File size: 46,358 Bytes
86b0e4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
""" PyTorch ChatGLM model. """

import math
import copy
import os
import sys

import torch
import torch.utils.checkpoint
import torch.nn.functional as F
from torch import nn
from torch.nn import CrossEntropyLoss, LayerNorm
from torch.nn.utils import skip_init
from typing import Optional, Tuple, Union, List

from transformers.utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
)
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    BaseModelOutputWithPastAndCrossAttentions,
)
from transformers.modeling_utils import PreTrainedModel

from transformers.utils import logging
from .configuration_chatglm import ChatGLMConfig

if sys.platform != 'darwin':
    torch._C._jit_set_profiling_mode(False)
    torch._C._jit_set_profiling_executor(False)
    torch._C._jit_override_can_fuse_on_cpu(True)
    torch._C._jit_override_can_fuse_on_gpu(True)


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
_CONFIG_FOR_DOC = "ChatGLM6BConfig"

CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "THUDM/chatglm-6b",
    # See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
]


def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
    """Load tf checkpoints in a pytorch model."""
    try:
        import re

        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info(f"Loading TF weight {name} with shape {shape}")
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split("/")
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if any(
                n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
                for n in name
        ):
            logger.info(f"Skipping {'/'.join(name)}")
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
                scope_names = re.split(r"_(\d+)", m_name)
            else:
                scope_names = [m_name]
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
                pointer = getattr(pointer, "bias")
            elif scope_names[0] == "output_weights":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "squad":
                pointer = getattr(pointer, "classifier")
            else:
                try:
                    pointer = getattr(pointer, scope_names[0])
                except AttributeError:
                    logger.info(f"Skipping {'/'.join(name)}")
                    continue
            if len(scope_names) >= 2:
                num = int(scope_names[1])
                pointer = pointer[num]
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
            array = np.transpose(array)
        try:
            assert (
                    pointer.shape == array.shape
            ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        logger.info(f"Initialize PyTorch weight {name}")
        pointer.data = torch.from_numpy(array)
    return model


@torch.jit.script
def gelu_impl(x):
    """OpenAI's gelu implementation."""
    return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
                                       (1.0 + 0.044715 * x * x)))


def gelu(x):
    return gelu_impl(x)


class RotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
        super().__init__()
        inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
        inv_freq = inv_freq.half()
        self.learnable = learnable
        if learnable:
            self.inv_freq = torch.nn.Parameter(inv_freq)
            self.max_seq_len_cached = None
        else: 
            self.register_buffer('inv_freq', inv_freq)
            self.max_seq_len_cached = None
            self.cos_cached = None
            self.sin_cached = None
        self.precision = precision

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
                              error_msgs):
        pass

    def forward(self, x, seq_dim=1, seq_len=None):
        if seq_len is None:
            seq_len = x.shape[seq_dim]
        if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
            self.max_seq_len_cached = None if self.learnable else seq_len
        
        t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
        freqs = torch.einsum('i,j->ij', t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
        if self.precision == torch.bfloat16:
            emb = emb.float()

        # [sx, 1 (b * np), hn]
        cos_cached = emb.cos()[:, None, :]
        sin_cached = emb.sin()[:, None, :]
        if self.precision == torch.bfloat16:
            cos_cached = cos_cached.bfloat16()
            sin_cached = sin_cached.bfloat16()
        if self.learnable:
            return cos_cached, sin_cached
        self.cos_cached, self.sin_cached = cos_cached, sin_cached

        return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]


def rotate_half(x):
    x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=x1.ndim - 1)  # dim=-1 triggers a bug in earlier torch versions


@torch.jit.script
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
    # position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
    cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
        F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
    q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
    return q, k



class SelfAttention(torch.nn.Module):
    def __init__(self, hidden_size, num_attention_heads,
                 layer_id, hidden_size_per_attention_head=None, bias=True,
                 params_dtype=torch.float, position_encoding_2d=True):
        super(SelfAttention, self).__init__()

