rm ood files
Browse files- listconranker.py +0 -546
listconranker.py
DELETED
@@ -1,546 +0,0 @@
|
|
1 |
-
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
2 |
-
#
|
3 |
-
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software
|
4 |
-
# and associated documentation files (the "Software"), to deal in the Software without
|
5 |
-
# restriction, including without limitation the rights to use, copy, modify, merge, publish,
|
6 |
-
# distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
|
7 |
-
# Software is furnished to do so, subject to the following conditions:
|
8 |
-
#
|
9 |
-
# The above copyright notice and this permission notice shall be included in all copies or
|
10 |
-
# substantial portions of the Software.
|
11 |
-
#
|
12 |
-
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
13 |
-
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
14 |
-
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
15 |
-
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
16 |
-
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
17 |
-
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
18 |
-
# OTHER DEALINGS IN THE SOFTWARE.
|
19 |
-
from __future__ import annotations
|
20 |
-
|
21 |
-
import torch
|
22 |
-
from torch import nn
|
23 |
-
from torch.nn import functional as F
|
24 |
-
from transformers import (
|
25 |
-
PreTrainedModel,
|
26 |
-
BertModel,
|
27 |
-
BertConfig,
|
28 |
-
AutoTokenizer,
|
29 |
-
)
|
30 |
-
import os
|
31 |
-
from transformers.modeling_outputs import SequenceClassifierOutput
|
32 |
-
from typing import Union, List, Optional
|
33 |
-
from collections import defaultdict
|
34 |
-
import numpy as np
|
35 |
-
import math
|
36 |
-
|
37 |
-
|
38 |
-
class ListConRankerConfig(BertConfig):
|
39 |
-
"""Configuration class for ListConRanker model."""
|
40 |
-
|
41 |
-
model_type = "ListConRanker"
|
42 |
-
|
43 |
-
def __init__(
|
44 |
-
self,
|
45 |
-
list_transformer_layers: int = 2,
|
46 |
-
list_con_hidden_size: int = 1792,
|
47 |
-
num_labels: int = 1,
|
48 |
-
cls_token_id: int = 101,
|
49 |
-
sep_token_id: int = 102,
|
50 |
-
**kwargs,
|
51 |
-
):
|
52 |
-
super().__init__(**kwargs)
|
53 |
-
self.list_transformer_layers = list_transformer_layers
|
54 |
-
self.list_con_hidden_size = list_con_hidden_size
|
55 |
-
self.num_labels = num_labels
|
56 |
-
self.cls_token_id = cls_token_id
|
57 |
-
self.sep_token_id = sep_token_id
|
58 |
-
|
59 |
-
self.bert_config = BertConfig(**kwargs)
|
60 |
-
self.bert_config.output_hidden_states = True
|
61 |
-
|
62 |
-
|
63 |
-
class QueryEmbedding(nn.Module):
|
64 |
-
def __init__(self, config) -> None:
|
65 |
-
super().__init__()
|
66 |
-
self.query_embedding = nn.Embedding(2, config.list_con_hidden_size)
|
67 |
-
self.layerNorm = nn.LayerNorm(config.list_con_hidden_size)
|
68 |
-
|
69 |
-
def forward(self, x, tags):
|
70 |
-
query_embeddings = self.query_embedding(tags)
|
71 |
-
x += query_embeddings
|
72 |
-
x = self.layerNorm(x)
|
73 |
-
return x
|
74 |
-
|
75 |
-
|
76 |
-
class ListTransformer(nn.Module):
|
77 |
-
def __init__(self, num_layer, config) -> None:
|
78 |
-
super().__init__()
|
