| python run_speech_recognition_ctc.py \ | |
| --model_name_or_path="facebook/w2v-bert-2.0" \ | |
| --dataset_name="CLEAR-Global/luo_19h" \ | |
| --train_split_name="train" \ | |
| --eval_split_name="validation" \ | |
| --output_dir="./w2v-bert-2.0-luo_cv_fleurs_19h" \ | |
| --max_steps="100000" \ | |
| --per_device_train_batch_size="32" \ | |
| --per_device_eval_batch_size="32" \ | |
| --gradient_accumulation_steps="2" \ | |
| --freeze_feature_encoder=false \ | |
| --add_adapter=true \ | |
| --mask_time_prob="0.0" \ | |
| --final_dropout="0.1" \ | |
| --attention_dropout="0.05" \ | |
| --feat_proj_dropout="0.05" \ | |
| --hidden_dropout="0.05" \ | |
| --ctc_zero_infinity=true \ | |
| --learning_rate="3e-5" \ | |
| --warmup_ratio="0.1" \ | |
| --eval_strategy="steps" \ | |
| --save_steps="1000" \ | |
| --eval_steps="1000" \ | |
| --logging_steps="1" \ | |
| --eval_metrics wer cer \ | |
| --save_total_limit="1" \ | |
| --load_best_model_at_end \ | |
| --max_duration_in_seconds="30" \ | |
| --gradient_checkpointing \ | |
| --fp16 \ | |
| --group_by_length \ | |
| --length_column_name "input_length" \ | |
| --do_train --do_eval \ | |
| --preprocessing_num_workers="22" \ | |
| --dataloader_num_workers="22" \ | |
| --push_to_hub \ | |
| --push_to_hub_organization="CLEAR-Global" \ | |
| --hub_strategy="checkpoint" | |