        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.hidden_size_per_partition = hidden_size
        self.num_attention_heads = num_attention_heads
        self.num_attention_heads_per_partition = num_attention_heads
        self.position_encoding_2d = position_encoding_2d
        self.rotary_emb = RotaryEmbedding(
            self.hidden_size // (self.num_attention_heads * 2)
            if position_encoding_2d
            else self.hidden_size // self.num_attention_heads,
            base=10000,
            precision=torch.half,
            learnable=False,
        )

        self.scale_mask_softmax = None

        if hidden_size_per_attention_head is None:
            self.hidden_size_per_attention_head = hidden_size // num_attention_heads
        else:
            self.hidden_size_per_attention_head = hidden_size_per_attention_head

        self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head

        # Strided linear layer.
        self.query_key_value = skip_init(
            torch.nn.Linear,
            hidden_size,
            3 * self.inner_hidden_size,
            bias=bias,
            dtype=params_dtype,
        )

        self.dense = skip_init(
            torch.nn.Linear,
            self.inner_hidden_size,
            hidden_size,
            bias=bias,
            dtype=params_dtype,
        )

    @staticmethod
    def attention_mask_func(attention_scores, attention_mask):
        attention_scores.masked_fill_(attention_mask, -10000.0)
        return attention_scores

    def split_tensor_along_last_dim(self, tensor, num_partitions,
                                    contiguous_split_chunks=False):
        """Split a tensor along its last dimension.
        Arguments:
            tensor: input tensor.
            num_partitions: number of partitions to split the tensor
            contiguous_split_chunks: If True, make each chunk contiguous
                                    in memory.
        """
        # Get the size and dimension.
        last_dim = tensor.dim() - 1
        last_dim_size = tensor.size()[last_dim] // num_partitions
        # Split.
        tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
        # Note: torch.split does not create contiguous tensors by default.
        if contiguous_split_chunks:
            return tuple(chunk.contiguous() for chunk in tensor_list)

        return tensor_list

    def forward(
            self,
            hidden_states: torch.Tensor,
            position_ids,
            attention_mask: torch.Tensor,
            layer_id,
            layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
            use_cache: bool = False,
            output_attentions: bool = False,
    ):
        """
        hidden_states: [seq_len, batch, hidden_size]
        attention_mask: [(1, 1), seq_len, seq_len]
        """

        # [seq_len, batch, 3 * hidden_size]
        mixed_raw_layer = self.query_key_value.to(device=hidden_states.device)(hidden_states)

        # [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
        new_tensor_shape = mixed_raw_layer.size()[:-1] + (
            self.num_attention_heads_per_partition,
            3 * self.hidden_size_per_attention_head,
        )
        mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)

        # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
        (query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)

        if self.position_encoding_2d:
            q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
            k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
            position_ids = position_ids.to(q1.device)
            cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
            position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
                position_ids[:, 1, :].transpose(0, 1).contiguous()
            q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
            q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
            query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
            key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
        else:
            position_ids = position_ids.transpose(0, 1)
            position_ids = position_ids.to(value_layer.device)
            cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
            # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
            query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)

        # [seq_len, batch, hidden_size]
        context_layer, present, attention_probs = self.attention_fn(
            query_layer=query_layer,
            key_layer=key_layer,
            value_layer=value_layer,
            attention_mask=attention_mask.to(query_layer.device),
            hidden_size_per_partition=self.hidden_size_per_partition,
            layer_id=layer_id,
            layer_past=layer_past,
            use_cache=use_cache
        )
        # print("*"*80)
        # print(f"{context_layer.device = }")
        # print(f"{self.dense.weight.device = }")

        output = self.dense(context_layer)

        outputs = (output, present)

        if output_attentions:
            outputs += (attention_probs,)

        return outputs  # output, present, attention_probs

    def attention_fn(
            self,
            query_layer,
            key_layer,
            value_layer,
            attention_mask,
            hidden_size_per_partition,
            layer_id,
            layer_past=None,
            scaling_attention_score=True,
            use_cache=False,
                ):
        if layer_past is not None:
            past_key, past_value = layer_past
            key_layer = torch.cat((past_key, key_layer), dim=0)
            value_layer = torch.cat((past_value, value_layer), dim=0)

        # seqlen, batch, num_attention_heads, hidden_size_per_attention_head
        seq_len, b, nh, hidden_size = key_layer.shape

        if use_cache:
            present = (key_layer, value_layer)
        else:
            present = None

        query_key_layer_scaling_coeff = float(layer_id + 1)
        if scaling_attention_score:
            query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)

        matmul_result = torch.empty(
            output_size[0] * output_size[1],
            output_size[2],
            output_size[3],
            dtype=query_layer.dtype,
            device=query_layer.device,
        )

        matmul_result = torch.baddbmm(
            matmul_result,
            query_layer.transpose(0, 1),  # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0,
            alpha=1.0,
        )

