run with id LunarLander-v2-20220505-181331
Browse files- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- thicc-ppo-LunarLander-v2.zip +2 -2
- thicc-ppo-LunarLander-v2/data +27 -27
- thicc-ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- thicc-ppo-LunarLander-v2/policy.pth +2 -2
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 76.51 +/- 127.92
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0bddddf8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0bddddf940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0bddddf9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0bddddfa60>", "_build": "<function ActorCriticPolicy._build at 0x7f0bddddfaf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0bddddfb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0bddddfc10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0bddddfca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0bddddfd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0bddddfdc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0bddddfe50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0bdddda750>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEuAfZQojAJwaZRdlChLQEtAZYwCdmaUXZQoS0BLQGV1ZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [128, 128, {"pi": [64, 64], "vf": [64, 64]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 128, "num_timesteps": 10092544, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651762108.9829113, "learning_rate": 0.0003, "tensorboard_log": "./logs/LunarLander-v2-20220505-224825", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdRAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAEAAAAAAAAABfuT1vE5k/YvTaPg5bHr9/nzA+cyjlPgAAAAAAAAAAAGhaPPZgTrqeXpO5nqrlNMHp/jp2Gqw4AACAPwAAgD8aW0E9IxZuP+1Jgj2x2G+/IIU0PjGvkD0AAAAAAAAAAJqZVLqF3Z273nNnvRgjATxfig69RQ/qPAAAgD8AAIA/AIaTvEgjl7rFeY+8b6ItMyXgnbpgDE2zAACAPwAAgD/N5Yi8nO0svA1/VT2Klg08z0WYvV6y9DwAAIA/AACAP+abCD3qy5g/9QAePndCQ7/vyYo95Ps7PgAAAAAAAAAAzTi2vcr+ID96Fp29TWlJv2fvaL63Eyq9AAAAAAAAAABLKYC+x81mP77Ezz1l4yW/sU0AvzapiD4AAAAAAAAAAM311z1xOB0/C7CZvV4BTb/2SmU+ethAvgAAAAAAAAAATRYbvd7UqD8FswK/cu0pv0bHkzoQs/S9AAAAAAAAAABm9vu7liu1P+RiR7/0hUs+ShcSPN2nND4AAAAAAAAAAE37lb27LIc+Pp84PqUlGL8Wy+a9sSyoPQAAAAAAAAAAAMgtPLhhzLuI+t+8IzAPPEofUr2rLf48AACAPwAAgD97mai+JKyDP6Mn3D2LdP6+iQYxv8a4Xj0AAAAAAAAAAJqjmrzDMX+6H3+KNfkuojDqNmI71OqxtAAAgD8AAIA/5sOSvcMeST8laQG+YuBcv4klML4yaIO8AAAAAAAAAAANhcQ9fVxWPyJe4j0pplG/PuSTPnAFrLwAAAAAAAAAAIagNL4dnKQ/oNXfvpSpE7+4r9m+CPluvgAAAAAAAAAAzRCfu1CMbz9wLwW9ZydkvwknXj0HVEY7AAAAAAAAAAAAdhk84fCBumT5Bze2ugUys4bpOaoXGrYAAIA/AACAP2b/Cr1JyBI9XVR8PiXzu74B108+XniaPgAAAAAAAAAAs+FlPn/NDz92PLm+ICEuv5WElT79Xdq+AAAAAAAAAACaPpc8uo2wP0oGHD8xSf2+JPB6vKpAaL0AAAAAAAAAAJqxBL1noVs/JME8vTkacr9Smpm9lYsKvAAAAAAAAAAAs+YBPXNmYD8WaJ49rnCDv9KKJz3FnRM9AAAAAAAAAAAAMjQ8jrT7PfNLK70U+vq+ibQCPWoRujwAAAAAAAAAAABPwTyPyhK8HNSHvq79zzx8QcM8JQfOPQAAgD8AAIA/AEDaOilEJ7w6kNy8MjQrPdHXDj1d9iQ8AACAPwAAgD+apLW8V+RAP5iSC71SFXe/xGdJvVQBNL0AAAAAAAAAAAAIsTvD+Xq6CrSSNi9kbrEaoWO7pHCotQAAgD8AAIA/zdzZOj0+AbsGpgA8+lNcPEvouru2s0E9AACAPwAAgD96MgK+YlIjPzBKpLqfG1S/iZeWvr4BHz0AAAAAAAAAAEBnMT77vW8/myCpPh4BEb+/2s8+ydGtPgAAAAAAAAAAmnn4uvbac7yGHiS8ID0sPT5yvD2dsSE8AACAPwAAgD8zu2Q9PTwSu5a+dL5hcjG+zEmSvfH5jD8AAIA/AAAAAGa/M75xqvo+2+YHPjBuO78fRoa+FyA6PgAAAAAAAAAAM6e0u0iHsbpSZqQ5FaymNDdqB7la5bu4AACAPwAAgD8zqWw9Bo6rPopTzb0Piyu/gwKYPeJ6vr0AAAAAAAAAACDyKT4geC8/yK+dvRnRMb+3GcU+q6XbvQAAAAAAAAAAAEjVO65Nh7oquyi8el73uEAuEjoz+2A4AACAPwAAgD9axDk+r2+HP0mQrj7ekPe+KGTvPtermD4AAAAAAAAAAPOszL3XBYQ/AqyavmM8PL9PgKW+0pmIvgAAAAAAAAAAADD2O359lT+TewK88uhevwebDbxKyLY9AAAAAAAAAAAA18G8J10fPuVazT2A3gq/qcWSvWmJjD0AAAAAAAAAAECM6r35UaA/htUhv2T8I7/WsdK9U7XfvgAAAAAAAAAAgEtmPXE5Pz56Lj2+ivYNv3ubhT2oIuy9AAAAAAAAAAAAcA67j2ZeugkqzLnPcdm0jlqIO7jj7zgAAIA/AACAP/Oplj3Jz5I+/0UivswYNL+dgIQ9P98jvgAAAAAAAAAAs2GvPRwhMD9L7G68tIVnvyoSfz4jQQG+AAAAAAAAAAAa+mM9i0LQPamQsb7Wi/C+TFK3vfjsdr4AAAAAAAAAAI2bsr3WnzQ94RUSPy7Wvb4a/U8+ttXqPgAAAAAAAAAAZv4/vMP5cbqrCrI1pLjpMFP7XjuuX++0AACAPwAAgD8mLv29r9xyPwfiRL7SbGK/lKeMvvLgYzwAAAAAAAAAAFq+or0oC/E9JuWoPitaCL+Wuw690/2hPgAAAAAAAAAAMwUaPDZqTbxFUBM9BO5pPZzUcr25OEy8AACAPwAAgD9Nd3Y91vL9PheeA74PWDS/4+XlPanIEL4AAAAAAAAAAEA1n70Rmbc/2AABv6Y/yb2zBI+9NNCRvgAAAAAAAAAAzdaGvK7Vj7pPo8WznmFRL2qu0LhqxpozAACAPwAAgD8NLGA+k9EBPx66173yhTS/6KH1Pqlml74AAAAAAAAAAM0sGTyP1mO6JZrmPB+q6jj/D8A4dWjkNwAAgD8AAIA/s1c2Pq3nsz8gos4+yvbrvl9VvT42cpk+AAAAAAAAAAAAcJM6FN+0P9BS6T1bkMI9ivapuqtn07wAAAAAAAAAAJoJjDvD2TG6+Hh/MsX6ALEXa6G6OF0hswAAgD8AAIA/YMY3PquhXD9m1MY9e2otv+pB2D45AMi9AAAAAAAAAACa3z499/17P4vlFD3VgGe/ucEbPviQaz0AAAAAAAAAAM28rrtcF1W6SnAaNDM2uy+VPZo7C7KfswAAgD8AAIA/s6o8PX/NhD8MCcE9PgFuv/ic/z1AsXS9AAAAAAAAAADzOY+9Qqy1P25Tyb730DW+5TfIvbOGi74AAAAAAAAAACAHBT7so3w/t7AMPgOkZr+fcLU+bl/uvQAAAAAAAAAAM98oPIXh0ruj5dw9osXLPMVaQL3/8qg9AACAPwAAgD+auZg7w7lmuhtFaLiJzquyS+M7u94QhzcAAIA/AACAP5rh1D2QuN8+Y0JwvqJLTr/0hiY+qxdtvgAAAAAAAAAAzQxgvTctwT/CTNG+eihePr5fIb0mhna+AAAAAAAAAADmdtq9fiiWP8X9kr5jczW/M0mUvhMHbr4AAAAAAAAAAM05ZD5nRXk/lq1lPadlMr/RoAQ/URk5vgAAAAAAAAAAmnlAvCmyUryWBQQ9i/E+Pf11mz1l7Lk8AACAPwAAgD/N1AC7TzB6vDnwwrx3qSA9htxPPRGENL0AAIA/AACAPzOXnz0qNJ0/yhq3PqSELr/jZyo+hR7mPgAAAAAAAAAAmv4APSfrJz7RAD29q6IDv/nr8TwSyZ+8AAAAAAAAAAATGhc+hbkhPxBU5b3MUj6/C3ySPvtSYb4AAAAAAAAAADNHTjwpqDi6+MQwsvNEXDCkYJS6oyVzMgAAgD8AAIA/IOoovijLPT/HxjY9PQU9v9bOqr56ipc9AAAAAAAAAABgZK2+8xKAP3DNNr3XCC2/8LxCv0X2zD0AAAAAAAAAAAC4v7sUyI26K1p7NitvUjHadD07dhyVtQAAgD8AAIA/TWQ3Pj+PaT8bsAw7dnU/v8bC1D47Yym+AAAAAAAAAAAz16874SiJuqCuBjy9oSs5ZSIjutNAHzgAAIA/AACAPwDA9btIY4G6mES6t6lm2bJ3VcU6O+rYNgAAgD8AAIA/ZgavOynjsj9aajg+MbFlvpqgx7vvRCW9AAAAAAAAAAAzdVK9iTA9PfJTgz5bYLG+iNGGPu1HpT4AAAAAAAAAAPpEKz7BL5E/6+vdPrMKB786s80+Tg1XPgAAAAAAAAAAAN0QPZekuD/CEBM/87YrPo4aTLwQXeA8AAAAAAAAAAAm0ZI+/lmRP0KMWj1Juxm/RKgiP2Pzkr4AAAAAAAAAAEA5n705bDA/zu+WvXzDUb/n1w6+5AcLuwAAAAAAAAAAAEjNvPYYGjt/2CE+QLOhvhJnlr2KFHs9AACAPwAAAACa6pA8SCOFun8VprvHCcS4PA6JurArOTgAAIA/AACAP5odu70gAKE//sm6vtJmGL/YnW++A4jrvgAAAAAAAAAAM8EMvK75y7pLNxg+yvBiPHOQwTpCtUe9AACAPwAAgD9NNOA9fA40P9Vv1z2stWa/VwC1Pu6FEL4AAAAAAAAAAG00Ib68mAQ/G4OOPoanOL9hUHy+vcayPgAAAAAAAAAA02YmvqigwT7x8sk+PWBBv/cxCb4yF4Y+AAAAAAAAAAAAWmq84cCKunAJKzirvOIywIohupALQ7cAAIA/AACAP2a6tztxcKc/J3o5PU4bB7/XsAK8VtKbuwAAAAAAAAAAmhWou7Yjsz/we3S9jXsgviUQTrqmmJ68AAAAAAAAAADN7Ec75LCpP3of8DzBsuC+vUtzvNVwU70AAAAAAAAAAABLw7xLeIo+CTMHPmP8J79fpgG94xPOPQAAAAAAAAAAAFmJPIoesT85Ow0/zc3bvqmLVLxCEiG9AAAAAAAAAAAGuUc+1JEIPwqYmL6U/RG/+AYsPhGRsb4AAAAAAAAAAM3xwrzh1IK6xPINOkS0eTOS2Za7l30iuQAAgD8AAIA/mrGQPK4Lmbo2JIq4W3WKs6VSITuuip83AACAPwAAgD8ACYY8qMnrPUJ7m7wEOOi+BE4gPYa2bT0AAAAAAAAAAJbZaL4RpYE/QnppvqJMNL8ZMhu/KiUDPQAAAAAAAAAAzTzwu0glgLokzjw4AJIGM/QUDbtTk1m3AACAPwAAgD8NUpw91F7+PfgU0b4djwq/UudFvoCWSL4AAAAAAAAAAIDTP71XQg0/rQfOPJwzTr8T+fi93m+zPQAAAAAAAAAAc8W9PRPyVj+LAOU9ZNhbv8ZWkD6QzzE9AAAAAAAAAADNvRa9pO/QPQ7eUT6rswu/hBqrPTKngz4AAAAAAAAAAJofajy4SY273+CmvYQCLjwCBsA8kYEYvQAAgD8AAIA/zZysuhR+sLq0h4O8i1aaPLKzazvy/oW9AACAPwAAgD/NgIs7Uvj/uRP5aLX5QbawD54xO7IlpzQAAIA/AACAP83nyDwUJJW6frmPM+EWci9Fp9e607HEswAAgD8AAIA/AOYHvcsetz+L8KC+vr8Evf/5tLzQTte9AAAAAAAAAAAA2Ma7JwOAP186SrzkeIe/RED9vAneNjwAAAAAAAAAAG3kUz4oyNE+qZTCvr67Er9FG14+0xW+vgAAAAAAAAAAAKOLvHEVartAe3K8ULySPK1LjzxC7Xu9AACAPwAAgD9m5ps7wxEquhL4LrNXSyAuIqKlOgYxzTMAAIA/AACAPzPYjT32rCC6npUsON5RsbHvpji7zrJKtwAAgD8AAIA/mmzGPPbvPDvFriO+3hpyvsG3f72+0qi9AACAPwAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiS4BLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkuAhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2NglqjdacUCUhpRSlIwBbJRLp4wBdJRHQLOG8kqc3ER1fZQoaAZoCWgPQwjYgAhxZRZxQJSGlFKUaBVLlGgWR0CzhvZrpJPJdX2UKGgGaAloD0MICAPPvQfHcUCUhpRSlGgVS6xoFkdAs4cEzzmOl3V9lChoBmgJaA9DCMUDyqacWnJAlIaUUpRoFUuzaBZHQLOHBNHH3lF1fZQoaAZoCWgPQwiv6qwWGJByQJSGlFKUaBVLyWgWR0CzhwONYKYzdX2UKGgGaAloD0MIb5wU5v1gc0CUhpRSlGgVS7ZoFkdAs4cJwT/Q0HV9lChoBmgJaA9DCM14W+l1/nFAlIaUUpRoFUukaBZHQLOHDpoK2KF1fZQoaAZoCWgPQwie7jzxHPBxQJSGlFKUaBVLkWgWR0CzhyIOUdJbdX2UKGgGaAloD0MIlEp4Qm/UckCUhpRSlGgVS79oFkdAs4cnai9Iw3V9lChoBmgJaA9DCNe9FYnJOHRAlIaUUpRoFUvRaBZHQLOHLjKPn0V1fZQoaAZoCWgPQwiRD3o266ZxQJSGlFKUaBVLkmgWR0Czhz6dc0LudX2UKGgGaAloD0MIB3qobUM4