File size: 48,553 Bytes
98bba30
 
 
 
 
 
 
 
 
 
 
 
a22f7b6
98bba30
a22f7b6
 
 
 
98bba30
a22f7b6
 
 
 
 
 
98bba30
a22f7b6
 
 
 
 
98bba30
a22f7b6
 
 
 
98bba30
a22f7b6
 
 
98bba30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90762da
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
 
 
 
 
 
 
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
 
 
 
 
 
 
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
a22f7b6
98bba30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22f7b6
 
 
98bba30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90762da
a22f7b6
 
 
 
 
 
 
98bba30
 
 
 
 
 
a22f7b6
98bba30
 
90762da
 
a22f7b6
 
 
 
 
98bba30
 
 
 
 
 
 
a22f7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98bba30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22f7b6
 
 
 
98bba30
a22f7b6
 
 
 
 
98bba30
 
 
 
 
 
 
 
 
 
 
 
 
a22f7b6
98bba30
a22f7b6
 
 
 
 
98bba30
 
 
 
 
 
 
 
a22f7b6
98bba30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22f7b6
98bba30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22f7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98bba30
a22f7b6
98bba30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
---

language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:OnlineContrastiveLoss
base_model: sentence-transformers/stsb-distilbert-base
widget:
- source_sentence: Can I retrieve my deleted text messages on my LG phone?
  sentences:
  - Why do we sleep?
  - How do I recover a deleted text message from my phone without a computer?
  - What are subjects to study in upsc?
- source_sentence: How can I prepare for IPS?
  sentences:
  - What should I prepare for ips?
  - I am trying to find a meaning to life, to give a purpose to my life. Is there
    any book that can help me find my answer, or at least give me the tools?
  - What are the health benefits of Turmeric?
- source_sentence: Which is the best game development laptop for ₹60,000 to ₹70,000
    INR?
  sentences:
  - Why doesn't Palestine appear on Google Maps as of 2016?
  - Which is the best laptop for game development under ₹70,000 INR?
  - What is meant by judicial review in the context of the Indian Judiciary?
- source_sentence: Although light beam bouncing between two plates inside a clock
    is often used to explain time dilation, how can other practical cases be explained?
  sentences:
  - Is Run Ze Cao's falsification of Einstein's relativity valid?
  - If India denies Pakistan water, will Pakistan give up its nuclear weapons?
  - How do I revise class 12 syllabus in 1 month?
- source_sentence: How can I lose weight quickly? Need serious help.
  sentences:
  - Which is the best romantic movie?
  - Why are there so many half-built, abandoned buildings in Mexico?
  - How can you lose weight really quick?
datasets:
- sentence-transformers/quora-duplicates
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
- average_precision
- f1
- precision
- recall
- threshold
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: quora duplicates
      type: quora-duplicates
    metrics:
    - type: cosine_accuracy
      value: 0.866
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.7860240340232849
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.8320802005012532
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.7848798036575317
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.7811764705882352
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8900804289544236
      name: Cosine Recall
    - type: cosine_ap
      value: 0.8772887253419398
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.7256385093029618
      name: Cosine Mcc
  - task:
      type: paraphrase-mining
      name: Paraphrase Mining
    dataset:
      name: quora duplicates dev
      type: quora-duplicates-dev
    metrics:
    - type: average_precision
      value: 0.6392503009812087
      name: Average Precision
    - type: f1
      value: 0.6435291762586327
      name: F1
    - type: precision
      value: 0.644658344613225
      name: Precision
    - type: recall
      value: 0.6424039566368587
      name: Recall
    - type: threshold
      value: 0.8726956844329834
      name: Threshold
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.9172
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9588
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9672
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9762
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9172
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.4102
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2644
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.14058
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7868590910037675
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.91981069059372
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9442488336402158
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9641439212486859
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9388257874901692
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9393049206349205
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9258332306777016
      name: Cosine Map@100
---


# SentenceTransformer based on sentence-transformers/stsb-distilbert-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) on the [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) <!-- at revision a560fa5fec90547a51a4a41a392d4aef93b49f16 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("CalebR84/stsb-distilbert-base-ocl")

