|
from typing import Dict, List, Any |
|
from io import BytesIO |
|
import base64 |
|
import logging |
|
import uform |
|
from PIL import Image |
|
import numpy as np |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.model, self.processor = uform.get_model('unum-cloud/uform-vl-multilingual-v2') |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
image (:obj:`string`) |
|
candidates (:obj:`list`) |
|
Return: |
|
A :obj:`list`: une liste permettant de passer les embedding |
|
""" |
|
inputs_request = data.pop("inputs", data) |
|
|
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs_request['image']))) |
|
text = inputs_request['text'] |
|
|
|
image_data = self.processor.preprocess_image(image) |
|
text_data = self.processor.preprocess_text(text) |
|
|
|
image_features, image_embedding = self.model.encode_image(image_data) |
|
text_features, text_embedding = self.model.encode_text(text_data) |
|
joint_embedding = self.model.encode_multimodal(image=image_data, text=text_data) |
|
|
|
|
|
serializable_results = { |
|
'joint_embedding': joint_embedding.tolist() if isinstance(joint_embedding, np.ndarray) else joint_embedding, |
|
'text_embedding': text_embedding.tolist() if isinstance(text_embedding, np.ndarray) else text_embedding, |
|
'image_embedding': image_embedding.tolist() if isinstance(image_embedding, np.ndarray) else image_embedding |
|
} |
|
|
|
return serializable_results |
|
|