ckCUhpRSlGgVS4doFkdAs4dPFFUhm3V9lChoBmgJaA9DCO0t5Xxx7nNAlIaUUpRoFUuzaBZHQLOHXKHfuTl1fZQoaAZoCWgPQwigxr35zUJyQJSGlFKUaBVLqGgWR0Czh1vVmSQpdX2UKGgGaAloD0MINIRjlr2UckCUhpRSlGgVS5RoFkdAs4djgflp5HV9lChoBmgJaA9DCBb3H5kOKHJAlIaUUpRoFUueaBZHQLOHc9lVcUx1fZQoaAZoCWgPQwjkhAmj2TJyQJSGlFKUaBVLqmgWR0Czh3lpKzzFdX2UKGgGaAloD0MIxxFr8SklckCUhpRSlGgVS7RoFkdAs4eMaAFxGXV9lChoBmgJaA9DCP88DRikqG9AlIaUUpRoFUueaBZHQLOHo21D0Dl1fZQoaAZoCWgPQwhxqyAGusNwQJSGlFKUaBVLkmgWR0Czh6slw97odX2UKGgGaAloD0MIoMA7+TTuc0CUhpRSlGgVS8ZoFkdAs4eoxZdOZnV9lChoBmgJaA9DCDxO0ZHcdXJAlIaUUpRoFUuaaBZHQLOHx4o7V8V1fZQoaAZoCWgPQwhu/InKxqtwQJSGlFKUaBVLj2gWR0Czh88bvPTodX2UKGgGaAloD0MIwvhp3Bubc0CUhpRSlGgVS6VoFkdAs4fofcN6PnV9lChoBmgJaA9DCNjWT//ZPnJAlIaUUpRoFUuVaBZHQLOIGUYbbUR1fZQoaAZoCWgPQwiSzOodLhVzQJSGlFKUaBVLmWgWR0CziBhfa6BidX2UKGgGaAloD0MIOpLLf0gsc0CUhpRSlGgVS8JoFkdAs4ged1+y7nV9lChoBmgJaA9DCNi4/l1f/XJAlIaUUpRoFUu3aBZHQLOIJyAQQMB1fZQoaAZoCWgPQwgCmggbniJzQJSGlFKUaBVLxWgWR0CziC2KQ7tBdX2UKGgGaAloD0MIWYXNAFdZckCUhpRSlGgVS8NoFkdAs4grFzdUKnV9lChoBmgJaA9DCNSYEHOJdnJAlIaUUpRoFUu0aBZHQLOIMbfP5YZ1fZQoaAZoCWgPQwjVBbzM8OxxQJSGlFKUaBVLpWgWR0CziDm/zreJdX2UKGgGaAloD0MIP4wQHq07cUCUhpRSlGgVS8VoFkdAs4g+H6/IsHV9lChoBmgJaA9DCAZjRKJQrHFAlIaUUpRoFUuwaBZHQLOIZnbItDl1fZQoaAZoCWgPQwgoYDsYcQtyQJSGlFKUaBVLlGgWR0CziHiG8EmqdX2UKGgGaAloD0MI9pZyvpjXckCUhpRSlGgVS7loFkdAs4h308NhE3V9lChoBmgJaA9DCIBmEB9Y0nBAlIaUUpRoFUuyaBZHQLOIf73fygB1fZQoaAZoCWgPQwhCsoAJHK5yQJSGlFKUaBVLkmgWR0CziH+f/WDpdX2UKGgGaAloD0MIjX40nDJdckCUhpRSlGgVS51oFkdAs4h/JuEVWXV9lChoBmgJaA9DCETDYtS1LXFAlIaUUpRoFUupaBZHQLOIfvphWo51fZQoaAZoCWgPQwi6vDlcaxVzQJSGlFKUaBVLtGgWR0CziIYvWYnfdX2UKGgGaAloD0MI7MGk+HhtcUCUhpRSlGgVS45oFkdAs4iNev6j33V9lChoBmgJaA9DCGgG8YEdqXNAlIaUUpRoFUupaBZHQLOIi4/NZ/11fZQoaAZoCWgPQwi2TfG46JlwQJSGlFKUaBVLlGgWR0CziJk690zTdX2UKGgGaAloD0MIuaXVkLhwckCUhpRSlGgVS71oFkdAs4iYQumJnHV9lChoBmgJaA9DCJPJqZ3h9HFAlIaUUpRoFUuiaBZHQLOIn+qzZ6F1fZQoaAZoCWgPQwjpnnWNFudzQJSGlFKUaBVLrmgWR0CziJ9MfzSUdX2UKGgGaAloD0MIQPomTQOHc0CUhpRSlGgVS9toFkdAs4ieb9ZRsXV9lChoBmgJaA9DCGsNpfYihnFAlIaUUpRoFUuzaBZHQLOIp0Rvm5l1fZQoaAZoCWgPQwhM32sIzg50QJSGlFKUaBVLyWgWR0CziKVy/9HddX2UKGgGaAloD0MIjXvzG+aXc0CUhpRSlGgVS5toFkdAs4izoyKvV3V9lChoBmgJaA9DCAFqatnaaHJAlIaUUpRoFUuyaBZHQLOItyOJcgR1fZQoaAZoCWgPQwh90LNZ9cRyQJSGlFKUaBVLrGgWR0CziL3AAQxvdX2UKGgGaAloD0MI5BOy8/aBckCUhpRSlGgVS6NoFkdAs4jEAksz23V9lChoBmgJaA9DCNi5aTNOXnNAlIaUUpRoFUu1aBZHQLOIy8qnWJ91fZQoaAZoCWgPQwguHt5zIJBxQJSGlFKUaBVLi2gWR0CziMqWszVMdX2UKGgGaAloD0MIie/ErBf1ckCUhpRSlGgVS7ZoFkdAs4jOu5jH43V9lChoBmgJaA9DCMrfvaNGCnFAlIaUUpRoFUuTaBZHQLOI4LXL/0d1fZQoaAZoCWgPQwgBbhYvFsBxQJSGlFKUaBVLomgWR0CziOlmOEM9dX2UKGgGaAloD0MIxca8jjigcUCUhpRSlGgVS61oFkdAs4juK64DtHV9lChoBmgJaA9DCPJgi93+XXJAlIaUUpRoFUuPaBZHQLOI+J9iMHd1fZQoaAZoCWgPQwj2lQfp6bJzQJSGlFKUaBVLsmgWR0CziQG07bL2dX2UKGgGaAloD0MIrU1jey2VckCUhpRSlGgVS5ZoFkdAs4kAPTXrdHV9lChoBmgJaA9DCABV3LjFrHFAlIaUUpRoFUuhaBZHQLOJBl1KXfJ1fZQoaAZoCWgPQwjzkCkfwlNxQJSGlFKUaBVLpWgWR0CziREbYK6XdX2UKGgGaAloD0MIUI2XbhIOdECUhpRSlGgVS6xoFkdAs4kQcwQDm3V9lChoBmgJaA9DCGluhbCarXJAlIaUUpRoFUu+aBZHQLOJImQKa5R1fZQoaAZoCWgPQwgkufyHdBFwQJSGlFKUaBVLnGgWR0CziSF+EytWdX2UKGgGaAloD0MICJRNuUKSckCUhpRSlGgVS7toFkdAs4km8SPEKnV9lChoBmgJaA9DCDliLT5Fs3JAlIaUUpRoFUu8aBZHQLOJQPuogmt1fZQoaAZoCWgPQwiDiT+KupFzQJSGlFKUaBVLy2gWR0CziUWFvhqCdX2UKGgGaAloD0MIrp6T3vc0cUCUhpRSlGgVS6ZoFkdAs4lSml67d3V9lChoBmgJaA9DCLaA0Hp4S3JAlIaUUpRoFUuyaBZHQLOJWCKaXrt1fZQoaAZoCWgPQwiKq8q+a4tyQJSGlFKUaBVLpWgWR0CziWQSnLq2dX2UKGgGaAloD0MIn3HhQAjVc0CUhpRSlGgVS61oFkdAs4lpjJ+2E3V9lChoBmgJaA9DCKjIIeKm/XBAlIaUUpRoFUuoaBZHQLOJaYNiH7B1fZQoaAZoCWgPQwixpx3+WoFxQJSGlFKUaBVLjGgWR0CziWjDwYtQdX2UKGgGaAloD0MIPdf34aCrcECUhpRSlGgVS5xoFkdAs4luJP69CnV9lChoBmgJaA9DCBtIF5uW8HFAlIaUUpRoFUuqaBZHQLOJe9IPK+11fZQoaAZoCWgPQwjz4sRXu9RyQJSGlFKUaBVLmGgWR0CziYF6/qPfdX2UKGgGaAloD0MIgEV+/ZCWc0CUhpRSlGgVS7ZoFkdAs4mMj2SMcnV9lChoBmgJaA9DCBtIF5sWC3BAlIaUUpRoFUudaBZHQLOJrsenyd51fZQoaAZoCWgPQwj8bU+QmNBxQJSGlFKUaBVLo2gWR0CzicL4FiazdX2UKGgGaAloD0MIOGdEaW9LckCUhpRSlGgVS6RoFkdAs4nC5J9RaXV9lChoBmgJaA9DCB9q2zAKP3FAlIaUUpRoFUuWaBZHQLOJwNM495h1fZQoaAZoCWgPQwgwStBfaCRxQJSGlFKUaBVLnWgWR0Czic1jEvTPdX2UKGgGaAloD0MIC/FIvHwpc0CUhpRSlGgVS6JoFkdAs4nM5NoJzHV9lChoBmgJaA9DCPVHGAYsinBAlIaUUpRoFUuPaBZHQLOJ0fnOjZd1fZQoaAZoCWgPQwiY9s39VThvQJSGlFKUaBVLlGgWR0Czidk+cH4XdX2UKGgGaAloD0MISOAPPz9lcUCUhpRSlGgVS7JoFkdAs4nke/5+IHV9lChoBmgJaA9DCEfjUL+L9nFAlIaUUpRoFUvCaBZHQLOJ4/EwWWR1fZQoaAZoCWgPQwi2TfG46JtzQJSGlFKUaBVLqGgWR0CzifAdfb9IdX2UKGgGaAloD0MIMgOV8a/pcECUhpRSlGgVS69oFkdAs4n8r5IpY3V9lChoBmgJaA9DCM8tdCXC33JAlIaUUpRoFUuVaBZHQLOKBWsA/9p1fZQoaAZoCWgPQwguU5PgDXtxQJSGlFKUaBVLrWgWR0Czigoa5wwTdX2UKGgGaAloD0MIqdkDrQDPckCUhpRSlGgVS6FoFkdAs4oemKqGUXV9lChoBmgJaA9DCLJmZJA74HRAlIaUUpRoFUvOaBZHQLOKHSLZSNx1fZQoaAZoCWgPQwiFe2Xe6qRzQJSGlFKUaBVLvWgWR0CzihzKgZjydX2UKGgGaAloD0MIBOPg0jG1cECUhpRSlGgVS5hoFkdAs4osK7ZnMHV9lChoBmgJaA9DCBxdpbvrFm9AlIaUUpRoFUuWaBZHQLOKK0GeMAF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 308, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff5a99998b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff5a9999940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff5a99999d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff5a9999a60>", "_build": "<function ActorCriticPolicy._build at 0x7ff5a9999af0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff5a9999b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff5a9999c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff5a9999ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff5a9999d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff5a9999dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff5a9999e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff5a9996750>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZQoS0BLIGV1ZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [128, 64, {"pi": [64, 32], "vf": [64, 32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 20004864, "_total_timesteps": 20000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651745615.1017787, "learning_rate": 0.0003, "tensorboard_log": "./logs/LunarLander-v2-20220505-181331", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANouBr4lx6U/M400v0rgqL5c38I5/58bvgAAAAAAAAAAJlOMPRSXtD7it4A+jSI4v1c2dLs6GKQ+AAAAAAAAAABaYqa9cPiNP/qyHD6PFhS/hOiXvk7NED4AAAAAAAAAAM08JjsKvSO74WqWO6sghjzEQTq86DxoPQAAgD8AAIA/TZ+fvQI7Kz/A4Gg8Lr1ev2mOYb3KcfI8AAAAAAAAAACD8ok+ifdoPpCcMjwu4BK/TXmgPt1neLwAAAAAAAAAADP3JL2UsLu867EmPr+/Kb1yPHY84KpcPgAAgD8AAIA/rdR5PsGCQj5VXoG+MiCNvuKaPD5+2hy+AAAAAAAAAACaJZa8Vh22P+LZAb2EgSm+jNmvvSbVWb4AAAAAAAAAADPrGb0UDpC4iE1qvJCPubzNiGC7E8GivQAAAAAAAIA/TcV6vZKBwjwqEG0+b7OPPR1JST5sno0+AAAAAAAAAAAmSOc9j45Lunqb1zQHxVgysiuzOEbtEbQAAIA/AACAPxN4Ej6f5tu7tfWeO5XmCrqVTEK9ZTngugAAgD8AAIA/DVntPUcULT6bM4S9oJb8vgTgOD49bSI+AAAAAAAAAABmUmy+RwMqvSPanr3u5Qy78CaaPjz2rT0AAAAAAAAAADMykDx4l68/prCaPvIzob43DEK8UxSJvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00024320000000011, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+5XOh2fqcECUhpRSlIwBbJRL3YwBdJRHQNVsowcghbJ1fZQoaAZoCWgPQwgmVdtNsMJwQJSGlFKUaBVLzWgWR0DVbKSeMAFQdX2UKGgGaAloD0MI5rLROf/KckCUhpRSlGgVS+VoFkdA1WyuKYRdyHV9lChoBmgJaA9DCCF1O/sK4nFAlIaUUpRoFUvXaBZHQNVssxYV6/t1fZQoaAZoCWgPQwjjGp/J/hk/QJSGlFKUaBVLc2gWR0DVbLmS/0uldX2UKGgGaAloD0MIv7hUpW0ocECUhpRSlGgVS+doFkdA1Wy9VxS5y3V9lChoBmgJaA9DCGGkF7X7s1JAlIaUUpRoFUvwaBZHQNVsvx2fTTh1fZQoaAZoCWgPQwi4yhMIu+dxQJSGlFKUaBVNIwFoFkdA1Wy/y1eBx3V9lChoBmgJaA9DCJVIopcRcnJAlIaUUpRoFUvQaBZHQNVsyuxfOUt1fZQoaAZoCWgPQwigpwGDpNFvQJSGlFKUaBVNGQFoFkdA1WzL/dIoVnV9lChoBmgJaA9DCG5sdqT6VkhAlIaUUpRoFUuCaBZHQNVs3/b0voN1fZQoaAZoCWgPQwiOdtzwu3twQJSGlFKUaBVNSQFoFkdA1WzhIppeu3V9lChoBmgJaA9DCPyO4bHfPXJAlIaUUpRoFUvyaBZHQNVs5xeHBUJ1fZQoaAZoCWgPQwjGia921G5wQJSGlFKUaBVL6mgWR0DVbOiKrJbMdX2UKGgGaAloD0MInrXbLjQ5TkCUhpRSlGgVS7JoFkdA1WzrkgOjI3V9lChoBmgJaA9DCAK8BRJUGXBAlIaUUpRoFUvWaBZHQNVs7VmJ3xF1fZQoaAZoCWgPQwhOfSB557dxQJSGlFKUaBVL5GgWR0DVbPAxwhnrdX2UKGgGaAloD0MIJEVkWEV4ckCUhpRSlGgVS7ZoFkdA1Wz4SqlxfnV9lChoBmgJaA9DCHbexmZHqtA/lIaUUpRoFUu5aBZHQNVs/wpz90l1fZQoaAZoCWgPQwjOM/YlG2VyQJSGlFKUaBVNOgFoFkdA1Wz/FMZgonV9lChoBmgJaA9DCOokW13OKnBAlIaUUpRoFUu+aBZHQNVtDbN8ma91fZQoaAZoCWgPQwhFniRdc/1xQJSGlFKUaBVLy2gWR0DVbRFrLyMDdX2UKGgGaAloD0MIfotOllpgcECUhpRSlGgVTS8BaBZHQNVtLUiliz91fZQoaAZoCWgPQwg5mbhV0HpyQJSGlFKUaBVLwGgWR0DVbS44MnZ1dX2UKGgGaAloD0MIpn7eVCTScECUhpRSlGgVS+toFkdA1W05Kp1ifHV9lChoBmgJaA9DCJ24HK9A4GfAlIaUUpRoFUu1aBZHQNVtQUj9n9N1fZQoaAZoCWgPQwjyXN+HQ8tyQJSGlFKUaBVL5GgWR0DVbUWC/XXidX2UKGgGaAloD0MIT5XvGckUc0CUhpRSlGgVTQYBaBZHQNVtUawdKdx1fZQoaAZoCWgPQwiGWtO8o+1xQJSGlFKUaBVL8mgWR0DVbWlIsiB5dX2UKGgGaAloD0MIb0p5rUQUcECUhpRSlGgVTbIBaBZHQNVtallK9PF1fZQoaAZoCWgPQwieP21U54tyQJSGlFKUaBVLz2gWR0DVbW0eq7yydX2UKGgGaAloD0MIdjQO9bukRkCUhpRSlGgVS5NoFkdA1W11Ip6QeXV9lChoBmgJaA9DCLwhjQqcu3NAlIaUUpRoFUvfaBZHQNVteZbUwzt1fZQoaAZoCWgPQwheglMfSI4bwJSGlFKUaBVLfWgWR0DVbX7euV5bdX2UKGgGaAloD0MI/mSMD/N1c0CUhpRSlGgVTQUBaBZHQNVts2r4nF51fZQoaAZoCWgPQwjGFoIcFBhvwJSGlFKUaBVNCQNoFkdA1W24Ig/1QXV9lChoBmgJaA9DCObKoNrgi3FAlIaUUpRoFU0GAWgWR0DVbcDlA/s3dX2UKGgGaAloD0MIx/DYz2J1Q0CUhpRSlGgVS6VoFkdA1W3T/I8yOHV9lChoBmgJaA9DCAIR4soZXnBAlIaUUpRoFU3uAWgWR0DVbdSTr3TNdX2UKGgGaAloD0MItksbDss/c0CUhpRSlGgVTQUBaBZHQNVt3BqO9391fZQoaAZoCWgPQwiNYOP6t9xyQJSGlFKUaBVL22gWR0DVbd8W1twadX2UKGgGaAloD0MIm6+Sj93JWkCUhpRSlGgVTegDaBZHQNVt5CYTkAB1fZQoaAZoCWgPQwjgg9cureNxQJSGlFKUaBVNHAFoFkdA1W4IilSCOHV9lChoBmgJaA9DCLNCke5nTHFAlIaUUpRoFU2LAmgWR0DVbg9JlJ6IdX2UKGgGaAloD0MIw7zHmSZqcUCUhpRSlGgVTYoBaBZHQNVuD8YdhiN1fZQoaAZoCWgPQwgKavgW1s1BQJSGlFKUaBVLi2gWR0DVcD80vXbudX2UKGgGaAloD0MIhbNby2SuQECUhpRSlGgVS7JoFkdA1XBDgHu7YnV9lChoBmgJaA9DCGAF+G4zmXBAlIaUUpRoFU16AWgWR0DVcEON6w+udX2UKGgGaAloD0MIq3e4HVp8cUCUhpRSlGgVS+9oFkdA1XBEopQUH3V9lChoBmgJaA9DCEJ8YMd/AW9AlIaUUpRoFUv/aBZHQNVwT8Djin51fZQoaAZoCWgPQwja5PBJp2xwQJSGlFKUaBVLvWgWR0DVcE/QeFL4dX2UKGgGaAloD0MIwa27eapmcUCUhpRSlGgVTR4BaBZHQNVwZjiwSrZ1fZQoaAZoCWgPQwgL7ZxmQSpxQJSGlFKUaBVL1GgWR0DVcInDpC8fdX2UKGgGaAloD0MI8ppXdZYyc0CUhpRSlGgVS/hoFkdA1XClr1/UfHV9lChoBmgJaA9DCAyVfy2voHFAlIaUUpRoFUusaBZHQNVwqU9ECvJ1fZQoaAZoCWgPQwi+vAD7aAxyQJSGlFKUaBVNAAFoFkdA1XCrGyon8nV9lChoBmgJaA9DCCqnPSWneXFAlIaUUpRoFU2LAWgWR0DVcLOMCLdfdX2UKGgGaAloD0MIdJmaBO8UckCUhpRSlGgVTX4BaBZHQNVwuE5yU9p1fZQoaAZoCWgPQwjrHAOyV6lvQJSGlFKUaBVNTgNoFkdA1XC46sQumXV9lChoBmgJaA9DCKuTMxQ31XJAlIaUUpRoFUvtaBZHQNVwvrz06HV1fZQoaAZoCWgPQwjku5S6pF1wQJSGlFKUaBVLqmgWR0DVcMB4D9wWdX2UKGgGaAloD0MIHaz/c1jEc0CUhpRSlGgVS/xoFkdA1XDEapPykXV9lChoBmgJaA9DCMAGRIir03BAlIaUUpRoFU0QAWgWR0DVcNjoC+10dX2UKGgGaAloD0MIFjWYhqESckCUhpRSlGgVS7hoFkdA1XDmfiPyTnV9lChoBmgJaA9DCCE9RQ6RmWFAlIaUUpRoFU3oA2gWR0DVcOtJWeYldX2UKGgGaAloD0MIaCJseDo9c0CUhpRSlGgVS9hoFkdA1XELcUuct3V9lChoBmgJaA9DCP0ubM0WkXBAlIaUUpRoFUvoaBZHQNVxFjRYzSF1fZQoaAZoCWgPQwja/pWVJuVQQJSGlFKUaBVLwmgWR0DVcRm0a6z3dX2UKGgGaAloD0MILudSXJUbcECUhpRSlGgVTSkDaBZHQNVxGq/dqL11fZQoaAZoCWgPQwhMwoU8wgxyQJSGlFKUaBVL1WgWR0DVcSACcPOIdX2UKGgGaAloD0MI4e6s3bY2cECUhpRSlGgVS+1oFkdA1XEggW8AaXV9lChoBmgJaA9DCFYQA117Z3FAlIaUUpRoFUvoaBZHQNVxIgMQVbl1fZQoaAZoCWgPQwidTNwqCD9uQJSGlFKUaBVL+2gWR0DVcSmWOZLJdX2UKGgGaAloD0MIt2PqruzQcUCUhpRSlGgVTQcBaBZHQNVxOAtjCpF1fZQoaAZoCWgPQwi9VkJ3ydlxQJSGlFKUaBVLzWgWR0DVcULrnkksdX2UKGgGaAloD0MIs3vysJBQcUCUhpRSlGgVS+RoFkdA1XFISwGGEnV9lChoBmgJaA9DCN/cXz3ugzVAlIaUUpRoFUtqaBZHQNVxU5pBX0Z1fZQoaAZoCWgPQwjAXmHB/fZwQJSGlFKUaBVNqwNoFkdA1XFdi4J/onV9lChoBmgJaA9DCIWUn1Q7AnJAlIaUUpRoFUvOaBZHQNVxYNVWCEp1fZQoaAZoCWgPQwhFZFjFm01zQJSGlFKUaBVL2GgWR0DVcXiCf6GhdX2UKGgGaAloD0MIT7FqEObQbkCUhpRSlGgVTdUBaBZHQNVxeYWLxZx1fZQoaAZoCWgPQwidf7vsF6NyQJSGlFKUaBVL9WgWR0DVcX94+r2hdX2UKGgGaAloD0MIKEaWzLHATkCUhpRSlGgVS79oFkdA1XGIhBZ6lnV9lChoBmgJaA9DCPT4vU1/fm9AlIaUUpRoFUv+aBZHQNVxiqjFhod1fZQoaAZoCWgPQwjbi2g7puxyQJSGlFKUaBVNCAFoFkdA1XGNGJvYOHV9lChoBmgJaA9DCIy+gjTjQ2tAlIaUUpRoFU0mAWgWR0DVcY/HZK4AdX2UKGgGaAloD0MIEJaxoVuicECUhpRSlGgVTbkBaBZHQNVxlVD4QBh1fZQoaAZoCWgPQwieeqTBbV1wQJSGlFKUaBVNTgFoFkdA1XGgdHDrJXV9lChoBmgJaA9DCG3lJf/TkHNAlIaUUpRoFUvraBZHQNVxp0lJHy51fZQoaAZoCWgPQwg4LA38KEJwQJSGlFKUaBVLxmgWR0DVca98b70ndX2UKGgGaAloD0MIXWqEfqawRUCUhpRSlGgVS5ZoFkdA1XGyuR9w33V9lChoBmgJaA9DCDUNiuZBQ3FAlIaUUpRoFUv+aBZHQNVxuYfnwG51fZQoaAZoCWgPQwhXIlD9g/VtQJSGlFKUaBVNbANoFkdA1XHJIF/x2HV9lChoBmgJaA9DCHy1ozjH9XBAlIaUUpRoFUvCaBZHQNVx1X7Hhjx1fZQoaAZoCWgPQwj3kzE+zFRxQJSGlFKUaBVLw2gWR0DVcdiAkLQYdX2UKGgGaAloD0MIX+/+eG+zckCUhpRSlGgVS+ZoFkdA1XHZXf642HV9lChoBmgJaA9DCO+oMSGmNnJAlIaUUpRoFUviaBZHQNVx4VMRHwx1fZQoaAZoCWgPQwibx2EwP1JxQJSGlFKUaBVLu2gWR0DVcfYbPyCndX2UKGgGaAloD0MIcvvlkxXPbUCUhpRSlGgVTXYBaBZHQNVx962fChx1fZQoaAZoCWgPQwgv4dBbPIhTQJSGlFKUaBVN6ANoFkdA1XH81TR6W3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4884, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55e4f3d91a0291adb9525350a41c7a7fefc9bca8e4853955496e2d4fe06d2971
