from typing import Dict, List, Any from io import BytesIO import base64 import logging import uform from PIL import Image import numpy as np class EndpointHandler(): def __init__(self, path=""): self.model, self.processor = uform.get_model('unum-cloud/uform-vl-multilingual-v2') def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: image (:obj:`string`) candidates (:obj:`list`) Return: A :obj:`list`: une liste permettant de passer les embedding """ inputs_request = data.pop("inputs", data) # decode base64 image to PIL image = Image.open(BytesIO(base64.b64decode(inputs_request['image']))) text = inputs_request['text'] image_data = self.processor.preprocess_image(image) text_data = self.processor.preprocess_text(text) image_features, image_embedding = self.model.encode_image(image_data) text_features, text_embedding = self.model.encode_text(text_data) joint_embedding = self.model.encode_multimodal(image=image_data, text=text_data) # Convert embeddings to lists of floats serializable_results = { 'joint_embedding': joint_embedding.tolist() if isinstance(joint_embedding, np.ndarray) else joint_embedding, 'text_embedding': text_embedding.tolist() if isinstance(text_embedding, np.ndarray) else text_embedding, 'image_embedding': image_embedding.tolist() if isinstance(image_embedding, np.ndarray) else image_embedding } return serializable_results