BubbleJoe commited on
Commit
c2b87a1
·
1 Parent(s): f9d69b6

my first rl model from HF DRL course

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: MlpPolicy
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.66 +/- 13.37
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **MlpPolicy** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cc9dc7d0a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cc9dc7d0af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cc9dc7d0b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cc9dc7d0c10>", "_build": "<function ActorCriticPolicy._build at 0x7cc9dc7d0ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7cc9dc7d0d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cc9dc7d0dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cc9dc7d0e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7cc9dc7d0ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cc9dc7d0f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cc9dc7d1000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cc9dc7d1090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cc9dd634280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694396267306160366, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO41DxeOmA/1EjFPfbw1r7Y8dQ8S21YPQAAAAAAAAAAmiDePDhkhT1ROqu9o/0Kvo+Eob0OvRY9AAAAAAAAAABmqnY9vy8iPztjTrxsZpG+uyA5PZW5iL0AAAAAAAAAAGYm+7sDOiu8MNX6u+KU8Dx4cZA92qXCvQAAgD8AAIA/QNO6PXtOoLpiG7k6l+7fNZX3IDrgMtS5AACAPwAAAAAaM609DuOePRMMcr2rKkO+WAcDvd7NwzwAAAAAAAAAAK2COT5hKpu8Wl83PSNfsLsnyQS+hAGMvAAAgD8AAIA/Zi0ePqMDQj3+BTm+Wb3PvS8PB70C94m8AAAAAAAAAAAzivs8XCtuujIBMzoEuBq553bWObJGPbkAAIA/AACAP80KhD1cK0S68KUONXovgC98h546oM5vtAAAgD8AAIA/E30dvu1mAD82+QE+NeegvpixjLsN/YE9AAAAAAAAAACzaVQ9Xv8fPzgzXj2Bsaa+dTc1PTIV2DwAAAAAAAAAAE0t/r1jupA+bKAkPq9wUb5OKnI9lAG9PAAAAAAAAAAAAOMkvaCqlT9oYRa+QC3qvuVk173b8AG9AAAAAAAAAADm6a4+XMZ3P+hWHT4FlPK+CLyHPoUcFb4AAAAAAAAAABOKSr5lV6U/wAepvqL5/76tmFG+3ptYvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKPW+j/MnuMAWyUTTcBjAF0lEdAlV41sYVIqnV9lChoBkdAclP+WWyC4GgHTScBaAhHQJVfRLpRoAZ1fZQoaAZHQHHK+EEkjX5oB0vxaAhHQJVfUo9cKPZ1fZQoaAZHQG/4XNTtLL9oB0