911/BrtGPT-1-Pre", trust_remote_code=True, top_k=40, # Good for creativity temperature=0.8, # Good for creativity max_new_tokens=128 # Default maximum model output (Maximum 1024) ) # Messages messages = [ {"role": "user", "content": "What is the capital of France?"}, ] # Take out output = pipe(messages) # Only write asistant's (Model output) answer assistant_response = output[0]["generated_text"][-1]["content"].strip() # Special token conversions formatted_out = assistant_response.replace(" ", "").replace("Ġ", " ").replace("Ċ", "\n") print(formatted_out) ``` ### 3.1 Direct Use You can direct use (GUI (Graphical interface)) with [**Hugging Face Spaces**](https://huggingface.co/spaces/Bertug1911/BrtGPT.1.Pre-Web-UI). ### 3.1 Parameters | | top_k | temperature | max_new_tokens | :------------: | :------------: | :------------: | :------------: | | Creativity | 40-65 | 0.7-0.9 | 64-512 | | Coding | 10-25 | 0.1-0.25 | 32-128 | | Basic QA | 30-40 | 0.5-0.8 | 32-64 | | Math | 1-15 | 0.05-0.15 | 16-64 | | Knowladge-base QA | 20-30 | 0.4-0.6 | 32-64 | ### 5. Use examples Usage examples: | Prompt | Top-k | Temperature | Output | | :------------: | :------------: | :------------: | :------------: | | "What is the capital of France?" | 1-40 | 0.1-0.8 | "Paris."/"Capital of the France is Paris." | | "Write me a story about penguins." | 40 | 0.1 | "Once upon a time, there was a young girl named Lily who loved to play fetch. She had always loved playing fetch, but she had never been to a local animal shelter. One day, she saw a group of children playing fetch, but she wasn't sure what to do." | | "What is 55 * 3" | 10 | 0.15| "55 * 3 is equal to 0." | | "Write me a code that prints "Hello World" | 10 | 0.15 | "Here's a code that prints "Hello World" in a list of words:```for i in range(1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5," | ## 6. Evulation | | BrtGPT-1-Pre | BrtGPT-1-0719 | | :------------: | :------------: | :------------: | | AIME 2025 | %0 | Cooming soon | | MMLU high-school-math | %1,45 | Cooming soon | | GPQA Diamond | %1,01 | Cooming soon | HLE (Humanity's Last Exam): | | [BrtGPT-124m-Base](https://huggingface.co/Bertug1911/BrtGPT-124m-Base) | [BrtGPT-1-0719](https://huggingface.co/Bertug1911/BrtGPT-1-0719) | [BrtGPT-1-Pre](https://huggingface.co/Bertug1911/BrtGPT-1-Pre) | GPT-4o (ChatGPT) | Claude-4-sonnet | GPT-5 minimal | GPT-4.1 | [LLama-4 Maverick](https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct) | [Phi-4](http://huggingface.co/microsoft/phi-4) | | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | HLE (Humanity's Last Exam) | %0,5< | %4 | %3.5< | %4 | %4 | %5 | %4 | %5 | %5 | %4 | ## 7. Risks and biases Model may generates: - Illegal outputs - Harmfull contents Use with caution!! ## Contact "bertug2099@gmail.com" or "bertugscpmail@gmail.com"