79 |
-
self.config = config
|
80 |
-
self.list_transformer_layer = nn.TransformerEncoderLayer(
|
81 |
-
config.list_con_hidden_size,
|
82 |
-
self.config.num_attention_heads,
|
83 |
-
batch_first=True,
|
84 |
-
activation=F.gelu,
|
85 |
-
norm_first=False,
|
86 |
-
)
|
87 |
-
self.list_transformer = nn.TransformerEncoder(
|
88 |
-
self.list_transformer_layer, num_layer
|
89 |
-
)
|
90 |
-
self.relu = nn.ReLU()
|
91 |
-
self.query_embedding = QueryEmbedding(config)
|
92 |
-
|
93 |
-
self.linear_score3 = nn.Linear(
|
94 |
-
config.list_con_hidden_size * 2, config.list_con_hidden_size
|
95 |
-
)
|
96 |
-
self.linear_score2 = nn.Linear(
|
97 |
-
config.list_con_hidden_size * 2, config.list_con_hidden_size
|
98 |
-
)
|
99 |
-
self.linear_score1 = nn.Linear(config.list_con_hidden_size * 2, 1)
|
100 |
-
|
101 |
-
def forward(
|
102 |
-
self, pair_features: torch.Tensor, pair_nums: List[int]
|
103 |
-
) -> torch.Tensor:
|
104 |
-
batch_pair_features = pair_features.split(pair_nums)
|
105 |
-
|
106 |
-
pair_feature_query_passage_concat_list = []
|
107 |
-
for i in range(len(batch_pair_features)):
|
108 |
-
pair_feature_query = (
|
109 |
-
batch_pair_features[i][0].unsqueeze(0).repeat(pair_nums[i] - 1, 1)
|
110 |
-
)
|
111 |
-
pair_feature_passage = batch_pair_features[i][1:]
|
112 |
-
pair_feature_query_passage_concat_list.append(
|
113 |
-
torch.cat([pair_feature_query, pair_feature_passage], dim=1)
|
114 |
-
)
|
115 |
-
pair_feature_query_passage_concat = torch.cat(
|
116 |
-
pair_feature_query_passage_concat_list, dim=0
|
117 |
-
)
|
118 |
-
|
119 |
-
batch_pair_features = nn.utils.rnn.pad_sequence(
|
120 |
-
batch_pair_features, batch_first=True
|
121 |
-
)
|
122 |
-
|
123 |
-
query_embedding_tags = torch.zeros(
|
124 |
-
batch_pair_features.size(0),
|
125 |
-
batch_pair_features.size(1),
|
126 |
-
dtype=torch.long,
|
127 |
-
device=self.device,
|
128 |
-
)
|
129 |
-
query_embedding_tags[:, 0] = 1
|
130 |
-
batch_pair_features = self.query_embedding(
|
131 |
-
batch_pair_features, query_embedding_tags
|
132 |
-
)
|
133 |
-
|
134 |
-
mask = self.generate_attention_mask(pair_nums)
|
135 |
-
query_mask = self.generate_attention_mask_custom(pair_nums)
|
136 |
-
pair_list_features = self.list_transformer(
|
137 |
-
batch_pair_features, src_key_padding_mask=mask, mask=query_mask
|
138 |
-
)
|
139 |
-
|
140 |
-
output_pair_list_features = []
|
141 |
-
output_query_list_features = []
|
142 |
-
pair_features_after_transformer_list = []
|
143 |
-
for idx, pair_num in enumerate(pair_nums):
|
144 |
-
output_pair_list_features.append(pair_list_features[idx, 1:pair_num, :])
|
145 |
-
output_query_list_features.append(pair_list_features[idx, 0, :])
|
146 |
-
pair_features_after_transformer_list.append(
|
147 |
-
pair_list_features[idx, :pair_num, :]
|
148 |
-
)
|
149 |
-
|
150 |
-
pair_features_after_transformer_cat_query_list = []
|
151 |
-
for idx, pair_num in enumerate(pair_nums):
|
152 |
-
query_ft = (
|
153 |
-
output_query_list_features[idx].unsqueeze(0).repeat(pair_num - 1, 1)
|
154 |
-
)
|
155 |
-
pair_features_after_transformer_cat_query = torch.cat(
|
156 |
-
