--- license: apache-2.0 language: - fr - en base_model: - jinaai/jina-clip-v1 pipeline_tag: sentence-similarity tags: - embedding - image-text-embedding --- # Fork of [jinaai/jina-clip-v1](https://huggingface.co/jinaai/jina-clip-v1) for a `multimodal-multilanguage-embedding` Inference endpoint. This repository implements a `custom` task for `multimodal-multilanguage-embedding` for 🤗 Inference Endpoints. The code for the customized handler is in the [handler.py](https://huggingface.co/Blueway/Inference-endpoint-for-jina-clip-v1/blob/main/handler.py). To use deploy this model a an Inference Endpoint you have to select `Custom` as task to use the `handler.py` file. The repository contains a requirements.txt to download the einops, timm and pillow library. ## Call to endpoint example ``` python import json from typing import List import requests as r import base64 ENDPOINT_URL = "endpoint_url" HF_TOKEN = "token_key" def predict(path_to_image: str = None, text : str = None): with open(path_to_image, "rb") as i: b64 = base64.b64encode(i.read()) payload = {"inputs": { "image": b64.decode("utf-8"), "text": text } } response = r.post( ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json=payload ) return response.json() prediction = predict( path_to_image="image/accidentdevoiture.webp", text="An image of a cat and a remote control" ) print(json.dumps(prediction, indent=2)) ``` ## Expected result ``` json { "text_embedding": [-0.009289545938372612, -0.03686045855283737, ... 0.038627129048109055, -0.01346363127231597] "image_embedding": [-0.009289545938372612, -0.03686045855283737, ... 0.038627129048109055, -0.01346363127231597] } ```