--- library_name: transformers language: - ko license: apache-2.0 base_model: monologg/koelectra-base-v3-discriminator tags: - text_calssification - KoELECTRA - Korean-NLP - topic-classification - news-classification - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ynat-model results: [] --- # ynat-model This model is a fine-tuned version of [monologg/koelectra-base-v3-discriminator](https://huggingface.co/monologg/koelectra-base-v3-discriminator) on the klue_ynat dataset. It achieves the following results on the evaluation set: - Loss: 0.4085 - Accuracy: 0.8608 - Precision: 0.8485 - Recall: 0.8791 - F1: 0.8626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4121 | 1.0 | 714 | 0.4943 | 0.8372 | 0.8100 | 0.8725 | 0.8364 | | 0.3046 | 2.0 | 1428 | 0.4012 | 0.8548 | 0.8457 | 0.8677 | 0.8549 | | 0.2233 | 3.0 | 2142 | 0.4085 | 0.8608 | 0.8485 | 0.8791 | 0.8626 | ### Framework versions - Transformers 4.54.1 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4