--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: cwe-parent-vulnerability-classification-roberta-base results: [] datasets: - CIRCL/vulnerability-cwe-patch --- # cwe-parent-vulnerability-classification-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base). It achieves the following results on the evaluation set: - Loss: 1.2078 - Accuracy: 0.875 - F1 Macro: 0.6248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 3.2699 | 1.0 | 25 | 3.1492 | 0.0341 | 0.0055 | | 3.1972 | 2.0 | 50 | 2.9909 | 0.0114 | 0.0064 | | 3.1211 | 3.0 | 75 | 3.0017 | 0.0341 | 0.0140 | | 3.0888 | 4.0 | 100 | 3.0223 | 0.2841 | 0.0463 | | 2.9467 | 5.0 | 125 | 2.9608 | 0.0114 | 0.0018 | | 2.9851 | 6.0 | 150 | 2.8743 | 0.1932 | 0.0641 | | 2.9083 | 7.0 | 175 | 2.7687 | 0.375 | 0.0963 | | 2.7652 | 8.0 | 200 | 2.7049 | 0.4318 | 0.1953 | | 2.6893 | 9.0 | 225 | 2.5547 | 0.4886 | 0.1952 | | 2.5636 | 10.0 | 250 | 2.4970 | 0.5682 | 0.3314 | | 2.477 | 11.0 | 275 | 2.3499 | 0.6136 | 0.3790 | | 2.2936 | 12.0 | 300 | 2.2659 | 0.6364 | 0.3949 | | 2.1369 | 13.0 | 325 | 2.1758 | 0.625 | 0.4002 | | 2.0615 | 14.0 | 350 | 2.1015 | 0.6477 | 0.4169 | | 1.9548 | 15.0 | 375 | 1.9444 | 0.6932 | 0.3972 | | 1.7943 | 16.0 | 400 | 1.8892 | 0.6818 | 0.4210 | | 1.6619 | 17.0 | 425 | 1.8439 | 0.6818 | 0.4149 | | 1.5391 | 18.0 | 450 | 1.7247 | 0.7159 | 0.4848 | | 1.4415 | 19.0 | 475 | 1.6650 | 0.7273 | 0.4749 | | 1.2834 | 20.0 | 500 | 1.5743 | 0.7727 | 0.5574 | | 1.2245 | 21.0 | 525 | 1.5396 | 0.7614 | 0.5373 | | 1.1629 | 22.0 | 550 | 1.5005 | 0.7614 | 0.5350 | | 1.0894 | 23.0 | 575 | 1.4478 | 0.7614 | 0.5383 | | 0.9755 | 24.0 | 600 | 1.4335 | 0.7841 | 0.5599 | | 0.9271 | 25.0 | 625 | 1.4195 | 0.7841 | 0.5562 | | 0.8761 | 26.0 | 650 | 1.3740 | 0.8182 | 0.6015 | | 0.8312 | 27.0 | 675 | 1.3479 | 0.8295 | 0.6086 | | 0.7523 | 28.0 | 700 | 1.3379 | 0.8295 | 0.5948 | | 0.718 | 29.0 | 725 | 1.2991 | 0.8295 | 0.5948 | | 0.6819 | 30.0 | 750 | 1.3059 | 0.8409 | 0.6047 | | 0.6771 | 31.0 | 775 | 1.2650 | 0.8636 | 0.6167 | | 0.6267 | 32.0 | 800 | 1.2905 | 0.8523 | 0.6252 | | 0.6068 | 33.0 | 825 | 1.2559 | 0.875 | 0.6248 | | 0.5811 | 34.0 | 850 | 1.2371 | 0.875 | 0.6248 | | 0.5579 | 35.0 | 875 | 1.2231 | 0.875 | 0.6248 | | 0.5385 | 36.0 | 900 | 1.2342 | 0.875 | 0.6248 | | 0.5334 | 37.0 | 925 | 1.2255 | 0.875 | 0.6248 | | 0.4868 | 38.0 | 950 | 1.2223 | 0.875 | 0.6248 | | 0.5228 | 39.0 | 975 | 1.2078 | 0.875 | 0.6248 | | 0.5325 | 40.0 | 1000 | 1.2101 | 0.875 | 0.6248 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2