Upload 11 files
Browse files- config.json +71 -0
- config_sentence_transformers.json +10 -0
- custom_st.py +203 -0
- model.safetensors +3 -0
- modules.json +14 -0
- preprocessor_config.json +22 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
config.json
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "jinaai/jina-clip-v1",
|
3 |
+
"add_projections": false,
|
4 |
+
"architectures": [
|
5 |
+
"JinaCLIPModel"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "jinaai/jina-clip-implementation--configuration_clip.JinaCLIPConfig",
|
9 |
+
"AutoModel": "jinaai/jina-clip-implementation--modeling_clip.JinaCLIPModel"
|
10 |
+
},
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"logit_scale_init_value": 2.6592,
|
13 |
+
"model_type": "jina_clip",
|
14 |
+
"projection_dim": 768,
|
15 |
+
"text_config": {
|
16 |
+
"_name_or_path": "",
|
17 |
+
"embed_dim": 768,
|
18 |
+
"hf_model_config_kwargs": {
|
19 |
+
"use_flash_attn": false
|
20 |
+
},
|
21 |
+
"hf_model_name_or_path": "jinaai/jina-bert-flash-implementation",
|
22 |
+
"model_type": "jina_clip_text",
|
23 |
+
"output_attentions": false,
|
24 |
+
"output_hidden_states": false,
|
25 |
+
"output_scores": false,
|
26 |
+
"pad_token_id": null,
|
27 |
+
"pooler_type": "mean_pooler",
|
28 |
+
"proj_bias": false,
|
29 |
+
"proj_type": null,
|
30 |
+
"transformers_version": "4.36.2",
|
31 |
+
"use_bfloat16": false
|
32 |
+
},
|
33 |
+
"torch_dtype": "float32",
|
34 |
+
"transformers_version": null,
|
35 |
+
"vision_config": {
|
36 |
+
"_name_or_path": "",
|
37 |
+
"embed_dim": 768,
|
38 |
+
"fused_layer_norm": false,
|
39 |
+
"head_width": 64,
|
40 |
+
"image_size": 224,
|
41 |
+
"intp_freq": false,
|
42 |
+
"layers": 12,
|
43 |
+
"ls_init_value": null,
|
44 |
+
"mlp_ratio": 2.6667,
|
45 |
+
"model_type": "jina_clip_vision",
|
46 |
+
"naive_swiglu": true,
|
47 |
+
"output_attentions": false,
|
48 |
+
"output_hidden_states": false,
|
49 |
+
"output_scores": false,
|
50 |
+
"pad_token_id": null,
|
51 |
+
"patch_dropout": 0.1,
|
52 |
+
"patch_size": 16,
|
53 |
+
"post_norm": false,
|
54 |
+
"prefix": null,
|
55 |
+
"problem_type": null,
|
56 |
+
"proj_type": null,
|
57 |
+
"pruned_heads": {},
|
58 |
+
"pt_hw_seq_len": 14,
|
59 |
+
"qkv_bias": true,
|
60 |
+
"remove_invalid_values": false,
|
61 |
+
"return_dict": true,
|
62 |
+
"return_dict_in_generate": false,
|
63 |
+
"rope_embeddings": true,
|
64 |
+
"subln": true,
|
65 |
+
"tie_word_embeddings": true,
|
66 |
+
"transformers_version": "4.36.2",
|
67 |
+
"use_bfloat16": false,
|
68 |
+
"width": 768,
|
69 |
+
"x_attention": false
|
70 |
+
}
|
71 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
custom_st.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from io import BytesIO
|
5 |
+
from typing import Any, Dict, List, Literal, Optional, Union
|
6 |
+
|
7 |
+
import requests
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from torch import nn
|
11 |
+
from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoTokenizer
|
12 |
+
|
13 |
+
|
14 |
+
class Transformer(nn.Module):
|
15 |
+
"""Huggingface AutoModel to generate token embeddings.