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        if self.scale_mask_softmax:
            self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
            attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
        else:
            # print("*"*80)
            # print(f"{attention_mask.device = }")
            # print(f"{attention_scores.device = }")
            if not (attention_mask == 0).all():
                # if auto-regressive, skip
                attention_scores.masked_fill_(attention_mask, -10000.0)
            dtype = attention_scores.type()
            attention_scores = attention_scores.float()
            attention_scores = attention_scores * query_key_layer_scaling_coeff

            attention_probs = F.softmax(attention_scores, dim=-1)

            attention_probs = attention_probs.type(dtype)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, present, attention_probs)

        return outputs



class GEGLU(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.activation_fn = F.gelu

    def forward(self, x):
        # dim=-1 breaks in jit for pt<1.10
        x1, x2 = x.chunk(2, dim=(x.ndim - 1))
        return x1 * self.activation_fn(x2)


class GLU(torch.nn.Module):
    def __init__(self, hidden_size, inner_hidden_size=None,
                 layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float):
        super(GLU, self).__init__()
        self.layer_id = layer_id
        self.activation_func = activation_func

        # Project to 4h.
        self.hidden_size = hidden_size
        if inner_hidden_size is None:
            inner_hidden_size = 4 * hidden_size
        self.inner_hidden_size = inner_hidden_size
        self.dense_h_to_4h = skip_init(
            torch.nn.Linear,
            self.hidden_size,
            self.inner_hidden_size,
            bias=bias,
            dtype=params_dtype,
        )
        # Project back to h.
        self.dense_4h_to_h = skip_init(
            torch.nn.Linear,
            self.inner_hidden_size,
            self.hidden_size,
            bias=bias,
            dtype=params_dtype,
        )

    def forward(self, hidden_states):
        """
        hidden_states: [seq_len, batch, hidden_size]
        """

        # [seq_len, batch, inner_hidden_size]
        intermediate_parallel = self.dense_h_to_4h(hidden_states)

        intermediate_parallel = self.activation_func(intermediate_parallel)

        output = self.dense_4h_to_h(intermediate_parallel)

        return output


class GLMBlock(torch.nn.Module):
    def __init__(
            self,
            hidden_size,
            num_attention_heads,
            layernorm_epsilon,
            layer_id,
            inner_hidden_size=None,
            hidden_size_per_attention_head=None,
            layernorm=LayerNorm,
            use_bias=True,
            params_dtype=torch.float,
            num_layers=28,
            position_encoding_2d=True
    ):
        super(GLMBlock, self).__init__()
        # Set output layer initialization if not provided.

        self.layer_id = layer_id

        # Layernorm on the input data.
        self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)

        self.position_encoding_2d = position_encoding_2d

        # Self attention.
        self.attention = SelfAttention(
            hidden_size,
            num_attention_heads,
            layer_id,
            hidden_size_per_attention_head=hidden_size_per_attention_head,
            bias=use_bias,
            params_dtype=params_dtype,
            position_encoding_2d=self.position_encoding_2d
        )

        # Layernorm on the input data.
        self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)

        self.num_layers = num_layers

        # GLU
        self.mlp = GLU(
            hidden_size,
            inner_hidden_size=inner_hidden_size,
            bias=use_bias,
            layer_id=layer_id,
            params_dtype=params_dtype,
        )

    def forward(
            self,
            hidden_states: torch.Tensor,
            position_ids,
            attention_mask: torch.Tensor,
            layer_id,
            layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
            use_cache: bool = False,
            output_attentions: bool = False,
    ):
        """
        hidden_states: [seq_len, batch, hidden_size]
        attention_mask: [(1, 1), seq_len, seq_len]
        """

        # Layer norm at the begining of the transformer layer.
        # [seq_len, batch, hidden_size]
        attention_input = self.input_layernorm(hidden_states)