[query_ft, output_pair_list_features[idx]], dim=1
|
157 |
-
)
|
158 |
-
pair_features_after_transformer_cat_query_list.append(
|
159 |
-
pair_features_after_transformer_cat_query
|
160 |
-
)
|
161 |
-
pair_features_after_transformer_cat_query = torch.cat(
|
162 |
-
pair_features_after_transformer_cat_query_list, dim=0
|
163 |
-
)
|
164 |
-
|
165 |
-
pair_feature_query_passage_concat = self.relu(
|
166 |
-
self.linear_score2(pair_feature_query_passage_concat)
|
167 |
-
)
|
168 |
-
pair_features_after_transformer_cat_query = self.relu(
|
169 |
-
self.linear_score3(pair_features_after_transformer_cat_query)
|
170 |
-
)
|
171 |
-
final_ft = torch.cat(
|
172 |
-
[
|
173 |
-
pair_feature_query_passage_concat,
|
174 |
-
pair_features_after_transformer_cat_query,
|
175 |
-
],
|
176 |
-
dim=1,
|
177 |
-
)
|
178 |
-
logits = self.linear_score1(final_ft).squeeze()
|
179 |
-
return logits, torch.cat(pair_features_after_transformer_list, dim=0)
|
180 |
-
|
181 |
-
def generate_attention_mask(self, pair_num):
|
182 |
-
max_len = max(pair_num)
|
183 |
-
batch_size = len(pair_num)
|
184 |
-
mask = torch.zeros(batch_size, max_len, dtype=torch.bool, device=self.device)
|
185 |
-
for i, length in enumerate(pair_num):
|
186 |
-
mask[i, length:] = True
|
187 |
-
return mask
|
188 |
-
|
189 |
-
def generate_attention_mask_custom(self, pair_num):
|
190 |
-
max_len = max(pair_num)
|
191 |
-
mask = torch.zeros(max_len, max_len, dtype=torch.bool, device=self.device)
|
192 |
-
mask[0, 1:] = True
|
193 |
-
return mask
|
194 |
-
|
195 |
-
|
196 |
-
class ListConRankerModel(PreTrainedModel):
|
197 |
-
"""
|
198 |
-
ListConRanker model for sequence classification that's compatible with AutoModelForSequenceClassification.
|
199 |
-
"""
|
200 |
-
|
201 |
-
config_class = ListConRankerConfig
|
202 |
-
base_model_prefix = "listconranker"
|
203 |
-
|
204 |
-
def __init__(self, config: ListConRankerConfig):
|
205 |
-
super().__init__(config)
|
206 |
-
self.config = config
|
207 |
-
self.num_labels = config.num_labels
|
208 |
-
self.hf_model = BertModel(config.bert_config)
|
209 |
-
|
210 |
-
self.sigmoid = nn.Sigmoid()
|
211 |
-
|
212 |
-
self.linear_in_embedding = nn.Linear(
|
213 |
-
config.hidden_size, config.list_con_hidden_size
|
214 |
-
)
|
215 |
-
self.list_transformer = ListTransformer(
|
216 |
-
config.list_transformer_layers,
|
217 |
-
config,
|
218 |
-
)
|
219 |
-
|
220 |
-
def forward(
|
221 |
-
self,
|
222 |
-
input_ids: torch.Tensor,
|
223 |
-
attention_mask: Optional[torch.Tensor] = None,
|
224 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
225 |
-
position_ids: Optional[torch.Tensor] = None,
|
226 |
-
head_mask: Optional[torch.Tensor] = None,
|
227 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
228 |
-
labels: Optional[torch.Tensor] = None,
|
229 |
-
output_attentions: Optional[bool] = None,
|
230 |
-
output_hidden_states: Optional[bool] = None,
|
231 |
-
return_dict: Optional[bool] = None,
|
232 |
-
**kwargs,
|
233 |
-
) -> Union[tuple[torch.Tensor], SequenceClassifierOutput]:
|
234 |
-
if self.training:
|
235 |
-
raise NotImplementedError("Training not supported; use eval mode.")
