|
from typing import Dict, List, Any |
|
from io import BytesIO |
|
import base64 |
|
import logging |
|
from PIL import Image |
|
import numpy as np |
|
from transformers import AutoModel |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.model = AutoModel.from_pretrained('jinaai/jina-clip-v1', trust_remote_code=True) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
image (:obj:`string`) |
|
candidates (:obj:`list`) |
|
Return: |
|
A :obj:`list`: une liste permettant de passer les embedding |
|
""" |
|
inputs_request = data.pop("inputs", data) |
|
|
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs_request['image']))) |
|
text = inputs_request['text'] |
|
|
|
text_embeddings = model.encode_text(text) |
|
image_embeddings = model.encode_image(image) |
|
|
|
serializable_results = { |
|
'text_embedding': text_embedding.tolist() if isinstance(text_embedding, np.ndarray) else text_embedding, |
|
'image_embedding': image_embedding.tolist() if isinstance(image_embedding, np.ndarray) else image_embedding |
|
} |
|
|
|
return serializable_results |
|
|