|
16 |
+
Loads the correct class, e.g. BERT / RoBERTa etc.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
model_name_or_path: Huggingface models name
|
20 |
+
(https://huggingface.co/models)
|
21 |
+
max_seq_length: Truncate any inputs longer than max_seq_length
|
22 |
+
model_args: Keyword arguments passed to the Huggingface
|
23 |
+
Transformers model
|
24 |
+
tokenizer_args: Keyword arguments passed to the Huggingface
|
25 |
+
Transformers tokenizer
|
26 |
+
config_args: Keyword arguments passed to the Huggingface
|
27 |
+
Transformers config
|
28 |
+
cache_dir: Cache dir for Huggingface Transformers to store/load
|
29 |
+
models
|
30 |
+
do_lower_case: If true, lowercases the input (independent if the
|
31 |
+
model is cased or not)
|
32 |
+
tokenizer_name_or_path: Name or path of the tokenizer. When
|
33 |
+
None, then model_name_or_path is used
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
model_name_or_path: str,
|
39 |
+
max_seq_length: Optional[int] = None,
|
40 |
+
model_args: Optional[Dict[str, Any]] = None,
|
41 |
+
tokenizer_args: Optional[Dict[str, Any]] = None,
|
42 |
+
config_args: Optional[Dict[str, Any]] = None,
|
43 |
+
cache_dir: Optional[str] = None,
|
44 |
+
do_lower_case: bool = False,
|
45 |
+
tokenizer_name_or_path: str = None,
|
46 |
+
backend: Literal['torch', 'onnx', 'openvino'] = 'torch',
|
47 |
+
**_,
|
48 |
+
) -> None:
|
49 |
+
super(Transformer, self).__init__()
|
50 |
+
if backend != 'torch':
|
51 |
+
raise ValueError(
|
52 |
+
f'Backend \'{backend}\' is not supported, please use \'torch\' instead'
|
53 |
+
)
|
54 |
+
|
55 |
+
self.config_keys = ["max_seq_length", "do_lower_case"]
|
56 |
+
self.do_lower_case = do_lower_case
|
57 |
+
if model_args is None:
|
58 |
+
model_args = {}
|
59 |
+
if tokenizer_args is None:
|
60 |
+
tokenizer_args = {}
|
61 |
+
if config_args is None:
|
62 |
+
config_args = {}
|
63 |
+
|
64 |
+
config = AutoConfig.from_pretrained(
|
65 |
+
model_name_or_path, **config_args, cache_dir=cache_dir
|
66 |
+
)
|
67 |
+
self.jina_clip = AutoModel.from_pretrained(
|
68 |
+
model_name_or_path, config=config, cache_dir=cache_dir, **model_args
|
69 |
+
)
|
70 |
+
|
71 |
+
if max_seq_length is not None and "model_max_length" not in tokenizer_args:
|
72 |
+
tokenizer_args["model_max_length"] = max_seq_length
|
73 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
74 |
+
(
|
75 |
+
tokenizer_name_or_path
|
76 |
+
if tokenizer_name_or_path is not None
|
77 |
+
else model_name_or_path
|
78 |
+
),
|
79 |
+
cache_dir=cache_dir,
|
80 |
+
**tokenizer_args,
|
81 |
+
)
|
82 |
+
self.preprocessor = AutoImageProcessor.from_pretrained(
|
83 |
+
(
|
84 |
+
tokenizer_name_or_path
|
85 |
+
if tokenizer_name_or_path is not None
|
86 |
+
else model_name_or_path
|
87 |
+
),
|
88 |
+
cache_dir=cache_dir,
|
89 |
+
**tokenizer_args,
|
90 |
+
)
|
91 |
+
|
92 |
+
# No max_seq_length set. Try to infer from model
|
93 |
+
if max_seq_length is None:
|
94 |
+
if (
|
95 |
+
hasattr(self.jina_clip, "config")
|
96 |
+
and hasattr(self.jina_clip.config, "max_position_embeddings")
|
97 |
+
and hasattr(self.tokenizer, "model_max_length")
|
98 |
+
):
|
99 |
+
max_seq_length = min(
|
100 |
+
self.jina_clip.config.max_position_embeddings,
|
101 |
+
self.tokenizer.model_max_length,
|
102 |
+
)
|
103 |
+
|
104 |
+
self.max_seq_length = max_seq_length
|
105 |
+
|
106 |
+
if tokenizer_name_or_path is not None:
|
107 |
+
self.jina_clip.config.tokenizer_class = self.tokenizer.__class__.__name__
|
108 |
+
|
109 |
+
def forward(
|
110 |
+
self, features: Dict[str, torch.Tensor]
|
111 |
+
) -> Dict[str, torch.Tensor]:
|
112 |
+
"""Returns token_embeddings, cls_token"""
|
113 |
+
if "input_ids" in features:
|
114 |
+
embedding = self.jina_clip.get_text_features(
|
115 |
+
input_ids=features["input_ids"]
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
embedding = self.jina_clip.get_image_features(
|
119 |
+
pixel_values=features["pixel_values"]
|
120 |
+
)
|
121 |
+
return {"sentence_embedding": embedding}
|
122 |
+
|
123 |
+
def get_word_embedding_dimension(self) -> int:
|
124 |
+
return self.config.text_config.embed_dim
|
125 |
+
|
126 |
+
def decode_data_image(data_image_str):
|
127 |
+
header, data = data_image_str.split(',', 1)
|
128 |
+
image_data = base64.b64decode(data)
|
129 |
+