# Run inference

sentences = [

    'How can I lose weight quickly? Need serious help.',

    'How can you lose weight really quick?',

    'Why are there so many half-built, abandoned buildings in Mexico?',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification

* Dataset: `quora-duplicates`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                    | Value      |
|:--------------------------|:-----------|
| cosine_accuracy           | 0.866      |

| cosine_accuracy_threshold | 0.786      |

| cosine_f1                 | 0.8321     |
| cosine_f1_threshold       | 0.7849     |
| cosine_precision          | 0.7812     |

| cosine_recall             | 0.8901     |
| **cosine_ap**             | **0.8773** |

| cosine_mcc                | 0.7256     |



#### Paraphrase Mining



* Dataset: `quora-duplicates-dev`

* Evaluated with [<code>ParaphraseMiningEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.ParaphraseMiningEvaluator) with these parameters:

  ```json

  {'add_transitive_closure': <function ParaphraseMiningEvaluator.add_transitive_closure at 0x00000219B2FE09A0>, 'max_pairs': 500000, 'top_k': 100}

  ```



| Metric                | Value      |

|:----------------------|:-----------|

| **average_precision** | **0.6393** |

| f1                    | 0.6435     |

| precision             | 0.6447     |

| recall                | 0.6424     |

| threshold             | 0.8727     |



#### Information Retrieval



* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| cosine_accuracy@1   | 0.9172     |
| cosine_accuracy@3   | 0.9588     |

| cosine_accuracy@5   | 0.9672     |
| cosine_accuracy@10  | 0.9762     |

| cosine_precision@1  | 0.9172     |
| cosine_precision@3  | 0.4102     |

| cosine_precision@5  | 0.2644     |
| cosine_precision@10 | 0.1406     |

| cosine_recall@1     | 0.7869     |
| cosine_recall@3     | 0.9198     |

| cosine_recall@5     | 0.9442     |
| cosine_recall@10    | 0.9641     |

| **cosine_ndcg@10**  | **0.9388** |

| cosine_mrr@10       | 0.9393     |
| cosine_map@100      | 0.9258     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### quora-duplicates



* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)

* Size: 100,000 training samples

* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | sentence1                                                                         | sentence2                                                                         | label                                           |

  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|

  | type    | string                                                                            | string                                                                            | int                                             |

  | details | <ul><li>min: 6 tokens</li><li>mean: 15.56 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.73 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>0: ~63.20%</li><li>1: ~36.80%</li></ul> |

* Samples:

  | sentence1                                                                                                                                                            | sentence2                                                         | label          |

  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|:---------------|

  | <code>What are some of the greatest books not adapted into film yet?</code>                                                                                          | <code>What book should be made into a movie?</code>               | <code>0</code> |

  | <code>How can I increase my communication skills?</code>                                                                                                             | <code>How we improve our communication skills?</code>             | <code>1</code> |

  | <code>Heymen I have a note5 it give me this message when a turn it on and shout down (custom pinary are blocked by frp lock) I try odin and kies butnot work?</code> | <code>Setup dubbing studio with very less budget in India?</code> | <code>0</code> |

* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)



### Evaluation Dataset



#### quora-duplicates



* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)

* Size: 1,000 evaluation samples

* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | sentence1                                                                         | sentence2                                                                         | label                                           |

  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|

  | type    | string                                                                            | string                                                                            | int                                             |

  | details | <ul><li>min: 3 tokens</li><li>mean: 15.37 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.63 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>0: ~62.70%</li><li>1: ~37.30%</li></ul> |

* Samples:

  | sentence1                                                                                       | sentence2                                                                 | label          |

  |:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------|:---------------|

  | <code>Which is the best book to learn data structures and algorithms?</code>                    | <code>Which book is the best book for algorithm and datastructure?</code> | <code>1</code> |

  | <code>Does modafinil shows up on a drug test? Because my urine smells a lot of medicine?</code> | <code>Can Modafinil come out in a drug test?</code>                       | <code>0</code> |

  | <code>Does the size of a penis matter?</code>                                                   | <code>Does penis size matters for girls?</code>                           | <code>1</code> |

* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step  | Training Loss | Validation Loss | quora-duplicates_cosine_ap | quora-duplicates-dev_average_precision | cosine_ndcg@10 |

|:------:|:-----:|:-------------:|:---------------:|:--------------------------:|:--------------------------------------:|:--------------:|

| 0      | 0     | -             | -               | 0.6905                     | 0.4200                                 | 0.9397         |

| 0.0640 | 100   | 2.6402        | -               | -                          | -                                      | -              |

| 0.1280 | 200   | 2.4398        | -               | -                          | -                                      | -              |

| 0.1599 | 250   | -             | 2.4217          | 0.7392                     | 0.4765                                 | 0.9426         |

| 0.1919 | 300   | 2.2461        | -               | -                          | -                                      | -              |

| 0.2559 | 400   | 2.1433        | -               | -                          | -                                      | -              |

| 0.3199 | 500   | 2.0417        | 2.1120          | 0.7970                     | 0.4566                                 | 0.9429         |

| 0.3839 | 600   | 2.0441        | -               | -                          | -                                      | -              |

| 0.4479 | 700   | 1.8907        | -               | -                          | -                                      | -              |

| 0.4798 | 750   | -             | 2.0011          | 0.8229                     | 0.4820                                 | 0.9468         |

| 0.5118 | 800   | 1.8985        | -               | -                          | -                                      | -              |

| 0.5758 | 900   | 1.7521        | -               | -                          | -                                      | -              |

| 0.6398 | 1000  | 1.8888        | 1.8010          | 0.8382                     | 0.4925                                 | 0.9425         |

| 0.7038 | 1100  | 1.8524        | -               | -                          | -                                      | -              |

| 0.7678 | 1200  | 1.6956        | -               | -                          | -                                      | -              |

| 0.7997 | 1250  | -             | 1.8004          | 0.8438                     | 0.4283                                 | 0.9336         |

| 0.8317 | 1300  | 1.7519        | -               | -                          | -                                      | -              |

| 0.8957 | 1400  | 1.7515        | -               | -                          | -                                      | -              |

| 0.9597 | 1500  | 1.7288        | 1.7434          | 0.8352                     | 0.5050                                 | 0.9428         |

| 1.0237 | 1600  | 1.533         | -               | -                          | -                                      | -              |

| 1.0877 | 1700  | 1.2543        | -               | -                          | -                                      | -              |

| 1.1196 | 1750  | -             | 1.7109          | 0.8514                     | 0.5299                                 | 0.9415         |

| 1.1516 | 1800  | 1.3201        | -               | -                          | -                                      | -              |

| 1.2156 | 1900  | 1.3309        | -               | -                          | -                                      | -              |

| 1.2796 | 2000  | 1.3256        | 1.7111          | 0.8528                     | 0.5138                                 | 0.9393         |

| 1.3436 | 2100  | 1.2865        | -               | -                          | -                                      | -              |

| 1.4075 | 2200  | 1.2659        | -               | -                          | -                                      | -              |

| 1.4395 | 2250  | -             | 1.7974          | 0.8468                     | 0.5320                                 | 0.9390         |

| 1.4715 | 2300  | 1.2601        | -               | -                          | -                                      | -              |

| 1.5355 | 2400  | 1.3337        | -               | -                          | -                                      | -              |

| 1.5995 | 2500  | 1.3319        | 1.6922          | 0.8575                     | 0.5399                                 | 0.9416         |

| 1.6635 | 2600  | 1.3232        | -               | -                          | -                                      | -              |

| 1.7274 | 2700  | 1.3684        | -               | -                          | -                                      | -              |

| 1.7594 | 2750  | -             | 1.5772          | 0.8581                     | 0.5592                                 | 0.9484         |

| 1.7914 | 2800  | 1.2706        | -               | -                          | -                                      | -              |

| 1.8554 | 2900  | 1.3186        | -               | -                          | -                                      | -              |

| 1.9194 | 3000  | 1.2336        | 1.5423          | 0.8656                     | 0.5749                                 | 0.9433         |

| 1.9834 | 3100  | 1.2193        | -               | -                          | -                                      | -              |

| 2.0473 | 3200  | 0.868         | -               | -                          | -                                      | -              |

| 2.0793 | 3250  | -             | 1.6575          | 0.8632                     | 0.5735                                 | 0.9395         |