|
236 |
-
device = input_ids.device
|
237 |
-
self.list_transformer.device = device
|
238 |
-
# Reorganize by unique queries and their passages
|
239 |
-
(
|
240 |
-
reorganized_input_ids,
|
241 |
-
reorganized_attention_mask,
|
242 |
-
reorganized_token_type_ids,
|
243 |
-
pair_nums,
|
244 |
-
group_indices,
|
245 |
-
) = self._reorganize_inputs(input_ids, attention_mask, token_type_ids)
|
246 |
-
|
247 |
-
out = self.hf_model(
|
248 |
-
input_ids=reorganized_input_ids,
|
249 |
-
attention_mask=reorganized_attention_mask,
|
250 |
-
token_type_ids=reorganized_token_type_ids,
|
251 |
-
return_dict=True,
|
252 |
-
)
|
253 |
-
feats = out.last_hidden_state
|
254 |
-
pooled = self.average_pooling(feats, reorganized_attention_mask)
|
255 |
-
embedded = self.linear_in_embedding(pooled)
|
256 |
-
logits, _ = self.list_transformer(embedded, pair_nums)
|
257 |
-
probs = self.sigmoid(logits)
|
258 |
-
|
259 |
-
# Restore original order
|
260 |
-
sorted_probs = self._restore_original_order(probs, group_indices)
|
261 |
-
sorted_logits = self._restore_original_order(logits, group_indices)
|
262 |
-
if not return_dict:
|
263 |
-
return (sorted_probs, sorted_logits)
|
264 |
-
|
265 |
-
return SequenceClassifierOutput(
|
266 |
-
loss=None,
|
267 |
-
logits=sorted_logits,
|
268 |
-
hidden_states=out.hidden_states,
|
269 |
-
attentions=out.attentions,
|
270 |
-
)
|
271 |
-
|
272 |
-
def _reorganize_inputs(
|
273 |
-
self,
|
274 |
-
input_ids: torch.Tensor,
|
275 |
-
attention_mask: torch.Tensor,
|
276 |
-
token_type_ids: Optional[torch.Tensor],
|
277 |
-
) -> tuple[
|
278 |
-
torch.Tensor, torch.Tensor, Optional[torch.Tensor], List[int], List[List[int]]
|
279 |
-
]:
|
280 |
-
"""
|
281 |
-
Group inputs by unique queries: for each query, produce [query] + its passages,
|
282 |
-
then flatten, pad, and return pair sizes and original indices mapping.
|
283 |
-
"""
|
284 |
-
batch_size = input_ids.size(0)
|
285 |
-
# Structure: query_key -> {
|
286 |
-
# 'query': (seq, mask, tt),
|
287 |
-
# 'passages': [(seq, mask, tt), ...],
|
288 |
-
# 'indices': [original_index, ...]
|
289 |
-
# }
|
290 |
-
grouped = {}
|
291 |
-
|
292 |
-
for idx in range(batch_size):
|
293 |
-
seq = input_ids[idx]
|
294 |
-
mask = attention_mask[idx]
|
295 |
-
token_type_ids[idx] if token_type_ids is not None else torch.zeros_like(seq)
|
296 |
-
|
297 |
-
sep_idxs = (seq == self.config.sep_token_id).nonzero(as_tuple=True)[0]
|
298 |
-
if sep_idxs.numel() == 0:
|
299 |
-
raise ValueError(f"No SEP in sequence {idx}")
|
300 |
-
first_sep = sep_idxs[0].item()
|
301 |
-
second_sep = sep_idxs[1].item()
|
302 |
-
|
303 |
-
# Extract query and passage
|
304 |
-
q_seq = seq[: first_sep + 1]
|
305 |
-
q_mask = mask[: first_sep + 1]
|
306 |
-
q_tt = torch.zeros_like(q_seq)
|
307 |
-
|
308 |
-
p_seq = seq[first_sep : second_sep + 1]
|
309 |
-
p_mask = mask[first_sep : second_sep + 1]
|
310 |
-
p_seq = p_seq.clone()
|
311 |