        # Self attention.
        attention_outputs = self.attention(
            attention_input,
            position_ids,
            attention_mask=attention_mask,
            layer_id=layer_id,
            layer_past=layer_past,
            use_cache=use_cache,
            output_attentions=output_attentions
        )

        attention_output = attention_outputs[0]

        outputs = attention_outputs[1:]

        # Residual connection.
        alpha = (2 * self.num_layers) ** 0.5
        hidden_states = attention_input * alpha + attention_output

        mlp_input = self.post_attention_layernorm(hidden_states)

        # MLP.
        mlp_output = self.mlp(mlp_input)

        # Second residual connection.
        output = mlp_input * alpha + mlp_output

        if use_cache:
            outputs = (output,) + outputs
        else:
            outputs = (output,) + outputs[1:]

        return outputs  # hidden_states, present, attentions


class ChatGLMPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and
    a simple interface for downloading and loading pretrained models.
    """

    is_parallelizable = True
    model_parallel = False
    supports_gradient_checkpointing = False
    config_class = ChatGLMConfig
    base_model_prefix = "transformer"
    _no_split_modules = ["GLM6BBlock"]

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module: nn.Module):
        """Initialize the weights."""
        return


CHATGLM_6B_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.

    Parameters:
        config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

CHATGLM_6B_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`ChatGLM6BTokenizer`].
            See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.

            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range `[0, config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert *input_ids* indices into associated vectors
            than the model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
    CHATGLM_6B_START_DOCSTRING,
)
class ChatGLMModel(ChatGLMPreTrainedModel):
    """

    The model can behave as an encoder (with only self-attention) as well
    as a decoder, in which case a layer of cross-attention is added between
    the self-attention layers, following the architecture described in [Attention is
    all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
    Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.

    To behave as an decoder the model needs to be initialized with the
    `is_decoder` argument of the configuration set to `True`.
    To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
    argument and `add_cross_attention` set to `True`; an
    `encoder_hidden_states` is then expected as an input to the forward pass.
    """

    def __init__(self, config: ChatGLMConfig):
        super().__init__(config)

        # recording parameters
        self.max_sequence_length = config.max_sequence_length
        self.hidden_size = config.hidden_size
        self.params_dtype = torch.half
        self.num_attention_heads = config.num_attention_heads
        self.vocab_size = config.vocab_size
        self.num_layers = config.num_layers
        self.layernorm_epsilon = config.layernorm_epsilon
        self.inner_hidden_size = config.inner_hidden_size
        self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
        self.position_encoding_2d = config.position_encoding_2d

        self.gradient_checkpointing = True   # 默认打开 用来节约显存

        self.word_embeddings = skip_init(
            torch.nn.Embedding,
            num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
            dtype=self.params_dtype
        )

        def get_layer(layer_id):
            return GLMBlock(
                self.hidden_size,
                self.num_attention_heads,
                self.layernorm_epsilon,
                layer_id,
                inner_hidden_size=self.inner_hidden_size,
                hidden_size_per_attention_head=self.hidden_size_per_attention_head,
                layernorm=LayerNorm,
                use_bias=True,
                params_dtype=self.params_dtype,
                position_encoding_2d=self.position_encoding_2d,
            )

        self.layers = torch.nn.ModuleList(
            [get_layer(layer_id) for layer_id in range(self.num_layers)]
        )

        # Final layer norm before output.
        self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)

    def get_input_embeddings(self):
        return self.word_embeddings

    def set_input_embeddings(self, new_embeddings: torch.Tensor):
        self.word_embeddings = new_embeddings

    @staticmethod
    def get_masks(seq, device):
        context_length = seq.index(150004) + 1

        attention_mask = torch.ones((1, len(seq), len(seq)), device=device)
        attention_mask.tril_()
        attention_mask[..., :context_length - 1] = 1
        attention_mask.unsqueeze_(1)
        attention_mask = (attention_mask < 0.5).bool()

        return attention_mask

    def get_position_ids(self, seq, mask_position, device, gmask=False):
        context_length = seq.index(150004) + 1
        if self.position_encoding_2d:
            seq_length = seq.index(150004)
            position_ids = torch.arange(context_length, dtype=torch.long, device=device)
            if not gmask:
                position_ids[seq_length:] = mask_position
            block_position_ids = torch.cat((
                torch.zeros(seq_length, dtype=torch.long, device=device),
                torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
            ))
            position_ids = torch.stack((position_ids, block_position_ids), dim=0)
        else:
            position_ids = torch.arange(context_length, dtype=torch.long, device=device)
            if not gmask:
                position_ids[context_length - 1:] = mask_position

        position_ids = position_ids.unsqueeze(0)

        return position_ids

    @add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPastAndCrossAttentions,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
            self,
            input_ids: Optional[torch.LongTensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
            inputs_embeds: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape[:2]
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape[:2]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if past_key_values is None:
            past_key_values = tuple([None] * len(self.layers))