v5aAhHQJVga1JDmbN1fZQoaAZHQGxsXokiUxFoB00NAWgIR0CVYJIRh+fAdX2UKGgGR0ByQzq3VkMDaAdNMgFoCEdAlWCetCAtnXV9lChoBkdAce6y6MBIWmgHTR4BaAhHQJVhQPf8/EB1fZQoaAZHQG7m6mXPZ7JoB01CAWgIR0CVYa2aUiY+dX2UKGgGR0BvFndEb5uZaAdL/WgIR0CVYfqcEvCedX2UKGgGR0BxZbdl/YrbaAdNGgFoCEdAlWLu+yquKXV9lChoBkdAcVRQ4jrzG2gHTToBaAhHQJVkb9zfaYh1fZQoaAZHQHPV5WJaaCtoB0v4aAhHQJVkirOqvNh1fZQoaAZHQGxGnskY4yZoB01YAWgIR0CVZNEug6EKdX2UKGgGR0BwTzos7MgVaAdNIAFoCEdAlWYXhsImgXV9lChoBkdAcZbtdiUgS2gHTUkBaAhHQJVmtbRnezl1fZQoaAZHQHGCqHsTnJVoB0vpaAhHQJVnYm5UcXF1fZQoaAZHQHGbCHh0heRoB00RAWgIR0CVZ3BK+SKWdX2UKGgGR0BtEhPXTVlPaAdNHAFoCEdAlWeF0Lc9GXV9lChoBkdAcVzQuEmICWgHS/toCEdAlWmOcQRPGnV9lChoBkdAch0ssxwhn2gHS/BoCEdAlWtabnX/YXV9lChoBkdAcLIewcHW0GgHTSMBaAhHQJVrlJlJ6IF1fZQoaAZHQGvQQPZqVQhoB00zAWgIR0CVbDUG3WnTdX2UKGgGR0BwOjOJLuhLaAdNEQFoCEdAlWx42Kl54XV9lChoBkdAcZDIClrM1WgHTWwBaAhHQJVs4SteUpx1fZQoaAZHQHGipk5IYm9oB003AWgIR0CVbWbg0j1PdX2UKGgGR0BwLrMs6JZXaAdNBAFoCEdAlW8Af+0gKXV9lChoBkdAblOGWUr08WgHTQwBaAhHQJVvc6QvHtF1fZQoaAZHQG72vjGT9sJoB006AWgIR0CVb7QSzw+ddX2UKGgGR0BxPUYDTz/ZaAdNEAFoCEdAlW/i+pOvdXV9lChoBkdAcM9jQAuIymgHS/1oCEdAlXB/A9FF2HV9lChoBkdAcMNXwLE1mGgHTR4BaAhHQJVyj/io86p1fZQoaAZHQHKovRE4NqhoB00WAWgIR0CVcvyQxN7CdX2UKGgGR0BwYme+VTrFaAdNLgFoCEdAlXQL+glF+nV9lChoBkdAcyRQ9A5aNmgHTSYBaAhHQJV2UwK0D2d1fZQoaAZHQHI/eEh7mdRoB00PAWgIR0CVd3p35eqrdX2UKGgGR0BuQxkoWpIdaAdNFwFoCEdAlXeij59E1HV9lChoBkdAcHtMcIZ62WgHTQsBaAhHQJV36N83Mpx1fZQoaAZHQG/qexwAEMdoB00fAWgIR0CVeLHeaa1DdX2UKGgGR0BwVpdiUgSwaAdL/mgIR0CVeY+/QBxQdX2UKGgGR0By5gd0aIepaAdNJgFoCEdAlXmqvA44qHV9lChoBkdAclqfReC04WgHS/hoCEdAlXm0EHMUy3V9lChoBkdAci5wXqJMx2gHTb0BaAhHQJV578TBZZB1fZQoaAZHQHC9DsMRYihoB00UAWgIR0CVerRNyo4udX2UKGgGR0ByX1wKjSG8aAdNHgFoCEdAlXrWIGhVVHV9lChoBkdAcX2GEPDpDGgHTRcBaAhHQJV7KcH4XXR1fZQoaAZHQHCVFl05lvtoB00SAWgIR0CVfJPt2LYPdX2UKGgGR0BvoVBdD6WPaAdNJAFoCEdAlY4MCLdepnV9lChoBkdAcZBnUDuBtmgHTQEBaAhHQJWPc+FDfFd1fZQoaAZHQHBYIq5LAYZoB00CAWgIR0CVkDxcVxjsdX2UKGgGR0BxVcK0D2alaAdNTQFoCEdAlZBmDQJHAnV9lChoBkdAbkUiJwbVBmgHTQkBaAhHQJWQlMQEpy91fZQoaAZHQHEs85Ke05VoB0vsaAhHQJWQrhbW3Bp1fZQoaAZHQG5wKjafzz5oB00UAWgIR0CVkRZbpu/DdX2UKGgGR0BxE4UuctoSaAdNDAFoCEdAlZKRLf1pTXV9lChoBkdAbcUW3z+WGGgHTRMBaAhHQJWSweU6gdx1fZQoaAZHQHBcnjyWiURoB00dAWgIR0CVk1LKFIuodX2UKGgGR0BwvyLm6oVEaAdNPgFoCEdAlZPldPci4nV9lChoBkdAb+Es8xKxs2gHTQ0BaAhHQJWUQCuEEkl1fZQoaAZHQHIf8LF4s3BoB0vzaAhHQJWVFLrX18N1fZQoaAZHQHKutl7MPjJoB01NAWgIR0CVlZJl8PWhdX2UKGgGR0BxRYDA8B+4aAdNDAFoCEdAlZYSGSIP9XV9lChoBkdAcnKpCKJl8WgHTQgBaAhHQJWXcH6dlNF1fZQoaAZHQHCkygXdj5NoB00SAWgIR0CVmLgOBlMAdX2UKGgGR0BtTo22oegdaAdNCAFoCEdAlZi0SAYpD3V9lChoBkdAccTnW8RL9WgHTSkBaAhHQJWZsmShakh1fZQoaAZHQG/93d9Dx9ZoB00ZAWgIR0CVmcHvMKTjdX2UKGgGR0By0l2LYPGyaAdNPQFoCEdAlZoC1/lQuXV9lChoBkdAcCwmuDBdlmgHTQMBaAhHQJWaloFmnO11fZQoaAZHQHLaToQnQY1oB0vpaAhHQJWaktSQ5m11fZQoaAZHQG7QR0U47zVoB00LAWgIR0CVmv3dsSCfdX2UKGgGR0BxePumaYu1aAdL+mgIR0CVm5uDzyz5dX2UKGgGR0BxY9UQ04zaaAdNIAFoCEdAlZ0RR2r4nHV9lChoBkdAcdEmHgxagWgHTQkBaAhHQJWdPUjLSu11fZQoaAZHQHEziSV4X41oB0v9aAhHQJWd1YT0xud1fZQoaAZHQHB85prULD1oB00gAWgIR0CVnmhvitJWdX2UKGgGR0BxDoBzV+ZxaAdL8WgIR0CVnsh6Skj5dX2UKGgGR0BhzD8iwB5paAdN6ANoCEdAlZ9WvGIbfnV9lChoBkdAcY/okRjBmGgHS/1oCEdAlaHjXWe6I3V9lChoBkdAcJWK3uuzQmgHS/5oCEdAlaIJ/5LytnV9lChoBkdAckkzFuNxVGgHTTABaAhHQJWi7pMYdhl1fZQoaAZHQHArnrpqynloB00LAWgIR0CVowVOsT37dX2UKGgGR0BvopRsMy8BaAdL+2gIR0CVoxx20Re1dX2UKGgGR0BucJhvze41aAdNRAFoCEdAlaPMvAXVLHV9lChoBkdAccQD4xk/bGgHTREBaAhHQJWkmhGpdbB1fZQoaAZHQHIijmGM4tJoB00PA2gIR0CVpSIH1OCYdX2UKGgGR0Bw80sqaw2VaAdNHQFoCEdAlaYHf2saKnV9lChoBkdAcDm4cWCVbGgHTQgBaAhHQJWndIlMRHx1fZQoaAZHQHJXxFd9lVdoB00FAWgIR0CVqEHCGetkdX2UKGgGR0Byhsal1r6+aAdL+WgIR0CVqIblijL0dX2UKGgGR0BwZ5Oh0yP/aAdNLwFoCEdAlajj4gzP8nV9lChoBkdAbd2cxTKkmGgHTYwBaAhHQJWpHY/Vy3l1fZQoaAZHQG8fG96C17ZoB00TAWgIR0CVqgg7YChfdX2UKGgGR0Bwo264Ds+naAdNMgFoCEdAlawi5I6KcnV9lChoBkdAcdWwR5C4SmgHTR8BaAhHQJWuGjL0SRN1fZQoaAZHQHKPa1LJ0XBoB00aAWgIR0CVrsk/KQq7dX2UKGgGR0BvyCLKmsNlaAdNNAFoCEdAla8AwXZXdXV9lChoBkdAcFyURnOB2GgHTScBaAhHQJWvkFzMibF1fZQoaAZHQG+yw+EAYHhoB003AWgIR0CVsFdhAnlXdX2UKGgGR0BxRk8fV7QcaAdNKAFoCEdAlbBocBEKE3V9lChoBkdAbaYL3sXzlWgHTSABaAhHQJWxenP3SKF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e0e60673bcb07cb48b530309b8ba44c75337c09a23560b52b153bb560894ced
3
+ size 146730
