File size: 1,397 Bytes
3c65a51
 
 
 
968e3bc
 
c4dbae8
 
3c65a51
 
 
97c1770
3c65a51
 
 
968e3bc
3c65a51
 
968e3bc
 
 
6c3ce49
 
968e3bc
6c3ce49
 
 
b607f57
6c3ce49
 
 
 
 
b607f57
6c3ce49
 
968e3bc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from typing import Dict, List, Any
from io import BytesIO
import base64
import logging
from PIL import Image
import numpy as np
from transformers import AutoModel


class EndpointHandler():
    def __init__(self, path=""):
        self.model = AutoModel.from_pretrained('Blueway/Inference-endpoint-for-jina-clip-v1', trust_remote_code=True)

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        data args:
            image (:obj:`string`)
            candidates (:obj:`list`)
        Return:
            A :obj:`list`: une liste permettant de passer les embedding 
        """
        
        serializable_results = {}
        inputs_request = data.pop("inputs", data)
        
        if 'text' in inputs_request:
            text = inputs_request['text']
            text_embedding = self.model.encode_text(text)
            serializable_results['text_embedding'] = text_embedding.tolist() if isinstance(text_embedding, np.ndarray) else text_embedding
            
        
        if 'image' in inputs_request:
            image = Image.open(BytesIO(base64.b64decode(inputs_request['image'])))
            image_embedding = self.model.encode_image(image)
            serializable_results['image_embedding'] = image_embedding.tolist() if isinstance(image_embedding, np.ndarray) else image_embedding
            
        return serializable_results