            MASK, gMASK = 150000, 150001
            mask_token = MASK if MASK in input_ids else gMASK
            use_gmask = False if MASK in input_ids else gMASK
            seq = input_ids[0].tolist()

            mask_position = seq.index(mask_token)

            if attention_mask is None:
                attention_mask = self.get_masks(
                    seq=seq,
                    device=input_ids.device
                )

            if position_ids is None:
                position_ids = self.get_position_ids(
                    seq=seq,
                    mask_position=mask_position,
                    device=input_ids.device,
                    gmask=use_gmask
                )

        if inputs_embeds is None:
            # print("*"*80)
            # print(f"{input_ids.device = }")
            # print(f"{self.word_embeddings.weight.device = }")
            inputs_embeds = self.word_embeddings(input_ids.to(self.word_embeddings.weight.device))

        # [seq_len, batch, hidden_size]
        hidden_states = inputs_embeds.transpose(0, 1)


        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None



        seq_length_with_past = seq_length
        past_key_values_length = 0
        if past_key_values[0] is not None:
            past_key_values_length = past_key_values[0][0].shape[0]
            seq_length_with_past = seq_length_with_past + past_key_values_length
        if attention_mask is None:
            attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()

        else:
            attention_mask = attention_mask.to(input_ids.device)

        for i, layer in enumerate(self.layers):

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                # https://mathpretty.com/11156.html
                use_cache = False
                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

                layer_ret = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer),
                    # create_custom_forward(layer),
                    hidden_states,
                    position_ids,
                    attention_mask,
                    torch.ones(1, dtype=torch.float32, requires_grad=True) * i,
                    # torch.tensor(i, requires_grad=True), 
                    past_key_values[i],
                
                )

            else:

                layer_ret = layer(
                    hidden_states,
                    position_ids=position_ids,
                    attention_mask=attention_mask,
                    layer_id=torch.tensor(i),
                    layer_past=past_key_values[i],
                    use_cache=use_cache,
                    output_attentions=output_attentions
                )

            hidden_states = layer_ret[0]

            if use_cache:
                presents = presents + (layer_ret[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)

        # Final layer norm.
        hidden_states = self.final_layernorm(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        # self.hidden_size = config.hidden_size
        # self.params_dtype = torch.half
        # self.vocab_size = config.vocab_size
        self.max_sequence_length = config.max_sequence_length

        self.position_encoding_2d = config.position_encoding_2d

        self.transformer = ChatGLMModel(config)

        self.lm_head = skip_init(
            nn.Linear,
            config.hidden_size,
            config.vocab_size,
            bias=False,
            dtype=torch.half
        )
        self.model_parallel = False

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def get_masks_and_position_ids(self, seq, mask_position, context_length, device, gmask=False):
        attention_mask = torch.ones((1, context_length, context_length), device=device)
        attention_mask.tril_()
        attention_mask[..., :context_length - 1] = 1
        attention_mask.unsqueeze_(1)
        attention_mask = (attention_mask < 0.5).bool()

        if self.position_encoding_2d:
            seq_length = seq.index(150004)
            position_ids = torch.arange(context_length, dtype=torch.long, device=device)
            if not gmask:
                position_ids[seq_length:] = mask_position
            block_position_ids = torch.cat((
                torch.zeros(seq_length, dtype=torch.long, device=device),
                torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
            ))
            position_ids = torch.stack((position_ids, block_position_ids), dim=0)
        else:
            position_ids = torch.arange(context_length, dtype=torch.long, device=device)
            if not gmask:
                position_ids[context_length - 1:] = mask_position

        position_ids = position_ids.unsqueeze(0)

        return attention_mask, position_ids

    def prepare_inputs_for_generation(
            self,
            input_ids: torch.LongTensor,
            past: Optional[torch.Tensor] = None,
            past_key_values: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            **kwargs
    ) -> dict:

        MASK, gMASK = 150000, 150001
        mask_token = MASK if MASK in input_ids else gMASK
        use_gmask = False if MASK in input_ids else gMASK
        seq = input_ids[0].tolist()
        mask_position = seq.index(mask_token)

        if mask_token not in seq:
            raise ValueError("You have to add either [MASK] or [gMASK] in your input")

        # only last token for input_ids if past is not None
        if past is not None or past_key_values is not None:
            context_length = seq.index(150004)
            last_token = input_ids[:, -1].unsqueeze(-1)
            if self.position_encoding_2d:
                position_ids = torch.tensor([[[mask_position], [len(seq) - context_length]]], dtype=torch.long,
                                            device=input_ids.device)
            else:
                position_ids = torch.tensor([[mask_position]], dtype=torch.long, device=input_ids.device)

            if past is None:
                past = past_key_values
            return {
                "input_ids": last_token,
                "past_key_values": past,
                "position_ids": position_ids,
            }
        else:
            attention_mask, position_ids = self.get_masks_and_position_ids(
                seq=seq,
                mask_position=mask_position,
                context_length=len(seq),
                device=input_ids.device,
                gmask=use_gmask
            )

            return {
                "input_ids": input_ids,
                "past_key_values": past,
                "position_ids": position_ids,
                "attention_mask": attention_mask
            }

    def forward(
            self,
            input_ids: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            labels: Optional[torch.Tensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids=input_ids,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()

        loss = None
        if labels is not None:
            lm_logits = lm_logits.to(torch.float32)

            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)).to(shift_labels.device), shift_labels.view(-1))


        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    @staticmethod
    def _reorder_cache(
            past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.

        Output shares the same memory storage as `past`.
        """
        return tuple(
            (
                layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
                layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
            )
            for layer_past in past
        )

    @torch.no_grad()
    def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
             do_sample=True, top_p=0.7, temperature=0.95, **kwargs):
        if history is None:
            history = []
        gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
                      "temperature": temperature, **kwargs}
        if not history:
            prompt = query
        else:
            prompt = ""
            for i, (old_query, response) in enumerate(history):
                prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
            prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
        input_ids = tokenizer([prompt], return_tensors="pt", padding=True)
        input_ids = input_ids.to(self.device)
        outputs = self.generate(**input_ids, **gen_kwargs)
        outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]) - 2:]
        response = tokenizer.decode(outputs)
        response = response.strip()
        response = response.replace("[[训练时间]]", "2023年")
        history = history + [(query, response)]
        return response, history

    @torch.no_grad()
    def generate(
            self,
            **kwargs,
    ):
        MASK, gMASK = 150000, 150001
        bos, eos = 150004, 150005

        if "eos_token_id" not in kwargs:
            kwargs["eos_token_id"] = eos

        stop = False

        return_seqs = []

        while True:
            # print(kwargs)
            output_ids = super().generate(**kwargs)

            return_seqs = []
            max_length = 0

            for i in range(output_ids.shape[0]):
                output_seq = output_ids[i].tolist()
                mask_token = MASK if MASK in output_seq else gMASK
                mask_position = output_seq.index(mask_token)
                bos_position = output_seq.index(bos)
                if eos in output_seq:
                    eos_position = output_seq.index(eos)
                else:
                    eos_position = len(output_seq)

                return_seq = output_seq[:mask_position] + output_seq[bos_position + 1:eos_position] + output_seq[
                                                                                                      mask_position + 1:bos_position]
                max_length = max(max_length, len(return_seq))
                return_seqs.append(return_seq)

            for i in range(output_ids.shape[0]):
                return_seqs[i] = [0] * (max_length - len(return_seqs[i])) + return_seqs[i]  # padding
                if mask_token not in return_seqs[i]:
                    stop = True

            if stop:
                break

            for return_seq in return_seqs:
                return_seq += [bos]

            kwargs['input_ids'] = torch.tensor(return_seqs, dtype=torch.long, device=kwargs['input_ids'].device)

        return torch.tensor(return_seqs, dtype=torch.long, device=kwargs['input_ids'].device)

    def quantize(self, bits: int):
        from .quantization import quantize
        self.transformer = quantize(self.transformer, bits)
        return self