|
3 |
+
size 262006
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 76.5081669655137, "std_reward": 127.91881944954389, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T00:20:11.092935"}
|
thicc-ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91bf85bdc0bb13df8ec5d1d714d4a47519fb0fee558fa215834c173b6a750881
|
3 |
+
size 295373
|
thicc-ppo-LunarLander-v2/data
CHANGED
@@ -4,36 +4,36 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
23 |
":type:": "<class 'dict'>",
|
24 |
-
":serialized:": "
|
25 |
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
|
26 |
"net_arch": [
|
27 |
128,
|
28 |
-
|
29 |
{
|
30 |
"pi": [
|
31 |
64,
|
32 |
-
|
33 |
],
|
34 |
"vf": [
|
35 |
64,
|
36 |
-
|
37 |
]
|
38 |
}
|
39 |
]
|
@@ -59,48 +59,48 @@
|
|
59 |
"dtype": "int64",
|
60 |
"_np_random": null
|
61 |
},
|
62 |
-
"n_envs":
|
63 |
-
"num_timesteps":
|
64 |
-
"_total_timesteps":
|
65 |
"_num_timesteps_at_start": 0,
|
66 |
"seed": null,
|
67 |
"action_noise": null,
|
68 |
-
"start_time":
|
69 |
"learning_rate": 0.0003,
|
70 |
-
"tensorboard_log": "./logs/LunarLander-v2-20220505-
|
71 |
"lr_schedule": {
|
72 |
":type:": "<class 'function'>",
|
73 |
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
74 |
},
|
75 |
"_last_obs": {
|
76 |
":type:": "<class 'numpy.ndarray'>",
|
77 |
-
":serialized:": "
|
78 |
},
|
79 |
"_last_episode_starts": {
|
80 |
":type:": "<class 'numpy.ndarray'>",
|
81 |
-
":serialized:": "
|
82 |
},
|
83 |
"_last_original_obs": null,
|
84 |
"_episode_num": 0,
|
85 |
"use_sde": false,
|
86 |
"sde_sample_freq": -1,
|
87 |
-
"_current_progress_remaining": -0.
|
88 |
"ep_info_buffer": {
|
89 |
":type:": "<class 'collections.deque'>",
|
90 |
-
":serialized:": "
|
91 |
},
|
92 |
"ep_success_buffer": {
|
93 |
":type:": "<class 'collections.deque'>",
|
94 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
95 |
},
|
96 |
-
"_n_updates":
|
97 |
"n_steps": 1024,
|
98 |
"gamma": 0.999,
|
99 |
"gae_lambda": 0.98,
|
100 |
"ent_coef": 0.01,
|
101 |
"vf_coef": 0.5,
|
102 |
"max_grad_norm": 0.5,
|
103 |
-
"batch_size":
|
104 |
"n_epochs": 4,
|
105 |
"clip_range": {
|
106 |
":type:": "<class 'function'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff5a99998b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff5a9999940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff5a99999d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff5a9999a60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff5a9999af0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff5a9999b80>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff5a9999c10>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff5a9999ca0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff5a9999d30>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff5a9999dc0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff5a9999e50>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff5a9996750>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
23 |
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVbQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLgEtAfZQojAJwaZRdlChLQEsgZYwCdmaUXZQoS0BLIGV1ZXUu",
|
25 |
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
|
26 |
"net_arch": [
|
27 |
128,
|
28 |
+
64,
|
29 |
{
|
30 |
"pi": [
|
31 |
64,
|
32 |
+
32
|
33 |
],
|
34 |
"vf": [
|
35 |
64,
|
36 |
+
32
|
37 |
]
|
38 |
}
|
39 |
]
|
|
|
59 |
"dtype": "int64",
|
60 |
"_np_random": null
|
61 |
},
|
62 |
+
