my first rl model from HF DRL course
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_model.zip +3 -0
- ppo_model/_stable_baselines3_version +1 -0
- ppo_model/data +99 -0
- ppo_model/policy.optimizer.pth +3 -0
- ppo_model/policy.pth +3 -0
- ppo_model/pytorch_variables.pth +3 -0
- ppo_model/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: MlpPolicy
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 263.66 +/- 13.37
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **MlpPolicy** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cc9dc7d0a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cc9dc7d0af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cc9dc7d0b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cc9dc7d0c10>", "_build": "<function ActorCriticPolicy._build at 0x7cc9dc7d0ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7cc9dc7d0d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cc9dc7d0dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cc9dc7d0e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7cc9dc7d0ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cc9dc7d0f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cc9dc7d1000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cc9dc7d1090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cc9dd634280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694396267306160366, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO41DxeOmA/1EjFPfbw1r7Y8dQ8S21YPQAAAAAAAAAAmiDePDhkhT1ROqu9o/0Kvo+Eob0OvRY9AAAAAAAAAABmqnY9vy8iPztjTrxsZpG+uyA5PZW5iL0AAAAAAAAAAGYm+7sDOiu8MNX6u+KU8Dx4cZA92qXCvQAAgD8AAIA/QNO6PXtOoLpiG7k6l+7fNZX3IDrgMtS5AACAPwAAAAAaM609DuOePRMMcr2rKkO+WAcDvd7NwzwAAAAAAAAAAK2COT5hKpu8Wl83PSNfsLsnyQS+hAGMvAAAgD8AAIA/Zi0ePqMDQj3+BTm+Wb3PvS8PB70C94m8AAAAAAAAAAAzivs8XCtuujIBMzoEuBq553bWObJGPbkAAIA/AACAP80KhD1cK0S68KUONXovgC98h546oM5vtAAAgD8AAIA/E30dvu1mAD82+QE+NeegvpixjLsN/YE9AAAAAAAAAACzaVQ9Xv8fPzgzXj2Bsaa+dTc1PTIV2DwAAAAAAAAAAE0t/r1jupA+bKAkPq9wUb5OKnI9lAG9PAAAAAAAAAAAAOMkvaCqlT9oYRa+QC3qvuVk173b8AG9AAAAAAAAAADm6a4+XMZ3P+hWHT4FlPK+CLyHPoUcFb4AAAAAAAAAABOKSr5lV6U/wAepvqL5/76tmFG+3ptYvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKPW+j/MnuMAWyUTTcBjAF0lEdAlV41sYVIqnV9lChoBkdAclP+WWyC4GgHTScBaAhHQJVfRLpRoAZ1fZQoaAZHQHHK+EEkjX5oB0vxaAhHQJVfUo9cKPZ1fZQoaAZHQG/4XNTtLL9oB0v5aAhHQJVga1JDmbN1fZQoaAZHQGxsXokiUxFoB00NAWgIR0CVYJIRh+fAdX2UKGgGR0ByQzq3VkMDaAdNMgFoCEdAlWCetCAtnXV9lChoBkdAce6y6MBIWmgHTR4BaAhHQJVhQPf8/EB1fZQoaAZHQG7m6mXPZ7JoB01CAWgIR0CVYa2aUiY+dX2UKGgGR0BvFndEb5uZaAdL/WgIR0CVYfqcEvCedX2UKGgGR0BxZbdl/YrbaAdNGgFoCEdAlWLu+yquKXV9lChoBkdAcVRQ4jrzG2gHTToBaAhHQJVkb9zfaYh1fZQoaAZHQHPV5WJaaCtoB0v4aAhHQJVkirOqvNh1fZQoaAZHQGxGnskY4yZoB01YAWgIR0CVZNEug6EKdX2UKGgGR0BwTzos7MgVaAdNIAFoCEdAlWYXhsImgXV9lChoBkdAcZbtdiUgS2gHTUkBaAhHQJVmtbRnezl1fZQoaAZHQHGCqHsTnJVoB0vpaAhHQJVnYm5UcXF1fZQoaAZHQHGbCHh0heRoB00RAWgIR0CVZ3BK+SKWdX2UKGgGR0BtEhPXTVlPaAdNHAFoCEdAlWeF0Lc9GXV9lChoBkdAcVzQuEmICWgHS/toCEdAlWmOcQRPGnV9lChoBkdAch0ssxwhn2gHS/BoCEdAlWtabnX/YXV9lChoBkdAcLIewcHW0GgHTSMBaAhHQJVrlJlJ6IF1fZQoaAZHQGvQQPZqVQhoB00zAWgIR0CVbDUG3WnTdX2UKGgGR0BwOjOJLuhLaAdNEQFoCEdAlWx42Kl54XV9lChoBkdAcZDIClrM1WgHTWwBaAhHQJVs4SteUpx1fZQoaAZHQHGipk5IYm9oB003AWgIR0CVbWbg0j1PdX2UKGgGR0BwLrMs6JZXaAdNBAFoCEdAlW8Af+0gKXV9lChoBkdAblOGWUr08WgHTQwBaAhHQJVvc6QvHtF1fZQoaAZHQG72vjGT9sJoB006AWgIR0CVb7QSzw+ddX2UKGgGR0BxPUYDTz/ZaAdNEAFoCEdAlW/i+pOvdXV9lChoBkdAcM9jQAuIymgHS/1oCEdAlXB/A9FF2HV9lChoBkdAcMNXwLE1mGgHTR4BaAhHQJVyj/io86p1fZQoaAZHQHKovRE4NqhoB00WAWgIR0CVcvyQxN7CdX2UKGgGR0BwYme+VTrFaAdNLgFoCEdAlXQL+glF+nV9lChoBkdAcyRQ9A5aNmgHTSYBaAhHQJV2UwK0D2d1fZQoaAZHQHI/eEh7mdRoB00PAWgIR0CVd3p35eqrdX2UKGgGR0BuQxkoWpIdaAdNFwFoCEdAlXeij59E1HV9lChoBkdAcHtMcIZ62WgHTQsBaAhHQJV36N83Mpx1fZQoaAZHQG/qexwAEMdoB00fAWgIR0CVeLHeaa1DdX2UKGgGR0BwVpdiUgSwaAdL/mgIR0CVeY+/QBxQdX2UKGgGR0By5gd0aIepaAdNJgFoCEdAlXmqvA44qHV9lChoBkdAclqfReC04WgHS/hoCEdAlXm0EHMUy3V9lChoBkdAci5wXqJMx2gHTb0BaAhHQJV578TBZZB1fZQoaAZHQHC9DsMRYihoB00UAWgIR0CVerRNyo4udX2UKGgGR0ByX1wKjSG8aAdNHgFoCEdAlXrWIGhVVHV9lChoBkdAcX2GEPDpDGgHTRcBaAhHQJV7KcH4XXR1fZQoaAZHQHCVFl05lvtoB00SAWgIR0CVfJPt2LYPdX2UKGgGR0BvoVBdD6WPaAdNJAFoCEdAlY4MCLdepnV9lChoBkdAcZBnUDuBtmgHTQEBaAhHQJWPc+FDfFd1fZQoaAZHQHBYIq5LAYZoB00CAWgIR0CVkDxcVxjsdX2UKGgGR0BxVcK0D2alaAdNTQFoCEdAlZBmDQJHAnV9lChoBkdAbkUiJwbVBmgHTQkBaAhHQJWQlMQEpy91fZQoaAZHQHEs85Ke05VoB0vsaAhHQJWQrhbW3Bp1fZQoaAZHQG5wKjafzz5oB00UAWgIR0CVkRZbpu/DdX2UKGgGR0BxE4UuctoSaAdNDAFoCEdAlZKRLf1pTXV9lChoBkdAbcUW3z+WGGgHTRMBaAhHQJWSweU6gdx1fZQoaAZHQHBcnjyWiURoB00dAWgIR0CVk1LKFIuodX2UKGgGR0BwvyLm6oVEaAdNPgFoCEdAlZPldPci4nV9lChoBkdAb+Es8xKxs2gHTQ0BaAhHQJWUQCuEEkl1fZQoaAZHQHIf8LF4s3BoB0vzaAhHQJWVFLrX18N1fZQoaAZHQHKutl7MPjJoB01NAWgIR0CVlZJl8PWhdX2UKGgGR0BxRYDA8B+4aAdNDAFoCEdAlZYSGSIP9XV9lChoBkdAcnKpCKJl8WgHTQgBaAhHQJWXcH6dlNF1fZQoaAZHQHCkygXdj5NoB00SAWgIR0CVmLgOBlMAdX2UKGgGR0BtTo22oegdaAdNCAFoCEdAlZi0SAYpD3V9lChoBkdAccTnW8RL9WgHTSkBaAhHQJWZsmShakh1fZQoaAZHQG/93d9Dx9ZoB00ZAWgIR0CVmcHvMKTjdX2UKGgGR0By0l2LYPGyaAdNPQFoCEdAlZoC1/lQuXV9lChoBkdAcCwmuDBdlmgHTQMBaAhHQJWaloFmnO11fZQoaAZHQHLaToQnQY1oB0vpaAhHQJWaktSQ5m11fZQoaAZHQG7QR0U47zVoB00LAWgIR0CVmv3dsSCfdX2UKGgGR0BxePumaYu1aAdL+mgIR0CVm5uDzyz5dX2UKGgGR0BxY9UQ04zaaAdNIAFoCEdAlZ0RR2r4nHV9lChoBkdAcdEmHgxagWgHTQkBaAhHQJWdPUjLSu11fZQoaAZHQHEziSV4X41oB0v9aAhHQJWd1YT0xud1fZQoaAZHQHB85prULD1oB00gAWgIR0CVnmhvitJWdX2UKGgGR0BxDoBzV+ZxaAdL8WgIR0CVnsh6Skj5dX2UKGgGR0BhzD8iwB5paAdN6ANoCEdAlZ9WvGIbfnV9lChoBkdAcY/okRjBmGgHS/1oCEdAlaHjXWe6I3V9lChoBkdAcJWK3uuzQmgHS/5oCEdAlaIJ/5LytnV9lChoBkdAckkzFuNxVGgHTTABaAhHQJWi7pMYdhl1fZQoaAZHQHArnrpqynloB00LAWgIR0CVowVOsT37dX2UKGgGR0BvopRsMy8BaAdL+2gIR0CVoxx20Re1dX2UKGgGR0BucJhvze41aAdNRAFoCEdAlaPMvAXVLHV9lChoBkdAccQD4xk/bGgHTREBaAhHQJWkmhGpdbB1fZQoaAZHQHIijmGM4tJoB00PA2gIR0CVpSIH1OCYdX2UKGgGR0Bw80sqaw2VaAdNHQFoCEdAlaYHf2saKnV9lChoBkdAcDm4cWCVbGgHTQgBaAhHQJWndIlMRHx1fZQoaAZHQHJXxFd9lVdoB00FAWgIR0CVqEHCGetkdX2UKGgGR0Byhsal1r6+aAdL+WgIR0CVqIblijL0dX2UKGgGR0BwZ5Oh0yP/aAdNLwFoCEdAlajj4gzP8nV9lChoBkdAbd2cxTKkmGgHTYwBaAhHQJWpHY/Vy3l1fZQoaAZHQG8fG96C17ZoB00TAWgIR0CVqgg7YChfdX2UKGgGR0Bwo264Ds+naAdNMgFoCEdAlawi5I6KcnV9lChoBkdAcdWwR5C4SmgHTR8BaAhHQJWuGjL0SRN1fZQoaAZHQHKPa1LJ0XBoB00aAWgIR0CVrsk/KQq7dX2UKGgGR0BvyCLKmsNlaAdNNAFoCEdAla8AwXZXdXV9lChoBkdAcFyURnOB2GgHTScBaAhHQJWvkFzMibF1fZQoaAZHQG+yw+EAYHhoB003AWgIR0CVsFdhAnlXdX2UKGgGR0BxRk8fV7QcaAdNKAFoCEdAlbBocBEKE3V9lChoBkdAbaYL3sXzlWgHTSABaAhHQJWxenP3SKF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e0e60673bcb07cb48b530309b8ba44c75337c09a23560b52b153bb560894ced
|
3 |
+
size 146730
|