-
p_seq[0] = self.config.cls_token_id
|
312 |
-
p_tt = torch.zeros_like(p_seq)
|
313 |
-
|
314 |
-
# Build key excluding CLS/SEP
|
315 |
-
key = tuple(
|
316 |
-
q_seq[
|
317 |
-
(q_seq != self.config.cls_token_id)
|
318 |
-
& (q_seq != self.config.sep_token_id)
|
319 |
-
].tolist()
|
320 |
-
)
|
321 |
-
|
322 |
-
# truncation
|
323 |
-
q_seq = q_seq[: self.config.max_position_embeddings]
|
324 |
-
q_seq[-1] = self.config.sep_token_id
|
325 |
-
p_seq = p_seq[: self.config.max_position_embeddings]
|
326 |
-
p_seq[-1] = self.config.sep_token_id
|
327 |
-
q_mask = q_mask[: self.config.max_position_embeddings]
|
328 |
-
p_mask = p_mask[: self.config.max_position_embeddings]
|
329 |
-
q_tt = q_tt[: self.config.max_position_embeddings]
|
330 |
-
p_tt = p_tt[: self.config.max_position_embeddings]
|
331 |
-
|
332 |
-
if key not in grouped:
|
333 |
-
grouped[key] = {
|
334 |
-
"query": (q_seq, q_mask, q_tt),
|
335 |
-
"passages": [],
|
336 |
-
"indices": [],
|
337 |
-
}
|
338 |
-
grouped[key]["passages"].append((p_seq, p_mask, p_tt))
|
339 |
-
grouped[key]["indices"].append(idx)
|
340 |
-
|
341 |
-
# Flatten according to group insertion order
|
342 |
-
seqs, masks, tts, pair_nums, group_indices = [], [], [], [], []
|
343 |
-
for key, data in grouped.items():
|
344 |
-
q_seq, q_mask, q_tt = data["query"]
|
345 |
-
passages = data["passages"]
|
346 |
-
indices = data["indices"]
|
347 |
-
# record sizes and original positions
|
348 |
-
pair_nums.append(len(passages) + 1) # +1 for the query
|
349 |
-
group_indices.append(indices)
|
350 |
-
|
351 |
-
# append query then its passages
|
352 |
-
seqs.append(q_seq)
|
353 |
-
masks.append(q_mask)
|
354 |
-
tts.append(q_tt)
|
355 |
-
for p_seq, p_mask, p_tt in passages:
|
356 |
-
seqs.append(p_seq)
|
357 |
-
masks.append(p_mask)
|
358 |
-
tts.append(p_tt)
|
359 |
-
|
360 |
-
# Pad to uniform length
|
361 |
-
max_len = max(s.size(0) for s in seqs)
|
362 |
-
padded_seqs, padded_masks, padded_tts = [], [], []
|
363 |
-
for s, m, t in zip(seqs, masks, tts):
|
364 |
-
ps = torch.zeros(max_len, dtype=s.dtype, device=s.device)
|
365 |
-
pm = torch.zeros(max_len, dtype=m.dtype, device=m.device)
|
366 |
-
pt = torch.zeros(max_len, dtype=t.dtype, device=t.device)
|
367 |
-
ps[: s.size(0)] = s
|
368 |
-
pm[: m.size(0)] = m
|
369 |
-
pt[: t.size(0)] = t
|
370 |
-
padded_seqs.append(ps)
|
371 |
-
padded_masks.append(pm)
|
372 |
-
padded_tts.append(pt)
|
373 |
-
|
374 |
-
rid = torch.stack(padded_seqs)
|
375 |
-
ram = torch.stack(padded_masks)
|
376 |
-
rtt = torch.stack(padded_tts) if token_type_ids is not None else None
|
377 |
-
|
378 |
-
return rid, ram, rtt, pair_nums, group_indices
|
379 |
-
|
380 |
-
def _restore_original_order(
|
381 |
-
self,
|
382 |
-
logits: torch.Tensor,
|
383 |
-
group_indices: List[List[int]],
|
384 |
-
) -> torch.Tensor:
|
385 |
-
"""
|
386 |
-
Map flattened logits back so each original index gets its passage score.