| 2.1113 | 3300  | 0.6411        | -               | -                          | -                                      | -              |

| 2.1753 | 3400  | 0.7127        | -               | -                          | -                                      | -              |

| 2.2393 | 3500  | 0.7044        | 1.5778          | 0.8718                     | 0.5823                                 | 0.9387         |

| 2.3033 | 3600  | 0.6299        | -               | -                          | -                                      | -              |

| 2.3672 | 3700  | 0.7162        | -               | -                          | -                                      | -              |

| 2.3992 | 3750  | -             | 1.6300          | 0.8595                     | 0.5936                                 | 0.9414         |

| 2.4312 | 3800  | 0.6642        | -               | -                          | -                                      | -              |

| 2.4952 | 3900  | 0.6902        | -               | -                          | -                                      | -              |

| 2.5592 | 4000  | 0.7959        | 1.6070          | 0.8637                     | 0.6006                                 | 0.9363         |

| 2.6232 | 4100  | 0.7588        | -               | -                          | -                                      | -              |

| 2.6871 | 4200  | 0.6925        | -               | -                          | -                                      | -              |

| 2.7191 | 4250  | -             | 1.6787          | 0.8682                     | 0.6006                                 | 0.9411         |

| 2.7511 | 4300  | 0.7226        | -               | -                          | -                                      | -              |

| 2.8151 | 4400  | 0.7507        | -               | -                          | -                                      | -              |

| 2.8791 | 4500  | 0.7563        | 1.6040          | 0.8658                     | 0.6061                                 | 0.9416         |

| 2.9431 | 4600  | 0.7737        | -               | -                          | -                                      | -              |

| 3.0070 | 4700  | 0.6525        | -               | -                          | -                                      | -              |

| 3.0390 | 4750  | -             | 1.6782          | 0.8652                     | 0.5983                                 | 0.9401         |

| 3.0710 | 4800  | 0.3831        | -               | -                          | -                                      | -              |

| 3.1350 | 4900  | 0.297         | -               | -                          | -                                      | -              |

| 3.1990 | 5000  | 0.3725        | 1.7229          | 0.8588                     | 0.6175                                 | 0.9418         |

| 3.2630 | 5100  | 0.4142        | -               | -                          | -                                      | -              |

| 3.3269 | 5200  | 0.4415        | -               | -                          | -                                      | -              |

| 3.3589 | 5250  | -             | 1.6564          | 0.8635                     | 0.6026                                 | 0.9379         |

| 3.3909 | 5300  | 0.3729        | -               | -                          | -                                      | -              |

| 3.4549 | 5400  | 0.4164        | -               | -                          | -                                      | -              |

| 3.5189 | 5500  | 0.3668        | 1.5964          | 0.8677                     | 0.6105                                 | 0.9358         |

| 3.5829 | 5600  | 0.4184        | -               | -                          | -                                      | -              |

| 3.6468 | 5700  | 0.4311        | -               | -                          | -                                      | -              |

| 3.6788 | 5750  | -             | 1.6523          | 0.8680                     | 0.6130                                 | 0.9365         |

| 3.7108 | 5800  | 0.4222        | -               | -                          | -                                      | -              |

| 3.7748 | 5900  | 0.4302        | -               | -                          | -                                      | -              |

| 3.8388 | 6000  | 0.428         | 1.6625          | 0.8674                     | 0.6163                                 | 0.9370         |

| 3.9028 | 6100  | 0.3898        | -               | -                          | -                                      | -              |

| 3.9667 | 6200  | 0.4255        | -               | -                          | -                                      | -              |

| 3.9987 | 6250  | -             | 1.6145          | 0.8680                     | 0.6118                                 | 0.9347         |

| 4.0307 | 6300  | 0.3456        | -               | -                          | -                                      | -              |

| 4.0947 | 6400  | 0.2265        | -               | -                          | -                                      | -              |

| 4.1587 | 6500  | 0.1913        | 1.7208          | 0.8595                     | 0.6339                                 | 0.9433         |

| 4.2226 | 6600  | 0.2258        | -               | -                          | -                                      | -              |

| 4.2866 | 6700  | 0.2484        | -               | -                          | -                                      | -              |

| 4.3186 | 6750  | -             | 1.6286          | 0.8600                     | 0.6313                                 | 0.9394         |

| 4.3506 | 6800  | 0.1977        | -               | -                          | -                                      | -              |

| 4.4146 | 6900  | 0.2013        | -               | -                          | -                                      | -              |

| 4.4786 | 7000  | 0.2351        | 1.6910          | 0.8651                     | 0.6193                                 | 0.9401         |

| 4.5425 | 7100  | 0.2356        | -               | -                          | -                                      | -              |

| 4.6065 | 7200  | 0.2542        | -               | -                          | -                                      | -              |

| 4.6385 | 7250  | -             | 1.6955          | 0.8643                     | 0.6129                                 | 0.9357         |

| 4.6705 | 7300  | 0.2592        | -               | -                          | -                                      | -              |

| 4.7345 | 7400  | 0.2585        | -               | -                          | -                                      | -              |

| 4.7985 | 7500  | 0.2375        | 1.7593          | 0.8647                     | 0.6143                                 | 0.9325         |

| 4.8624 | 7600  | 0.2506        | -               | -                          | -                                      | -              |

| 4.9264 | 7700  | 0.2394        | -               | -                          | -                                      | -              |

| 4.9584 | 7750  | -             | 1.6051          | 0.8720                     | 0.6213                                 | 0.9350         |

| 4.9904 | 7800  | 0.2374        | -               | -                          | -                                      | -              |

| 5.0544 | 7900  | 0.1675        | -               | -                          | -                                      | -              |

| 5.1184 | 8000  | 0.131         | 1.5864          | 0.8673                     | 0.6201                                 | 0.9377         |

| 5.1823 | 8100  | 0.1308        | -               | -                          | -                                      | -              |

| 5.2463 | 8200  | 0.1483        | -               | -                          | -                                      | -              |

| 5.2783 | 8250  | -             | 1.5976          | 0.8698                     | 0.6136                                 | 0.9359         |

| 5.3103 | 8300  | 0.1413        | -               | -                          | -                                      | -              |

| 5.3743 | 8400  | 0.1392        | -               | -                          | -                                      | -              |

| 5.4383 | 8500  | 0.1464        | 1.5980          | 0.8661                     | 0.6267                                 | 0.9346         |

| 5.5022 | 8600  | 0.1781        | -               | -                          | -                                      | -              |

| 5.5662 | 8700  | 0.151         | -               | -                          | -                                      | -              |

| 5.5982 | 8750  | -             | 1.5343          | 0.8756                     | 0.6245                                 | 0.9352         |

| 5.6302 | 8800  | 0.1568        | -               | -                          | -                                      | -              |

| 5.6942 | 8900  | 0.1702        | -               | -                          | -                                      | -              |

| 5.7582 | 9000  | 0.1362        | 1.7121          | 0.8675                     | 0.6230                                 | 0.9362         |

| 5.8221 | 9100  | 0.1371        | -               | -                          | -                                      | -              |

| 5.8861 | 9200  | 0.1381        | -               | -                          | -                                      | -              |

| 5.9181 | 9250  | -             | 1.6326          | 0.8671                     | 0.6122                                 | 0.9302         |

| 5.9501 | 9300  | 0.1691        | -               | -                          | -                                      | -              |

| 6.0141 | 9400  | 0.1701        | -               | -                          | -                                      | -              |

| 6.0781 | 9500  | 0.0935        | 1.5705          | 0.8709                     | 0.6066                                 | 0.9293         |

| 6.1420 | 9600  | 0.0852        | -               | -                          | -                                      | -              |

| 6.2060 | 9700  | 0.0874        | -               | -                          | -                                      | -              |

| 6.2380 | 9750  | -             | 1.5643          | 0.8724                     | 0.6061                                 | 0.9307         |

| 6.2700 | 9800  | 0.0889        | -               | -                          | -                                      | -              |

| 6.3340 | 9900  | 0.0972        | -               | -                          | -                                      | -              |

| 6.3980 | 10000 | 0.1011        | 1.5622          | 0.8736                     | 0.6153                                 | 0.9328         |

| 6.4619 | 10100 | 0.0962        | -               | -                          | -                                      | -              |