ppo_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo_model/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7cc9dc7d0a60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cc9dc7d0af0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cc9dc7d0b80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cc9dc7d0c10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7cc9dc7d0ca0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7cc9dc7d0d30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cc9dc7d0dc0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cc9dc7d0e50>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7cc9dc7d0ee0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cc9dc7d0f70>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cc9dc7d1000>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cc9dc7d1090>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7cc9dd634280>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1694396267306160366,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO41DxeOmA/1EjFPfbw1r7Y8dQ8S21YPQAAAAAAAAAAmiDePDhkhT1ROqu9o/0Kvo+Eob0OvRY9AAAAAAAAAABmqnY9vy8iPztjTrxsZpG+uyA5PZW5iL0AAAAAAAAAAGYm+7sDOiu8MNX6u+KU8Dx4cZA92qXCvQAAgD8AAIA/QNO6PXtOoLpiG7k6l+7fNZX3IDrgMtS5AACAPwAAAAAaM609DuOePRMMcr2rKkO+WAcDvd7NwzwAAAAAAAAAAK2COT5hKpu8Wl83PSNfsLsnyQS+hAGMvAAAgD8AAIA/Zi0ePqMDQj3+BTm+Wb3PvS8PB70C94m8AAAAAAAAAAAzivs8XCtuujIBMzoEuBq553bWObJGPbkAAIA/AACAP80KhD1cK0S68KUONXovgC98h546oM5vtAAAgD8AAIA/E30dvu1mAD82+QE+NeegvpixjLsN/YE9AAAAAAAAAACzaVQ9Xv8fPzgzXj2Bsaa+dTc1PTIV2DwAAAAAAAAAAE0t/r1jupA+bKAkPq9wUb5OKnI9lAG9PAAAAAAAAAAAAOMkvaCqlT9oYRa+QC3qvuVk173b8AG9AAAAAAAAAADm6a4+XMZ3P+hWHT4FlPK+CLyHPoUcFb4AAAAAAAAAABOKSr5lV6U/wAepvqL5/76tmFG+3ptYvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKPW+j/MnuMAWyUTTcBjAF0lEdAlV41sYVIqnV9lChoBkdAclP+WWyC4GgHTScBaAhHQJVfRLpRoAZ1fZQoaAZHQHHK+EEkjX5oB0vxaAhHQJVfUo9cKPZ1fZQoaAZHQG/4XNTtLL9oB0v5aAhHQJVga1JDmbN1fZQoaAZHQGxsXokiUxFoB00NAWgIR0CVYJIRh+fAdX2UKGgGR0ByQzq3VkMDaAdNMgFoCEdAlWCetCAtnXV9lChoBkdAce6y6MBIWmgHTR4BaAhHQJVhQPf8/EB1fZQoaAZHQG7m6mXPZ7JoB01CAWgIR0CVYa2aUiY+dX2UKGgGR0BvFndEb5uZaAdL/WgIR0CVYfqcEvCedX2UKGgGR0BxZbdl/YrbaAdNGgFoCEdAlWLu+yquKXV9lChoBkdAcVRQ4jrzG2gHTToBaAhHQJVkb9zfaYh1fZQoaAZHQHPV5WJaaCtoB0v4aAhHQJVkirOqvNh1fZQoaAZHQGxGnskY4yZoB01YAWgIR0CVZNEug6EKdX2UKGgGR0BwTzos7MgVaAdNIAFoCEdAlWYXhsImgXV9lChoBkdAcZbtdiUgS2gHTUkBaAhHQJVmtbRnezl1fZQoaAZHQHGCqHsTnJVoB0vpaAhHQJVnYm5UcXF1fZQoaAZHQHGbCHh0heRoB00RAWgIR0CVZ3BK+SKWdX2UKGgGR0BtEhPXTVlPaAdNHAFoCEdAlWeF0Lc9GXV9lChoBkdAcVzQuEmICWgHS/toCEdAlWmOcQRPGnV9lChoBkdAch0ssxwhn2gHS/BoCEdAlWtabnX/YXV9lChoBkdAcLIewcHW0GgHTSMBaAhHQJVrlJlJ6IF1fZQoaAZHQGvQQPZqVQhoB00zAWgIR0CVbDUG3WnTdX2UKGgGR0BwOjOJLuhLaAdNEQFoCEdAlWx42Kl54XV9lChoBkdAcZDIClrM1WgHTWwBaAhHQJVs4SteUpx1fZQoaAZHQHGipk5IYm9oB003AWgIR0CVbWbg0j1PdX2UKGgGR0BwLrMs6JZXaAdNBAFoCEdAlW8Af+0gKXV9lChoBkdAblOGWUr08WgHTQwBaAhHQJVvc6QvHtF1fZQoaAZHQG72vjGT9sJoB006AWgIR0CVb7QSzw+ddX2UKGgGR0BxPUYDTz/ZaAdNEAFoCEdAlW/i+pOvdXV9lChoBkdAcM9jQAuIymgHS/1oCEdAlXB/A9FF2HV9lChoBkdAcMNXwLE1mGgHTR4BaAhHQJVyj/io86p1fZQoaAZHQHKovRE4NqhoB00WAWgIR0CVcvyQxN7CdX2UKGgGR0BwYme+VTrFaAdNLgFoCEdAlXQL+glF+nV9lChoBkdAcyRQ9A5aNmgHTSYBaAhHQJV2UwK0D2d1fZQoaAZHQHI/eEh7mdRoB00PAWgIR0CVd3p35eqrdX2UKGgGR0BuQxkoWpIdaAdNFwFoCEdAlXeij59E1HV9lChoBkdAcHtMcIZ62WgHTQsBaAhHQJV36N83Mpx1fZQoaAZHQG/qexwAEMdoB00fAWgIR0CVeLHeaa1DdX2UKGgGR0BwVpdiUgSwaAdL/mgIR0CVeY+/QBxQdX2UKGgGR0By5gd0aIepaAdNJgFoCEdAlXmqvA44qHV9lChoBkdAclqfReC04WgHS/hoCEdAlXm0EHMUy3V9lChoBkdAci5wXqJMx2gHTb0BaAhHQJV578TBZZB1fZQoaAZHQHC9DsMRYihoB00UAWgIR0CVerRNyo4udX2UKGgGR0ByX1wKjSG8aAdNHgFoCEdAlXrWIGhVVHV9lChoBkdAcX2GEPDpDGgHTRcBaAhHQJV7KcH4XXR1fZQoaAZHQHCVFl05lvtoB00SAWgIR0CVfJPt2LYPdX2UKGgGR0BvoVBdD6WPaAdNJAFoCEdAlY4MCLdepnV9lChoBkdAcZBnUDuBtmgHTQEBaAhHQJWPc+FDfFd1fZQoaAZHQHBYIq5LAYZoB00CAWgIR0CVkDxcVxjsdX2UKGgGR0BxVcK0D2alaAdNTQFoCEdAlZBmDQJHAnV9lChoBkdAbkUiJwbVBmgHTQkBaAhHQJWQlMQEpy91fZQoaAZHQHEs85Ke05VoB0vsaAhHQJWQrhbW3Bp1fZQoaAZHQG5wKjafzz5oB00UAWgIR0CVkRZbpu/DdX2UKGgGR0BxE4UuctoSaAdNDAFoCEdAlZKRLf1pTXV9lChoBkdAbcUW3z+WGGgHTRMBaAhHQJWSweU6gdx1fZQoaAZHQHBcnjyWiURoB00dAWgIR0CVk1LKFIuodX2UKGgGR0BwvyLm6oVEaAdNPgFoCEdAlZPldPci4nV9lChoBkdAb+Es8xKxs2gHTQ0BaAhHQJWUQCuEEkl1fZQoaAZHQHIf8LF4s3BoB0vzaAhHQJWVFLrX18N1fZQoaAZHQHKutl7MPjJoB01NAWgIR0CVlZJl8PWhdX2UKGgGR0BxRYDA8B+4aAdNDAFoCEdAlZYSGSIP9XV9lChoBkdAcnKpCKJl8WgHTQgBaAhHQJWXcH6dlNF1fZQoaAZHQHCkygXdj5NoB00SAWgIR0CVmLgOBlMAdX2UKGgGR0BtTo22oegdaAdNCAFoCEdAlZi0SAYpD3V9lChoBkdAccTnW8RL9WgHTSkBaAhHQJWZsmShakh1fZQoaAZHQG/93d9Dx9ZoB00ZAWgIR0CVmcHvMKTjdX2UKGgGR0By0l2LYPGyaAdNPQFoCEdAlZoC1/lQuXV9lChoBkdAcCwmuDBdlmgHTQMBaAhHQJWaloFmnO11fZQoaAZHQHLaToQnQY1oB0vpaAhHQJWaktSQ5m11fZQoaAZHQG7QR0U47zVoB00LAWgIR0CVmv3dsSCfdX2UKGgGR0BxePumaYu1aAdL+mgIR0CVm5uDzyz5dX2UKGgGR0BxY9UQ04zaaAdNIAFoCEdAlZ0RR2r4nHV9lChoBkdAcdEmHgxagWgHTQkBaAhHQJWdPUjLSu11fZQoaAZHQHEziSV4X41oB0v9aAhHQJWd1YT0xud1fZQoaAZHQHB85prULD1oB00gAWgIR0CVnmhvitJWdX2UKGgGR0BxDoBzV+ZxaAdL8WgIR0CVnsh6Skj5dX2UKGgGR0BhzD8iwB5paAdN6ANoCEdAlZ9WvGIbfnV9lChoBkdAcY/okRjBmGgHS/1oCEdAlaHjXWe6I3V9lChoBkdAcJWK3uuzQmgHS/5oCEdAlaIJ/5LytnV9lChoBkdAckkzFuNxVGgHTTABaAhHQJWi7pMYdhl1fZQoaAZHQHArnrpqynloB00LAWgIR0CVowVOsT37dX2UKGgGR0BvopRsMy8BaAdL+2gIR0CVoxx20Re1dX2UKGgGR0BucJhvze41aAdNRAFoCEdAlaPMvAXVLHV9lChoBkdAccQD4xk/bGgHTREBaAhHQJWkmhGpdbB1fZQoaAZHQHIijmGM4tJoB00PA2gIR0CVpSIH1OCYdX2UKGgGR0Bw80sqaw2VaAdNHQFoCEdAlaYHf2saKnV9lChoBkdAcDm4cWCVbGgHTQgBaAhHQJWndIlMRHx1fZQoaAZHQHJXxFd9lVdoB00FAWgIR0CVqEHCGetkdX2UKGgGR0Byhsal1r6+aAdL+WgIR0CVqIblijL0dX2UKGgGR0BwZ5Oh0yP/aAdNLwFoCEdAlajj4gzP8nV9lChoBkdAbd2cxTKkmGgHTYwBaAhHQJWpHY/Vy3l1fZQoaAZHQG8fG96C17ZoB00TAWgIR0CVqgg7YChfdX2UKGgGR0Bwo264Ds+naAdNMgFoCEdAlawi5I6KcnV9lChoBkdAcdWwR5C4SmgHTR8BaAhHQJWuGjL0SRN1fZQoaAZHQHKPa1LJ0XBoB00aAWgIR0CVrsk/KQq7dX2UKGgGR0BvyCLKmsNlaAdNNAFoCEdAla8AwXZXdXV9lChoBkdAcFyURnOB2GgHTScBaAhHQJWvkFzMibF1fZQoaAZHQG+yw+EAYHhoB003AWgIR0CVsFdhAnlXdX2UKGgGR0BxRk8fV7QcaAdNKAFoCEdAlbBocBEKE3V9lChoBkdAbaYL3sXzlWgHTSABaAhHQJWxenP3SKF1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87beb2b41a755c56a22f05494d8778800a1249bcf86b3f070774ac098e591555
3
+ size 87929
ppo_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1de0ee8062c919cc4a7adc5cba32f42a2fc200b53afee96c84c61aaa76f21b03
3
+ size 43329
ppo_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_model/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (155 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.66381450000006, "std_reward": 13.372108056365672, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-11T02:02:57.703799"}