|
387 |
-
"""
|
388 |
-
out = torch.zeros(logits.size(0), dtype=logits.dtype, device=logits.device)
|
389 |
-
i = 0
|
390 |
-
for indices in group_indices:
|
391 |
-
for idx in indices:
|
392 |
-
out[idx] = logits[i]
|
393 |
-
i += 1
|
394 |
-
return out.reshape(-1, 1)
|
395 |
-
|
396 |
-
def average_pooling(self, hidden_state, attention_mask):
|
397 |
-
extended_attention_mask = (
|
398 |
-
attention_mask.unsqueeze(-1)
|
399 |
-
.expand(hidden_state.size())
|
400 |
-
.to(dtype=hidden_state.dtype)
|
401 |
-
)
|
402 |
-
masked_hidden_state = hidden_state * extended_attention_mask
|
403 |
-
sum_embeddings = torch.sum(masked_hidden_state, dim=1)
|
404 |
-
sum_mask = extended_attention_mask.sum(dim=1)
|
405 |
-
return sum_embeddings / sum_mask
|
406 |
-
|
407 |
-
@classmethod
|
408 |
-
def from_pretrained(
|
409 |
-
cls, model_name_or_path, config: Optional[ListConRankerConfig] = None, **kwargs
|
410 |
-
):
|
411 |
-
model = super().from_pretrained(model_name_or_path, config=config, **kwargs)
|
412 |
-
model.hf_model = BertModel.from_pretrained(
|
413 |
-
model_name_or_path, config=model.config.bert_config, **kwargs
|
414 |
-
)
|
415 |
-
|
416 |
-
linear_path = os.path.join(model_name_or_path, "linear_in_embedding.pt")
|
417 |
-
transformer_path = os.path.join(model_name_or_path, "list_transformer.pt")
|
418 |
-
|
419 |
-
try:
|
420 |
-
model.linear_in_embedding.load_state_dict(torch.load(linear_path))
|
421 |
-
model.list_transformer.load_state_dict(torch.load(transformer_path))
|
422 |
-
except FileNotFoundError as e:
|
423 |
-
raise e
|
424 |
-
|
425 |
-
return model
|
426 |
-
|
427 |
-
def multi_passage(
|
428 |
-
self,
|
429 |
-
sentences: List[List[str]],
|
430 |
-
batch_size: int = 32,
|
431 |
-
tokenizer: AutoTokenizer = AutoTokenizer.from_pretrained(
|
432 |
-
"ByteDance/ListConRanker"
|
433 |
-
),
|
434 |
-
):
|
435 |
-
"""
|
436 |
-
Process multiple passages for each query.
|
437 |
-
:param sentences: List of lists, where each inner list contains sentences for a query.
|
438 |
-
:return: Tensor of logits for each passage.
|
439 |
-
"""
|
440 |
-
pairs = []
|
441 |
-
for batch in sentences:
|
442 |
-
if len(batch) < 2:
|
443 |
-
raise ValueError("Each query must have at least one passage.")
|
444 |
-
query = batch[0]
|
445 |
-
passages = batch[1:]
|
446 |
-
for passage in passages:
|
447 |
-
pairs.append((query, passage))
|
448 |
-
|
449 |
-
total_batches = (len(pairs) + batch_size - 1) // batch_size
|
450 |
-
total_logits = torch.zeros(len(pairs), dtype=torch.float, device=self.device)
|
451 |
-
for batch in range(total_batches):
|
452 |
-
batch_pairs = pairs[batch * batch_size : (batch + 1) * batch_size]
|
453 |
-
inputs = tokenizer(
|
454 |
-
batch_pairs,
|
455 |
-
padding=True,
|
456 |
-
truncation=False,
|
457 |
-
return_tensors="pt",
|
458 |
-
)
|
459 |
-
|
460 |
-
for k, v in inputs.items():
|
461 |
-
inputs[k] = v.to(self.device)
|
462 |
-
|
463 |
-
logits = self(**inputs)[0]
|
464 |
-
total_logits[batch * batch_size : (batch + 1) * batch_size] = (
|
465 |
-
logits.squeeze(1)
|
466 |
-
)
|
467 |
-
return total_logits
|
468 |
-
|
469 |
-
def multi_passage_in_iterative_inference(
|
470 |
-
self,
|
471 |
-
sentences: List[str],
|
472 |
-
stop_num: int = 20,
|
473 |
-
decrement_rate: float = 0.2,
|
474 |
-
min_filter_num: int = 10,
|
475 |
-
tokenizer: AutoTokenizer = AutoTokenizer.from_pretrained(
|
476 |
-
"ByteDance/ListConRanker"
|
477 |
-
),
|
478 |
-
):
|
479 |
-
"""
|
480 |
-
Process multiple passages for one query in iterative inference.