"n_envs": 16,
|
63 |
+
"num_timesteps": 20004864,
|
64 |
+
"_total_timesteps": 20000000,
|
65 |
"_num_timesteps_at_start": 0,
|
66 |
"seed": null,
|
67 |
"action_noise": null,
|
68 |
+
"start_time": 1651745615.1017787,
|
69 |
"learning_rate": 0.0003,
|
70 |
+
"tensorboard_log": "./logs/LunarLander-v2-20220505-181331",
|
71 |
"lr_schedule": {
|
72 |
":type:": "<class 'function'>",
|
73 |
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
74 |
},
|
75 |
"_last_obs": {
|
76 |
":type:": "<class 'numpy.ndarray'>",
|
77 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANouBr4lx6U/M400v0rgqL5c38I5/58bvgAAAAAAAAAAJlOMPRSXtD7it4A+jSI4v1c2dLs6GKQ+AAAAAAAAAABaYqa9cPiNP/qyHD6PFhS/hOiXvk7NED4AAAAAAAAAAM08JjsKvSO74WqWO6sghjzEQTq86DxoPQAAgD8AAIA/TZ+fvQI7Kz/A4Gg8Lr1ev2mOYb3KcfI8AAAAAAAAAACD8ok+ifdoPpCcMjwu4BK/TXmgPt1neLwAAAAAAAAAADP3JL2UsLu867EmPr+/Kb1yPHY84KpcPgAAgD8AAIA/rdR5PsGCQj5VXoG+MiCNvuKaPD5+2hy+AAAAAAAAAACaJZa8Vh22P+LZAb2EgSm+jNmvvSbVWb4AAAAAAAAAADPrGb0UDpC4iE1qvJCPubzNiGC7E8GivQAAAAAAAIA/TcV6vZKBwjwqEG0+b7OPPR1JST5sno0+AAAAAAAAAAAmSOc9j45Lunqb1zQHxVgysiuzOEbtEbQAAIA/AACAPxN4Ej6f5tu7tfWeO5XmCrqVTEK9ZTngugAAgD8AAIA/DVntPUcULT6bM4S9oJb8vgTgOD49bSI+AAAAAAAAAABmUmy+RwMqvSPanr3u5Qy78CaaPjz2rT0AAAAAAAAAADMykDx4l68/prCaPvIzob43DEK8UxSJvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
78 |
},
|
79 |
"_last_episode_starts": {
|
80 |
":type:": "<class 'numpy.ndarray'>",
|
81 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
82 |
},
|
83 |
"_last_original_obs": null,
|
84 |
"_episode_num": 0,
|
85 |
"use_sde": false,
|
86 |
"sde_sample_freq": -1,
|
87 |
+
"_current_progress_remaining": -0.00024320000000011,
|
88 |
"ep_info_buffer": {
|
89 |
":type:": "<class 'collections.deque'>",
|
90 |
+
":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+5XOh2fqcECUhpRSlIwBbJRL3YwBdJRHQNVsowcghbJ1fZQoaAZoCWgPQwgmVdtNsMJwQJSGlFKUaBVLzWgWR0DVbKSeMAFQdX2UKGgGaAloD0MI5rLROf/KckCUhpRSlGgVS+VoFkdA1WyuKYRdyHV9lChoBmgJaA9DCCF1O/sK4nFAlIaUUpRoFUvXaBZHQNVssxYV6/t1fZQoaAZoCWgPQwjjGp/J/hk/QJSGlFKUaBVLc2gWR0DVbLmS/0uldX2UKGgGaAloD0MIv7hUpW0ocECUhpRSlGgVS+doFkdA1Wy9VxS5y3V9lChoBmgJaA9DCGGkF7X7s1JAlIaUUpRoFUvwaBZHQNVsvx2fTTh1fZQoaAZoCWgPQwi4yhMIu+dxQJSGlFKUaBVNIwFoFkdA1Wy/y1eBx3V9lChoBmgJaA9DCJVIopcRcnJAlIaUUpRoFUvQaBZHQNVsyuxfOUt1fZQoaAZoCWgPQwigpwGDpNFvQJSGlFKUaBVNGQFoFkdA1WzL/dIoVnV9lChoBmgJaA9DCG5sdqT6VkhAlIaUUpRoFUuCaBZHQNVs3/b0voN1fZQoaAZoCWgPQwiOdtzwu3twQJSGlFKUaBVNSQFoFkdA1WzhIppeu3V9lChoBmgJaA9DCPyO4bHfPXJAlIaUUpRoFUvyaBZHQNVs5xeHBUJ1fZQoaAZoCWgPQwjGia921G5wQJSGlFKUaBVL6mgWR0DVbOiKrJbMdX2UKGgGaAloD0MInrXbLjQ5TkCUhpRSlGgVS7JoFkdA1WzrkgOjI3V9lChoBmgJaA9DCAK8BRJUGXBAlIaUUpRoFUvWaBZHQNVs7VmJ3xF1fZQoaAZoCWgPQwhOfSB557dxQJSGlFKUaBVL5GgWR0DVbPAxwhnrdX2UKGgGaAloD0MIJEVkWEV4ckCUhpRSlGgVS7ZoFkdA1Wz4SqlxfnV9lChoBmgJaA9DCHbexmZHqtA/lIaUUpRoFUu5aBZHQNVs/wpz90l1fZQoaAZoCWgPQwjOM/YlG2VyQJSGlFKUaBVNOgFoFkdA1Wz/FMZgonV9lChoBmgJaA9DCOokW13OKnBAlIaUUpRoFUu+aBZHQNVtDbN8ma91fZQoaAZoCWgPQwhFniRdc/1xQJSGlFKUaBVLy2gWR0DVbRFrLyMDdX2UKGgGaAloD0MIfotOllpgcECUhpRSlGgVTS8BaBZHQNVtLUiliz91fZQoaAZoCWgPQwg5mbhV0HpyQJSGlFKUaBVLwGgWR0DVbS44MnZ1dX2UKGgGaAloD0MIpn7eVCTScECUhpRSlGgVS+toFkdA1W05Kp1ifHV9lChoBmgJaA9DCJ24HK9A4GfAlIaUUpRoFUu1aBZHQNVtQUj9n9N1fZQoaAZoCWgPQwjyXN+HQ8tyQJSGlFKUaBVL5GgWR0DVbUWC/XXidX2UKGgGaAloD0MIT5XvGckUc0CUhpRSlGgVTQYBaBZHQNVtUawdKdx1fZQoaAZoCWgPQwiGWtO8o+1xQJSGlFKUaBVL8mgWR0DVbWlIsiB5dX2UKGgGaAloD0MIb0p5rUQUcECUhpRSlGgVTbIBaBZHQNVtallK9PF1fZQoaAZoCWgPQwieP21U54tyQJSGlFKUaBVLz2gWR0DVbW0eq7yydX2UKGgGaAloD0MIdjQO9bukRkCUhpRSlGgVS5NoFkdA1W11Ip6QeXV9lChoBmgJaA9DCLwhjQqcu3NAlIaUUpRoFUvfaBZHQNVteZbUwzt1fZQoaAZoCWgPQwheglMfSI4bwJSGlFKUaBVLfWgWR0DVbX7euV5bdX2UKGgGaAloD0MI/mSMD/N1c0CUhpRSlGgVTQUBaBZHQNVts2r4nF51fZQoaAZoCWgPQwjGFoIcFBhvwJSGlFKUaBVNCQNoFkdA1W24Ig/1QXV9lChoBmgJaA9DCObKoNrgi3FAlIaUUpRoFU0GAWgWR0DVbcDlA/s3dX2UKGgGaAloD0MIx/DYz2J1Q0CUhpRSlGgVS6VoFkdA1W3T/I8yOHV9lChoBmgJaA9DCAIR4soZXnBAlIaUUpRoFU3uAWgWR0DVbdSTr3TNdX2UKGgGaAloD0MItksbDss/c0CUhpRSlGgVTQUBaBZHQNVt3BqO9391fZQoaAZoCWgPQwiNYOP6t9xyQJSGlFKUaBVL22