return Image.open(BytesIO(image_data))
|
130 |
+
|
131 |
+
def tokenize(
|
132 |
+
self, batch: Union[List[str]], padding: Union[str, bool] = True
|
133 |
+
) -> Dict[str, torch.Tensor]:
|
134 |
+
"""Tokenizes a text and maps tokens to token-ids"""
|
135 |
+
images = []
|
136 |
+
texts = []
|
137 |
+
for sample in batch:
|
138 |
+
if isinstance(sample, str):
|
139 |
+
if sample.startswith('http'):
|
140 |
+
response = requests.get(sample)
|
141 |
+
images.append(Image.open(BytesIO(response.content)).convert('RGB'))
|
142 |
+
elif sample.startswith('data:image/'):
|
143 |
+
images.append(self.decode_data_image(sample).convert('RGB'))
|
144 |
+
else:
|
145 |
+
# TODO: Make sure that Image.open fails for non-image files
|
146 |
+
try:
|
147 |
+
images.append(Image.open(sample).convert('RGB'))
|
148 |
+
except:
|
149 |
+
texts.append(sample)
|
150 |
+
elif isinstance(sample, Image.Image):
|
151 |
+
images.append(sample.convert('RGB'))
|
152 |
+
|
153 |
+
if images and texts:
|
154 |
+
raise ValueError('Batch must contain either images or texts, not both')
|
155 |
+
|
156 |
+
if texts:
|
157 |
+
return self.tokenizer(
|
158 |
+
texts,
|
159 |
+
padding=padding,
|
160 |
+
truncation="longest_first",
|
161 |
+
return_tensors="pt",
|
162 |
+
max_length=self.max_seq_length,
|
163 |
+
)
|
164 |
+
elif images:
|
165 |
+
return self.preprocessor(images)
|
166 |
+
return {}
|
167 |
+
|
168 |
+
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
169 |
+
self.jina_clip.save_pretrained(
|
170 |
+
output_path, safe_serialization=safe_serialization
|
171 |
+
)
|
172 |
+
self.tokenizer.save_pretrained(output_path)
|
173 |
+
self.preprocessor.save_pretrained(output_path)
|
174 |
+
|
175 |
+
@staticmethod
|
176 |
+
def load(input_path: str) -> "Transformer":
|
177 |
+
# Old classes used other config names than 'sentence_bert_config.json'
|
178 |
+
for config_name in [
|
179 |
+
"sentence_bert_config.json",
|
180 |
+
"sentence_roberta_config.json",
|
181 |
+
"sentence_distilbert_config.json",
|
182 |
+
"sentence_camembert_config.json",
|
183 |
+
"sentence_albert_config.json",
|
184 |
+
"sentence_xlm-roberta_config.json",
|
185 |
+
"sentence_xlnet_config.json",
|
186 |
+
]:
|
187 |
+
sbert_config_path = os.path.join(input_path, config_name)
|
188 |
+
if os.path.exists(sbert_config_path):
|
189 |
+
break
|
190 |
+
|
191 |
+
with open(sbert_config_path) as fIn:
|
192 |
+
config = json.load(fIn)
|
193 |
+
# Don't allow configs to set trust_remote_code
|
194 |
+
if "model_args" in config and "trust_remote_code" in config["model_args"]:
|
195 |
+
config["model_args"].pop("trust_remote_code")
|
196 |
+
if (
|
197 |
+
"tokenizer_args" in config
|
198 |
+
and "trust_remote_code" in config["tokenizer_args"]
|
199 |
+
):
|
200 |
+
config["tokenizer_args"].pop("trust_remote_code")
|
201 |
+
if "config_args" in config and "trust_remote_code" in config["config_args"]:
|
202 |
+
config["config_args"].pop("trust_remote_code")
|
203 |
+
return Transformer(model_name_or_path=input_path, **config)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5140d6df851d217296a10b3961ece2850d22b35bff37af948f2d9db33ae4aec2
|
3 |
+
size 890733860
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx":0,
|
4 |
+
"name":"0",
|
5 |
+
"path":"",
|
6 |
+
"type":"custom_st.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx":2,
|
10 |
+
"name":"2",
|
11 |
+
"path":"2_Normalize",
|
12 |
+
"type":"sentence_transformers.models.Normalize"
|
13 |
+
}
|
14 |
+
]
|
preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "jinaai/jina-clip-implementation--processing_clip.JinaCLIPImageProcessor",
|
4 |
+
"AutoProcessor": "jinaai/jina-clip-implementation--processing_clip.JinaCLIPProcessor"
|
5 |
+
},
|
6 |
+
"fill_color": 0,
|
7 |
+
"image_processor_type": "JinaCLIPImageProcessor",
|
8 |
+
"interpolation": "bicubic",
|
9 |
+
"mean": [
|
10 |
+
0.48145466,
|
11 |
+
0.4578275,
|
12 |
+
0.40821073
|
13 |
+
],
|
14 |
+
"processor_class": "JinaCLIPProcessor",
|
15 |
+
"resize_mode": "shortest",
|
16 |
+
"size": 224,
|
17 |
+
"std": [
|
18 |
+
0.26862954,
|
19 |
+
0.26130258,
|
20 |
+
0.27577711
|
21 |
+
]
|
22 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc0a69757ff58c708bc773bd911d99a6d1e25be2b0eb4fb2e06640848dbb44a9
|
3 |
+
size 890820542
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|