|
481 |
-
:param sentences: List contains sentences for a query.
|
482 |
-
:return: Tensor of logits for each passage.
|
483 |
-
"""
|
484 |
-
if stop_num < 1:
|
485 |
-
raise ValueError("stop_num must be greater than 0")
|
486 |
-
if decrement_rate <= 0 or decrement_rate >= 1:
|
487 |
-
raise ValueError("decrement_rate must be in (0, 1)")
|
488 |
-
if min_filter_num < 1:
|
489 |
-
raise ValueError("min_filter_num must be greater than 0")
|
490 |
-
|
491 |
-
query = sentences[0]
|
492 |
-
passage = sentences[1:]
|
493 |
-
|
494 |
-
filter_times = 0
|
495 |
-
passage2score = defaultdict(list)
|
496 |
-
while len(passage) > stop_num:
|
497 |
-
batch = [[query] + passage]
|
498 |
-
pred_scores = self.multi_passage(
|
499 |
-
batch, batch_size=len(batch[0]) - 1, tokenizer=tokenizer
|
500 |
-
).tolist()
|
501 |
-
pred_scores_argsort = np.argsort(
|
502 |
-
pred_scores
|
503 |
-
).tolist() # Sort in increasing order
|
504 |
-
|
505 |
-
passage_len = len(passage)
|
506 |
-
to_filter_num = math.ceil(passage_len * decrement_rate)
|
507 |
-
if to_filter_num < min_filter_num:
|
508 |
-
to_filter_num = min_filter_num
|
509 |
-
|
510 |
-
have_filter_num = 0
|
511 |
-
while have_filter_num < to_filter_num:
|
512 |
-
idx = pred_scores_argsort[have_filter_num]
|
513 |
-
passage2score[passage[idx]].append(pred_scores[idx] + filter_times)
|
514 |
-
have_filter_num += 1
|
515 |
-
while (
|
516 |
-
pred_scores[pred_scores_argsort[have_filter_num - 1]]
|
517 |
-
== pred_scores[pred_scores_argsort[have_filter_num]]
|
518 |
-
):
|
519 |
-
idx = pred_scores_argsort[have_filter_num]
|
520 |
-
passage2score[passage[idx]].append(pred_scores[idx] + filter_times)
|
521 |
-
have_filter_num += 1
|
522 |
-
next_passage = []
|
523 |
-
next_passage_idx = have_filter_num
|
524 |
-
while next_passage_idx < len(passage):
|
525 |
-
idx = pred_scores_argsort[next_passage_idx]
|
526 |
-
next_passage.append(passage[idx])
|
527 |
-
next_passage_idx += 1
|
528 |
-
passage = next_passage
|
529 |
-
filter_times += 1
|
530 |
-
|
531 |
-
batch = [[query] + passage]
|
532 |
-
pred_scores = self.multi_passage(
|
533 |
-
batch, batch_size=len(batch[0]) - 1, tokenizer=tokenizer
|
534 |
-
).tolist()
|
535 |
-
|
536 |
-
cnt = 0
|
537 |
-
while cnt < len(passage):
|
538 |
-
passage2score[passage[cnt]].append(pred_scores[cnt] + filter_times)
|
539 |
-
cnt += 1
|
540 |
-
|
541 |
-
passage = sentences[1:]
|
542 |
-
final_score = []
|
543 |
-
for i in range(len(passage)):
|
544 |
-
p = passage[i]
|
545 |
-
final_score.append(passage2score[p][0])
|
546 |
-
return final_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|