gWR0DVbd8W1twadX2UKGgGaAloD0MIm6+Sj93JWkCUhpRSlGgVTegDaBZHQNVt5CYTkAB1fZQoaAZoCWgPQwjgg9cureNxQJSGlFKUaBVNHAFoFkdA1W4IilSCOHV9lChoBmgJaA9DCLNCke5nTHFAlIaUUpRoFU2LAmgWR0DVbg9JlJ6IdX2UKGgGaAloD0MIw7zHmSZqcUCUhpRSlGgVTYoBaBZHQNVuD8YdhiN1fZQoaAZoCWgPQwgKavgW1s1BQJSGlFKUaBVLi2gWR0DVcD80vXbudX2UKGgGaAloD0MIhbNby2SuQECUhpRSlGgVS7JoFkdA1XBDgHu7YnV9lChoBmgJaA9DCGAF+G4zmXBAlIaUUpRoFU16AWgWR0DVcEON6w+udX2UKGgGaAloD0MIq3e4HVp8cUCUhpRSlGgVS+9oFkdA1XBEopQUH3V9lChoBmgJaA9DCEJ8YMd/AW9AlIaUUpRoFUv/aBZHQNVwT8Djin51fZQoaAZoCWgPQwja5PBJp2xwQJSGlFKUaBVLvWgWR0DVcE/QeFL4dX2UKGgGaAloD0MIwa27eapmcUCUhpRSlGgVTR4BaBZHQNVwZjiwSrZ1fZQoaAZoCWgPQwgL7ZxmQSpxQJSGlFKUaBVL1GgWR0DVcInDpC8fdX2UKGgGaAloD0MI8ppXdZYyc0CUhpRSlGgVS/hoFkdA1XClr1/UfHV9lChoBmgJaA9DCAyVfy2voHFAlIaUUpRoFUusaBZHQNVwqU9ECvJ1fZQoaAZoCWgPQwi+vAD7aAxyQJSGlFKUaBVNAAFoFkdA1XCrGyon8nV9lChoBmgJaA9DCCqnPSWneXFAlIaUUpRoFU2LAWgWR0DVcLOMCLdfdX2UKGgGaAloD0MIdJmaBO8UckCUhpRSlGgVTX4BaBZHQNVwuE5yU9p1fZQoaAZoCWgPQwjrHAOyV6lvQJSGlFKUaBVNTgNoFkdA1XC46sQumXV9lChoBmgJaA9DCKuTMxQ31XJAlIaUUpRoFUvtaBZHQNVwvrz06HV1fZQoaAZoCWgPQwjku5S6pF1wQJSGlFKUaBVLqmgWR0DVcMB4D9wWdX2UKGgGaAloD0MIHaz/c1jEc0CUhpRSlGgVS/xoFkdA1XDEapPykXV9lChoBmgJaA9DCMAGRIir03BAlIaUUpRoFU0QAWgWR0DVcNjoC+10dX2UKGgGaAloD0MIFjWYhqESckCUhpRSlGgVS7hoFkdA1XDmfiPyTnV9lChoBmgJaA9DCCE9RQ6RmWFAlIaUUpRoFU3oA2gWR0DVcOtJWeYldX2UKGgGaAloD0MIaCJseDo9c0CUhpRSlGgVS9hoFkdA1XELcUuct3V9lChoBmgJaA9DCP0ubM0WkXBAlIaUUpRoFUvoaBZHQNVxFjRYzSF1fZQoaAZoCWgPQwja/pWVJuVQQJSGlFKUaBVLwmgWR0DVcRm0a6z3dX2UKGgGaAloD0MILudSXJUbcECUhpRSlGgVTSkDaBZHQNVxGq/dqL11fZQoaAZoCWgPQwhMwoU8wgxyQJSGlFKUaBVL1WgWR0DVcSACcPOIdX2UKGgGaAloD0MI4e6s3bY2cECUhpRSlGgVS+1oFkdA1XEggW8AaXV9lChoBmgJaA9DCFYQA117Z3FAlIaUUpRoFUvoaBZHQNVxIgMQVbl1fZQoaAZoCWgPQwidTNwqCD9uQJSGlFKUaBVL+2gWR0DVcSmWOZLJdX2UKGgGaAloD0MIt2PqruzQcUCUhpRSlGgVTQcBaBZHQNVxOAtjCpF1fZQoaAZoCWgPQwi9VkJ3ydlxQJSGlFKUaBVLzWgWR0DVcULrnkksdX2UKGgGaAloD0MIs3vysJBQcUCUhpRSlGgVS+RoFkdA1XFISwGGEnV9lChoBmgJaA9DCN/cXz3ugzVAlIaUUpRoFUtqaBZHQNVxU5pBX0Z1fZQoaAZoCWgPQwjAXmHB/fZwQJSGlFKUaBVNqwNoFkdA1XFdi4J/onV9lChoBmgJaA9DCIWUn1Q7AnJAlIaUUpRoFUvOaBZHQNVxYNVWCEp1fZQoaAZoCWgPQwhFZFjFm01zQJSGlFKUaBVL2GgWR0DVcXiCf6GhdX2UKGgGaAloD0MIT7FqEObQbkCUhpRSlGgVTdUBaBZHQNVxeYWLxZx1fZQoaAZoCWgPQwidf7vsF6NyQJSGlFKUaBVL9WgWR0DVcX94+r2hdX2UKGgGaAloD0MIKEaWzLHATkCUhpRSlGgVS79oFkdA1XGIhBZ6lnV9lChoBmgJaA9DCPT4vU1/fm9AlIaUUpRoFUv+aBZHQNVxiqjFhod1fZQoaAZoCWgPQwjbi2g7puxyQJSGlFKUaBVNCAFoFkdA1XGNGJvYOHV9lChoBmgJaA9DCIy+gjTjQ2tAlIaUUpRoFU0mAWgWR0DVcY/HZK4AdX2UKGgGaAloD0MIEJaxoVuicECUhpRSlGgVTbkBaBZHQNVxlVD4QBh1fZQoaAZoCWgPQwieeqTBbV1wQJSGlFKUaBVNTgFoFkdA1XGgdHDrJXV9lChoBmgJaA9DCG3lJf/TkHNAlIaUUpRoFUvraBZHQNVxp0lJHy51fZQoaAZoCWgPQwg4LA38KEJwQJSGlFKUaBVLxmgWR0DVca98b70ndX2UKGgGaAloD0MIXWqEfqawRUCUhpRSlGgVS5ZoFkdA1XGyuR9w33V9lChoBmgJaA9DCDUNiuZBQ3FAlIaUUpRoFUv+aBZHQNVxuYfnwG51fZQoaAZoCWgPQwhXIlD9g/VtQJSGlFKUaBVNbANoFkdA1XHJIF/x2HV9lChoBmgJaA9DCHy1ozjH9XBAlIaUUpRoFUvCaBZHQNVx1X7Hhjx1fZQoaAZoCWgPQwj3kzE+zFRxQJSGlFKUaBVLw2gWR0DVcdiAkLQYdX2UKGgGaAloD0MIX+/+eG+zckCUhpRSlGgVS+ZoFkdA1XHZXf642HV9lChoBmgJaA9DCO+oMSGmNnJAlIaUUpRoFUviaBZHQNVx4VMRHwx1fZQoaAZoCWgPQwibx2EwP1JxQJSGlFKUaBVLu2gWR0DVcfYbPyCndX2UKGgGaAloD0MIcvvlkxXPbUCUhpRSlGgVTXYBaBZHQNVx962fChx1fZQoaAZoCWgPQwgv4dBbPIhTQJSGlFKUaBVN6ANoFkdA1XH81TR6W3VlLg=="
|
91 |
},
|
92 |
"ep_success_buffer": {
|
93 |
":type:": "<class 'collections.deque'>",
|
94 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
95 |
},
|
96 |
+
"_n_updates": 4884,
|
97 |
"n_steps": 1024,
|
98 |
"gamma": 0.999,
|
99 |
"gae_lambda": 0.98,
|
100 |
"ent_coef": 0.01,
|
101 |
"vf_coef": 0.5,
|
102 |
"max_grad_norm": 0.5,
|
103 |
+
"batch_size": 32,
|
104 |
"n_epochs": 4,
|
105 |
"clip_range": {
|
106 |
":type:": "<class 'function'>",
|
thicc-ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb27e3d666dbfe21495782973197ed64f5cc14df0c83dfc1fbfbcd4cfc286556
|
3 |
+
size 185093
|
thicc-ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21cf513d2ca2d809aa336d711057874562525f688ca71813947ef57372d8e062
|
3 |
+
size 93557
|