ListConRanker / listconranker.py
Roman Solomatin
fix shapes
8c3030b unverified
raw
history blame
10.2 kB
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software
# and associated documentation files (the "Software"), to deal in the Software without
# restriction, including without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or
# substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
import math
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
from transformers import (
AutoTokenizer,
is_torch_npu_available,
AutoModel,
PreTrainedModel,
PretrainedConfig,
AutoConfig,
BertModel,
BertConfig
)
from transformers.modeling_outputs import SequenceClassifierOutput
from typing import Union, List, Optional
class ListConRankerConfig(PretrainedConfig):
"""Configuration class for ListConRanker model."""
model_type = "ListConRanker"
def __init__(
self,
list_transformer_layers: int = 2,
hidden_size: int = 1792,
base_hidden_size: int = 1024,
num_labels: int = 1,
**kwargs
):
super().__init__(**kwargs)
self.list_transformer_layers = list_transformer_layers
self.hidden_size = hidden_size
self.base_hidden_size = base_hidden_size
self.num_labels = num_labels
self.bert_config = BertConfig(**kwargs)
self.bert_config.hidden_size = self.base_hidden_size
self.bert_config.output_hidden_states = True
class QueryEmbedding(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.query_embedding = nn.Embedding(2, config.hidden_size)
self.layerNorm = nn.LayerNorm(config.hidden_size)
def forward(self, x, tags):
query_embeddings = self.query_embedding(tags)
x += query_embeddings
x = self.layerNorm(x)
return x
class ListTransformer(nn.Module):
def __init__(self, num_layer, config) -> None:
super().__init__()
self.config = config
self.list_transformer_layer = nn.TransformerEncoderLayer(1792, self.config.num_attention_heads, batch_first=True, activation=F.gelu, norm_first=False)
self.list_transformer = nn.TransformerEncoder(self.list_transformer_layer, num_layer)
self.relu = nn.ReLU()
self.query_embedding = QueryEmbedding(config)
self.linear_score3 = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.linear_score2 = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.linear_score1 = nn.Linear(config.hidden_size * 2, 1)
def forward(self, pair_features: torch.Tensor):
pair_nums = pair_features.size(0)
pair_nums = [x + 1 for x in pair_nums]
batch_pair_features = pair_features.split(pair_nums)
pair_feature_query_passage_concat_list = []
for i in range(len(batch_pair_features)):
pair_feature_query = batch_pair_features[i][0].unsqueeze(0).repeat(pair_nums[i] - 1, 1)
pair_feature_passage = batch_pair_features[i][1:]
pair_feature_query_passage_concat_list.append(torch.cat([pair_feature_query, pair_feature_passage], dim=1))
pair_feature_query_passage_concat = torch.cat(pair_feature_query_passage_concat_list, dim=0)
batch_pair_features = nn.utils.rnn.pad_sequence(batch_pair_features, batch_first=True)
query_embedding_tags = torch.zeros(batch_pair_features.size(0), batch_pair_features.size(1), dtype=torch.long, device=self.device)
query_embedding_tags[:, 0] = 1
batch_pair_features = self.query_embedding(batch_pair_features, query_embedding_tags)
mask = self.generate_attention_mask(pair_nums)
query_mask = self.generate_attention_mask_custom(pair_nums)
pair_list_features = self.list_transformer(batch_pair_features, src_key_padding_mask=mask, mask=query_mask)
output_pair_list_features = []
output_query_list_features = []
pair_features_after_transformer_list = []
for idx, pair_num in enumerate(pair_nums):
output_pair_list_features.append(pair_list_features[idx, 1:pair_num, :])
output_query_list_features.append(pair_list_features[idx, 0, :])
pair_features_after_transformer_list.append(pair_list_features[idx, :pair_num, :])
pair_features_after_transformer_cat_query_list = []
for idx, pair_num in enumerate(pair_nums):
query_ft = output_query_list_features[idx].unsqueeze(0).repeat(pair_num - 1, 1)
pair_features_after_transformer_cat_query = torch.cat([query_ft, output_pair_list_features[idx]], dim=1)
pair_features_after_transformer_cat_query_list.append(pair_features_after_transformer_cat_query)
pair_features_after_transformer_cat_query = torch.cat(pair_features_after_transformer_cat_query_list, dim=0)
pair_feature_query_passage_concat = self.relu(self.linear_score2(pair_feature_query_passage_concat))
pair_features_after_transformer_cat_query = self.relu(self.linear_score3(pair_features_after_transformer_cat_query))
final_ft = torch.cat([pair_feature_query_passage_concat, pair_features_after_transformer_cat_query], dim=1)
logits = self.linear_score1(final_ft).squeeze()
return logits, torch.cat(pair_features_after_transformer_list, dim=0)
def generate_attention_mask(self, pair_num):
max_len = max(pair_num)
batch_size = len(pair_num)
mask = torch.zeros(batch_size, max_len, dtype=torch.bool, device=self.device)
for i, length in enumerate(pair_num):
mask[i, length:] = True
return mask
def generate_attention_mask_custom(self, pair_num):
max_len = max(pair_num)
mask = torch.zeros(max_len, max_len, dtype=torch.bool, device=self.device)
mask[0, 1:] = True
return mask
class ListConRankerModel(PreTrainedModel):
"""
ListConRanker model for sequence classification that's compatible with AutoModelForSequenceClassification.
"""
config_class = ListConRankerConfig
base_model_prefix = "listconranker"
def __init__(self, config: ListConRankerConfig):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.hf_model = BertModel(config.bert_config)
self.sigmoid = nn.Sigmoid()
self.linear_in_embedding = nn.Linear(config.base_hidden_size, config.hidden_size)
self.list_transformer = ListTransformer(
config.list_transformer_layers,
config,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs
) -> Union[SequenceClassifierOutput, tuple]:
# Get device
device = input_ids.device if input_ids is not None else inputs_embeds.device
self.list_transformer.device = device
# Forward through base model
if self.training:
pass
else:
ranker_out = self.hf_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
return_dict=True)
last_hidden_state = ranker_out.last_hidden_state
pair_features = self.average_pooling(last_hidden_state, attention_mask)
pair_features = self.linear_in_embedding(pair_features)
logits, pair_features_after_list_transformer = self.list_transformer(pair_features)
logits = self.sigmoid(logits)
return logits
def average_pooling(self, hidden_state, attention_mask):
extended_attention_mask = attention_mask.unsqueeze(-1).expand(hidden_state.size()).to(dtype=hidden_state.dtype)
masked_hidden_state = hidden_state * extended_attention_mask
sum_embeddings = torch.sum(masked_hidden_state, dim=1)
sum_mask = extended_attention_mask.sum(dim=1)
return sum_embeddings / sum_mask
@classmethod
def from_pretrained(cls, model_name_or_path, config: Optional[ListConRankerConfig] = None, **kwargs):
model = super().from_pretrained(
model_name_or_path,config=config, **kwargs)
# Load custom weights
linear_path = f"{model_name_or_path}/linear_in_embedding.pt"
transformer_path = f"{model_name_or_path}/list_transformer.pt"
try:
model.linear_in_embedding.load_state_dict(torch.load(linear_path))
model.list_transformer.load_state_dict(torch.load(transformer_path))
except FileNotFoundError:
print(f"Warning: Could not load custom weights from {model_name_or_path}")
return model