import torch import torch.nn as nn import math pe_scaling = 0.1 # Hyperparameter, 0.1 value was used from training class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len): super().__init__() self.register_buffer("pe", self._generate_pe(max_len, d_model)) def _generate_pe(self, max_len, d_model): pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = (pe + 1) / 2 pe = pe_scaling * pe return pe.unsqueeze(0) def forward(self, x): x = x + self.pe[:, :x.size(1), :].to(x.device) return x