from typing import Dict, List, Any from io import BytesIO import base64 import logging from PIL import Image import numpy as np from transformers import AutoModel class EndpointHandler(): def __init__(self, path=""): self.model = AutoModel.from_pretrained('Blueway/Inference-endpoint-for-jina-clip-v1', trust_remote_code=True) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: image (:obj:`string`) candidates (:obj:`list`) Return: A :obj:`list`: une liste permettant de passer les embedding """ inputs_request = data.pop("inputs", data) # decode base64 image to PIL image = Image.open(BytesIO(base64.b64decode(inputs_request['image']))) text = inputs_request['text'] if text is not None: text_embedding = self.model.encode_text(text) if image is not None: image_embedding = self.model.encode_image(image) # Convert embeddings to lists of floats serializable_results = { 'text_embedding': (text_embedding.tolist() if isinstance(text_embedding, np.ndarray) else text_embedding) if text_embedding is not None else [], 'image_embedding': (image_embedding.tolist() if isinstance(image_embedding, np.ndarray) else image_embedding) if image_embeddingis not None else [] } return serializable_results