File size: 4,411 Bytes
4e98507
 
 
 
 
 
292a274
 
4e98507
 
 
 
 
 
 
 
 
 
 
 
9b52994
 
 
4e98507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a8a65c
92d3d78
 
4e98507
 
 
9b52994
4e98507
 
 
f6b3a02
 
9b52994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e98507
 
 
 
292a274
4e98507
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: cwe-parent-vulnerability-classification-roberta-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cwe-parent-vulnerability-classification-roberta-base

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3447
- Accuracy: 0.7727
- F1 Macro: 0.4235

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 3.263         | 1.0   | 25   | 3.2313          | 0.2614   | 0.0345   |
| 3.1726        | 2.0   | 50   | 2.9923          | 0.1818   | 0.0431   |
| 3.1008        | 3.0   | 75   | 2.8828          | 0.0      | 0.0      |
| 2.9805        | 4.0   | 100  | 2.8858          | 0.0114   | 0.0019   |
| 3.0021        | 5.0   | 125  | 2.8257          | 0.4432   | 0.0626   |
| 2.8775        | 6.0   | 150  | 2.7730          | 0.0795   | 0.0462   |
| 2.8805        | 7.0   | 175  | 2.6421          | 0.2841   | 0.1362   |
| 2.6602        | 8.0   | 200  | 2.6462          | 0.3864   | 0.1366   |
| 2.5303        | 9.0   | 225  | 2.5584          | 0.3523   | 0.1461   |
| 2.5236        | 10.0  | 250  | 2.4933          | 0.4205   | 0.1209   |
| 2.3221        | 11.0  | 275  | 2.3458          | 0.5909   | 0.2232   |
| 2.1446        | 12.0  | 300  | 2.2679          | 0.625    | 0.2521   |
| 1.9937        | 13.0  | 325  | 2.1932          | 0.625    | 0.2736   |
| 1.8521        | 14.0  | 350  | 2.0372          | 0.6477   | 0.2881   |
| 1.7899        | 15.0  | 375  | 1.9494          | 0.6364   | 0.2679   |
| 1.5273        | 16.0  | 400  | 1.8457          | 0.6705   | 0.3205   |
| 1.4178        | 17.0  | 425  | 1.8276          | 0.6477   | 0.2931   |
| 1.335         | 18.0  | 450  | 1.7690          | 0.6591   | 0.3004   |
| 1.2685        | 19.0  | 475  | 1.6681          | 0.6705   | 0.3577   |
| 1.112         | 20.0  | 500  | 1.6399          | 0.6818   | 0.3152   |
| 1.01          | 21.0  | 525  | 1.5561          | 0.6932   | 0.3255   |
| 0.9637        | 22.0  | 550  | 1.5008          | 0.7159   | 0.4218   |
| 0.9571        | 23.0  | 575  | 1.5387          | 0.7045   | 0.3385   |
| 0.8213        | 24.0  | 600  | 1.5366          | 0.7159   | 0.4043   |
| 0.7538        | 25.0  | 625  | 1.4691          | 0.75     | 0.3942   |
| 0.7228        | 26.0  | 650  | 1.4826          | 0.7273   | 0.3872   |
| 0.7244        | 27.0  | 675  | 1.4789          | 0.7386   | 0.3915   |
| 0.6746        | 28.0  | 700  | 1.4439          | 0.7727   | 0.4322   |
| 0.5959        | 29.0  | 725  | 1.4202          | 0.7614   | 0.3942   |
| 0.5788        | 30.0  | 750  | 1.4339          | 0.7727   | 0.4002   |
| 0.5718        | 31.0  | 775  | 1.3723          | 0.7955   | 0.4431   |
| 0.5358        | 32.0  | 800  | 1.4186          | 0.7727   | 0.3812   |
| 0.5094        | 33.0  | 825  | 1.3722          | 0.7841   | 0.4579   |
| 0.5003        | 34.0  | 850  | 1.3955          | 0.7614   | 0.3786   |
| 0.4973        | 35.0  | 875  | 1.3733          | 0.8068   | 0.4635   |
| 0.4721        | 36.0  | 900  | 1.3447          | 0.7727   | 0.4235   |
| 0.4457        | 37.0  | 925  | 1.3622          | 0.7955   | 0.4573   |
| 0.4232        | 38.0  | 950  | 1.3736          | 0.7614   | 0.3986   |
| 0.4405        | 39.0  | 975  | 1.3683          | 0.7727   | 0.4235   |
| 0.437         | 40.0  | 1000 | 1.3642          | 0.7614   | 0.3986   |


### Framework versions

- Transformers 4.55.4
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2