Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,94 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
library_name: transformers
|
5 |
+
tags:
|
6 |
+
- bert
|
7 |
+
- text-classification
|
8 |
+
- privacy-policy
|
9 |
+
- gdpr
|
10 |
+
- torchscript
|
11 |
+
datasets:
|
12 |
+
- MAPP-116
|
13 |
+
metrics:
|
14 |
+
- f1
|
15 |
+
model-index:
|
16 |
+
- name: PARENT BERT
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: text-classification
|
20 |
+
dataset:
|
21 |
+
name: MAPP-116
|
22 |
+
type: text
|
23 |
+
metrics:
|
24 |
+
- name: f1
|
25 |
+
type: score
|
26 |
+
value: 0.80 # replace with your actual F1 score
|
27 |
+
---
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
# PARENT BERT Models for Privacy Policy Analysis
|
33 |
+
|
34 |
+
This repository contains **TorchScript versions of 15 fine-tuned BERT models** used in the PARENT project to analyse mobile app privacy policies. These models identify **what data is collected, why it is collected, and how it is processed**, helping assess GDPR compliance.
|
35 |
+
|
36 |
+
They are part of a hybrid framework designed for non-technical users, particularly parents concerned about children’s privacy.
|
37 |
+
|
38 |
+
---
|
39 |
+
|
40 |
+
## Model Purpose
|
41 |
+
|
42 |
+
- Segment privacy policies to detect:
|
43 |
+
- Data collection types (e.g., contact info, location)
|
44 |
+
- Purpose of data collection
|
45 |
+
- How data is processed
|
46 |
+
- Support GDPR compliance evaluation
|
47 |
+
- Detect potential third-party sharing (in combination with a logistic regression model)
|
48 |
+
|
49 |
+
---
|
50 |
+
## References
|
51 |
+
|
52 |
+
- **MAPP Dataset:** Arora, S., Hosseini, H., Utz, C., Bannihatti Kumar, V., Dhellemmes, T., Ravichander, A., Story, P., Mangat, J., Chen, R., Degeling, M., Norton, T.B., Hupperich, T., Wilson, S., & Sadeh, N.M. (2022). *A tale of two regulatory regimes: Creation and analysis of a bilingual privacy policy corpus*. Proceedings of the International Conference on Language Resources and Evaluation (LREC 2022). [PDF link](https://aclanthology.org/2022.lrec-1.585.pdf) [Accessed 12 July 2025].
|
53 |
+
---
|
54 |
+
|
55 |
+
## Usage
|
56 |
+
|
57 |
+
```python
|
58 |
+
import torch
|
59 |
+
from transformers import BertTokenizerFast
|
60 |
+
from huggingface_hub import hf_hub_download
|
61 |
+
|
62 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
63 |
+
REPO_ID = "Bnaad/PARENT_bert"
|
64 |
+
|
65 |
+
# Load tokenizer
|
66 |
+
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
67 |
+
|
68 |
+
# Load one TorchScript model from Hugging Face
|
69 |
+
label_name = "Information Type_Contact information"
|
70 |
+
safe_label = label_name.replace(" ", "_").replace("/", "_")
|
71 |
+
filename = f"torchscript_{safe_label}.pt"
|
72 |
+
model_path = hf_hub_download(repo_id=REPO_ID, filename=filename)
|
73 |
+
model = torch.jit.load(model_path, map_location=device)
|
74 |
+
model.to(device)
|
75 |
+
model.eval()
|
76 |
+
|
77 |
+
# Example inference
|
78 |
+
sample_text = """For any questions about your account or our services, please contact our customer support team by emailing [email protected], calling +1-800-555-1234, or visiting our office at 123 Main Street, Springfield, IL, 62701 during business hours"""
|
79 |
+
inputs = tokenizer(
|
80 |
+
sample_text,
|
81 |
+
return_tensors="pt",
|
82 |
+
truncation=True,
|
83 |
+
padding="max_length",
|
84 |
+
max_length=512
|
85 |
+
).to(device)
|
86 |
+
|
87 |
+
with torch.no_grad():
|
88 |
+
outputs = model(inputs["input_ids"], inputs["attention_mask"])
|
89 |
+
|
90 |
+
print("Logits:", outputs)
|
91 |
+
prob = torch.sigmoid(outputs.squeeze())
|
92 |
+
print(prob)
|
93 |
+
|
94 |
+
|