--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-igbo_naijavoices_500h results: [] --- # w2v-bert-2.0-igbo_naijavoices_500h This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2218 - Wer: 0.2455 - Cer: 0.1105 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 160 - eval_batch_size: 160 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 320 - total_eval_batch_size: 320 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 0.923 | 0.6901 | 1000 | 0.6313 | 0.5401 | 0.2069 | | 0.4648 | 1.3803 | 2000 | 0.4222 | 0.3868 | 0.1549 | | 0.3635 | 2.0704 | 3000 | 0.3582 | 0.3499 | 0.1434 | | 0.3388 | 2.7605 | 4000 | 0.3368 | 0.3322 | 0.1383 | | 0.2967 | 3.4507 | 5000 | 0.3141 | 0.3191 | 0.1366 | | 0.2738 | 4.1408 | 6000 | 0.3041 | 0.3151 | 0.1328 | | 0.3146 | 4.8309 | 7000 | 0.2972 | 0.3091 | 0.1297 | | 0.2612 | 5.5210 | 8000 | 0.2856 | 0.2998 | 0.1312 | | 0.282 | 6.2112 | 9000 | 0.2873 | 0.3001 | 0.1300 | | 0.2989 | 6.9013 | 10000 | 0.2864 | 0.2959 | 0.1309 | | 0.2633 | 7.5914 | 11000 | 0.2660 | 0.2883 | 0.1242 | | 0.2471 | 8.2816 | 12000 | 0.2674 | 0.2905 | 0.1263 | | 0.2746 | 8.9717 | 13000 | 0.2671 | 0.2822 | 0.1224 | | 0.2754 | 9.6618 | 14000 | 0.2617 | 0.2833 | 0.1234 | | 0.2881 | 10.3520 | 15000 | 0.2596 | 0.2833 | 0.1229 | | 0.2717 | 11.0421 | 16000 | 0.2524 | 0.2760 | 0.1221 | | 0.2204 | 11.7322 | 17000 | 0.2513 | 0.2720 | 0.1197 | | 0.2429 | 12.4224 | 18000 | 0.2530 | 0.2738 | 0.1203 | | 0.2429 | 13.1125 | 19000 | 0.2511 | 0.2745 | 0.1194 | | 0.2449 | 13.8026 | 20000 | 0.2555 | 0.2748 | 0.1209 | | 0.2053 | 14.4928 | 21000 | 0.2464 | 0.2719 | 0.1181 | | 0.222 | 15.1829 | 22000 | 0.2428 | 0.2659 | 0.1195 | | 0.1874 | 15.8730 | 23000 | 0.2418 | 0.2609 | 0.1156 | | 0.1924 | 16.5631 | 24000 | 0.2363 | 0.2675 | 0.1176 | | 0.1855 | 17.2533 | 25000 | 0.2336 | 0.2629 | 0.1151 | | 0.2172 | 17.9434 | 26000 | 0.2302 | 0.2633 | 0.1153 | | 0.2074 | 18.6335 | 27000 | 0.2345 | 0.2588 | 0.1161 | | 0.1589 | 19.3237 | 28000 | 0.2204 | 0.2474 | 0.1137 | | 0.1382 | 20.0138 | 29000 | 0.2279 | 0.2531 | 0.1127 | | 0.1525 | 20.7039 | 30000 | 0.2284 | 0.2550 | 0.1128 | | 0.149 | 21.3941 | 31000 | 0.2221 | 0.2509 | 0.1122 | | 0.1193 | 22.0842 | 32000 | 0.2229 | 0.2482 | 0.1113 | | 0.1245 | 22.7743 | 33000 | 0.2218 | 0.2455 | 0.1105 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2