ppo_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo_model/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7cc9dc7d0a60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cc9dc7d0af0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cc9dc7d0b80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cc9dc7d0c10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7cc9dc7d0ca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7cc9dc7d0d30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7cc9dc7d0dc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cc9dc7d0e50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7cc9dc7d0ee0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cc9dc7d0f70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cc9dc7d1000>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7cc9dc7d1090>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7cc9dd634280>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1694396267306160366,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO41DxeOmA/1EjFPfbw1r7Y8dQ8S21YPQAAAAAAAAAAmiDePDhkhT1ROqu9o/0Kvo+Eob0OvRY9AAAAAAAAAABmqnY9vy8iPztjTrxsZpG+uyA5PZW5iL0AAAAAAAAAAGYm+7sDOiu8MNX6u+KU8Dx4cZA92qXCvQAAgD8AAIA/QNO6PXtOoLpiG7k6l+7fNZX3IDrgMtS5AACAPwAAAAAaM609DuOePRMMcr2rKkO+WAcDvd7NwzwAAAAAAAAAAK2COT5hKpu8Wl83PSNfsLsnyQS+hAGMvAAAgD8AAIA/Zi0ePqMDQj3+BTm+Wb3PvS8PB70C94m8AAAAAAAAAAAzivs8XCtuujIBMzoEuBq553bWObJGPbkAAIA/AACAP80KhD1cK0S68KUONXovgC98h546oM5vtAAAgD8AAIA/E30dvu1mAD82+QE+NeegvpixjLsN/YE9AAAAAAAAAACzaVQ9Xv8fPzgzXj2Bsaa+dTc1PTIV2DwAAAAAAAAAAE0t/r1jupA+bKAkPq9wUb5OKnI9lAG9PAAAAAAAAAAAAOMkvaCqlT9oYRa+QC3qvuVk173b8AG9AAAAAAAAAADm6a4+XMZ3P+hWHT4FlPK+CLyHPoUcFb4AAAAAAAAAABOKSr5lV6U/wAepvqL5/76tmFG+3ptYvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKPW+j/MnuMAWyUTTcBjAF0lEdAlV41sYVIqnV9lChoBkdAclP+WWyC4GgHTScBaAhHQJVfRLpRoAZ1fZQoaAZHQHHK+EEkjX5oB0vxaAhHQJVfUo9cKPZ1fZQoaAZHQG/4XNTtLL9oB0v5aAhHQJVga1JDmbN1fZQoaAZHQGxsXokiUxFoB00NAWgIR0CVYJIRh+fAdX2UKGgGR0ByQzq3VkMDaAdNMgFoCEdAlWCetCAtnXV9lChoBkdAce6y6MBIWmgHTR4BaAhHQJVhQPf8/EB1fZQoaAZHQG7m6mXPZ7JoB01CAWgIR0CVYa2aUiY+dX2UKGgGR0BvFndEb5uZaAdL/WgIR0CVYfqcEvCedX2UKGgGR0BxZbdl/YrbaAdNGgFoCEdAlWLu+yquKXV9lChoBkdAcVRQ4jrzG2gHTToBaAhHQJVkb9zfaYh1fZQoaAZHQHPV5WJaaCtoB0v4aAhHQJVkirOqvNh1fZQoaAZHQGxGnskY4yZoB01YAWgIR0CVZNEug6EKdX2UKGgGR0BwTzos7MgVaAdNIAFoCEdAlWYXhsImgXV9lChoBkdAcZbtdiUgS2gHTUkBaAhHQJVmtbRnezl1fZQoaAZHQHGCqHsTnJVoB0vpaAhHQJVnYm5UcXF1fZQoaAZHQHGbCHh0heRoB00RAWgIR0CVZ3BK+SKWdX2UKGgGR0BtEhPXTVlPaAdNHAFoCEdAlWeF0Lc9GXV9lChoBkdAcVzQuEmICWgHS/toCEdAlWmOcQRPGnV9lChoBkdAch0ssxwhn2gHS/BoCEdAlWtabnX/YXV9lChoBkdAcLIewcHW0GgHTSMBaAhHQJVrlJlJ6IF1fZQoaAZHQGvQQPZqVQhoB00zAWgIR0CVbDUG3WnTdX2UKGgGR0BwOjOJLuhLaAdNEQFoCEdAlWx42Kl54XV9lChoBkdAcZDIClrM1WgHTWwBaAhHQJVs4SteUpx1fZQoaAZHQHGipk5IYm9oB003AWgIR0CVbWbg0j1PdX2UKGgGR0BwLrMs6JZXaAdNBAFoCEdAlW8Af+0gKXV9lChoBkdAblOGWUr08WgHTQwBaAhHQJVvc6QvHtF1fZQoaAZHQG72vjGT9sJoB006AWgIR0CVb7QSzw+ddX2UKGgGR0BxPUYDTz/ZaAdNEAFoCEdAlW/i+pOvdXV9lChoBkdAcM9jQAuIymgHS/1oCEdAlXB/A9FF2HV9lChoBkdAcMNXwLE1mGgHTR4BaAhHQJVyj/io86p1fZQoaAZHQHKovRE4NqhoB00WAWgIR0CVcvyQxN7CdX2UKGgGR0BwYme+VTrFaAdNLgFoCEdAlXQL+glF+nV9lChoBkdAcyRQ9A5aNmgHTSYBaAhHQJV2UwK0D2d1fZQoaAZHQHI/eEh7mdRoB00PAWgIR0CVd3p35eqrdX2UKGgGR0BuQxkoWpIdaAdNFwFoCEdAlXeij59E1HV9lChoBkdAcHtMcIZ62WgHTQsBaAhHQJV36N83Mpx1fZQoaAZHQG/qexwAEMdoB00fAWgIR0CVeLHeaa1DdX2UKGgGR0BwVpdiUgSwaAdL/mgIR0CVeY+/QBxQdX2UKGgGR0By5gd0aIepaAdNJgFoCEdAlXmqvA44qHV9lChoBkdAclqfReC04WgHS/hoCEdAlXm0EHMUy3V9lChoBkdAci5wXqJMx2gHTb0BaAhHQJV578TBZZB1fZQoaAZHQHC9DsMRYihoB00UAWgIR0CVerRNyo4udX2UKGgGR0ByX1wKjSG8aAdNHgFoCEdAlXrWIGhVVHV9lChoBkdAcX2GEPDpDGgHTRcBaAhHQJV7KcH4XXR1fZQoaAZHQHCVFl05lvtoB00SAWgIR0CVfJPt2LYPdX2UKGgGR0BvoVBdD6WPaAdNJAFoCEdAlY4MCLdepnV9lChoBkdAcZBnUDuBtmgHTQEBaAhHQJWPc+FDfFd1fZQoaAZHQHBYIq5LAYZoB00CAWgIR0CVkDxcVxjsdX2UKGgGR0BxVcK0D2alaAdNTQFoCEdAlZBmDQJHAnV9lChoBkdAbkUiJwbVBmgHTQkBaAhHQJWQlMQEpy91fZQoaAZHQHEs85Ke05VoB0vsaAhHQJWQrhbW3Bp1fZQoaAZHQG5wKjafzz5oB00UAWgIR0CVkRZbpu/DdX2UKGgGR0BxE4UuctoSaAdNDAFoCEdAlZKRLf1pTXV9lChoBkdAbcUW3z+WGGgHTRMBaAhHQJWSweU6gdx1fZQoaAZHQHBcnjyWiURoB00dAWgIR0CVk1LKFIuodX2UKGgGR0BwvyLm6oVEaAdNPgFoCEdAlZPldPci4nV9lChoBkdAb+Es8xKxs2gHTQ0BaAhHQJWUQCuEEkl1fZQoaAZHQHIf8LF4s3BoB0vzaAhHQJWVFLrX18N1fZQoaAZHQHKutl7MPjJoB01NAWgIR0CVlZJl8PWhdX2UKGgGR0BxRYDA8B+4aAdNDAFoCEdAlZYSGSIP9XV9lChoBkdAcnKpCKJl8WgHTQgBaAhHQJWXcH6dlNF1fZQoaAZHQHCkygXdj5NoB00SAWgIR0CVmLgOBlMAdX2UKGgGR0BtTo22oegdaAdNCAFoCEdAlZi0SAYpD3V9lChoBkdAccTnW8RL9WgHTSkBaAhHQJWZsmShakh1fZQoaAZHQG/93d9Dx9ZoB00ZAWgIR0CVmcHvMKTjdX2UKGgGR0By0l2LYPGyaAdNPQFoCEdAlZoC1/lQuXV9lChoBkdAcCwmuDBdlmgHTQMBaAhHQJWaloFmnO11fZQoaAZHQHLaToQnQY1oB0vpaAhHQJWaktSQ5m11fZQoaAZHQG7QR0U47zVoB00LAWgIR0CVmv3dsSCfdX2UKGgGR0BxePumaYu1aAdL+mgIR0CVm5uDzyz5dX2UKGgGR0BxY9UQ04zaaAdNIAFoCEdAlZ0RR2r4nHV9lChoBkdAcdEmHgxagWgHTQkBaAhHQJWdPUjLSu11fZQoaAZHQHEziSV4X41oB0v9aAhHQJWd1YT0xud1fZQoaAZHQHB85prULD1oB00gAWgIR0CVnmhvitJWdX2UKGgGR0BxDoBzV+ZxaAdL8WgIR0CVnsh6Skj5dX2UKGgGR0BhzD8iwB5paAdN6ANoCEdAlZ9WvGIbfnV9lChoBkdAcY/okRjBmGgHS/1oCEdAlaHjXWe6I3V9lChoBkdAcJWK3uuzQmgHS/5oCEdAlaIJ/5LytnV9lChoBkdAckkzFuNxVGgHTTABaAhHQJWi7pMYdhl1fZQoaAZHQHArnrpqynloB00LAWgIR0CVowVOsT37dX2UKGgGR0BvopRsMy8BaAdL+2gIR0CVoxx20Re1dX2UKGgGR0BucJhvze41aAdNRAFoCEdAlaPMvAXVLHV9lChoBkdAccQD4xk/bGgHTREBaAhHQJWkmhGpdbB1fZQoaAZHQHIijmGM4tJoB00PA2gIR0CVpSIH1OCYdX2UKGgGR0Bw80sqaw2VaAdNHQFoCEdAlaYHf2saKnV9lChoBkdAcDm4cWCVbGgHTQgBaAhHQJWndIlMRHx1fZQoaAZHQHJXxFd9lVdoB00FAWgIR0CVqEHCGetkdX2UKGgGR0Byhsal1r6+aAdL+WgIR0CVqIblijL0dX2UKGgGR0BwZ5Oh0yP/aAdNLwFoCEdAlajj4gzP8nV9lChoBkdAbd2cxTKkmGgHTYwBaAhHQJWpHY/Vy3l1fZQoaAZHQG8fG96C17ZoB00TAWgIR0CVqgg7YChfdX2UKGgGR0Bwo264Ds+naAdNMgFoCEdAlawi5I6KcnV9lChoBkdAcdWwR5C4SmgHTR8BaAhHQJWuGjL0SRN1fZQoaAZHQHKPa1LJ0XBoB00aAWgIR0CVrsk/KQq7dX2UKGgGR0BvyCLKmsNlaAdNNAFoCEdAla8AwXZXdXV9lChoBkdAcFyURnOB2GgHTScBaAhHQJWvkFzMibF1fZQoaAZHQG+yw+EAYHhoB003AWgIR0CVsFdhAnlXdX2UKGgGR0BxRk8fV7QcaAdNKAFoCEdAlbBocBEKE3V9lChoBkdAbaYL3sXzlWgHTSABaAhHQJWxenP3SKF1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87beb2b41a755c56a22f05494d8778800a1249bcf86b3f070774ac098e591555
|
3 |
+
size 87929
|
ppo_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1de0ee8062c919cc4a7adc5cba32f42a2fc200b53afee96c84c61aaa76f21b03
|
3 |
+
size 43329
|
ppo_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_model/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (155 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.66381450000006, "std_reward": 13.372108056365672, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-11T02:02:57.703799"}
|