| 6.5259 | 10200 | 0.1259        | -               | -                          | -                                      | -              |

| 6.5579 | 10250 | -             | 1.5406          | 0.8687                     | 0.6293                                 | 0.9373         |

| 6.5899 | 10300 | 0.0925        | -               | -                          | -                                      | -              |

| 6.6539 | 10400 | 0.1138        | -               | -                          | -                                      | -              |

| 6.7179 | 10500 | 0.0788        | 1.5450          | 0.8658                     | 0.6226                                 | 0.9349         |

| 6.7818 | 10600 | 0.1112        | -               | -                          | -                                      | -              |

| 6.8458 | 10700 | 0.0922        | -               | -                          | -                                      | -              |

| 6.8778 | 10750 | -             | 1.5063          | 0.8736                     | 0.6245                                 | 0.9370         |

| 6.9098 | 10800 | 0.1173        | -               | -                          | -                                      | -              |

| 6.9738 | 10900 | 0.1141        | -               | -                          | -                                      | -              |

| 7.0377 | 11000 | 0.0637        | 1.5007          | 0.8741                     | 0.6270                                 | 0.9379         |

| 7.1017 | 11100 | 0.0713        | -               | -                          | -                                      | -              |

| 7.1657 | 11200 | 0.0754        | -               | -                          | -                                      | -              |

| 7.1977 | 11250 | -             | 1.5081          | 0.8725                     | 0.6273                                 | 0.9376         |

| 7.2297 | 11300 | 0.04          | -               | -                          | -                                      | -              |

| 7.2937 | 11400 | 0.0695        | -               | -                          | -                                      | -              |

| 7.3576 | 11500 | 0.034         | 1.5598          | 0.8710                     | 0.6179                                 | 0.9350         |

| 7.4216 | 11600 | 0.0513        | -               | -                          | -                                      | -              |

| 7.4856 | 11700 | 0.0749        | -               | -                          | -                                      | -              |

| 7.5176 | 11750 | -             | 1.6118          | 0.8694                     | 0.6264                                 | 0.9380         |

| 7.5496 | 11800 | 0.0708        | -               | -                          | -                                      | -              |

| 7.6136 | 11900 | 0.0939        | -               | -                          | -                                      | -              |

| 7.6775 | 12000 | 0.059         | 1.6282          | 0.8708                     | 0.6271                                 | 0.9354         |

| 7.7415 | 12100 | 0.0847        | -               | -                          | -                                      | -              |

| 7.8055 | 12200 | 0.0521        | -               | -                          | -                                      | -              |

| 7.8375 | 12250 | -             | 1.5478          | 0.8683                     | 0.6359                                 | 0.9388         |

| 7.8695 | 12300 | 0.0394        | -               | -                          | -                                      | -              |

| 7.9335 | 12400 | 0.0619        | -               | -                          | -                                      | -              |

| 7.9974 | 12500 | 0.0593        | 1.5440          | 0.8771                     | 0.6387                                 | 0.9393         |

| 8.0614 | 12600 | 0.0292        | -               | -                          | -                                      | -              |

| 8.1254 | 12700 | 0.0267        | -               | -                          | -                                      | -              |

| 8.1574 | 12750 | -             | 1.5419          | 0.8773                     | 0.6290                                 | 0.9388         |

| 8.1894 | 12800 | 0.0334        | -               | -                          | -                                      | -              |

| 8.2534 | 12900 | 0.05          | -               | -                          | -                                      | -              |

| 8.3173 | 13000 | 0.0439        | 1.5589          | 0.8740                     | 0.6322                                 | 0.9384         |

| 8.3813 | 13100 | 0.0409        | -               | -                          | -                                      | -              |

| 8.4453 | 13200 | 0.03          | -               | -                          | -                                      | -              |

| 8.4773 | 13250 | -             | 1.5472          | 0.8730                     | 0.6347                                 | 0.9398         |

| 8.5093 | 13300 | 0.0373        | -               | -                          | -                                      | -              |

| 8.5733 | 13400 | 0.0404        | -               | -                          | -                                      | -              |

| 8.6372 | 13500 | 0.0357        | 1.5332          | 0.8749                     | 0.6327                                 | 0.9404         |

| 8.7012 | 13600 | 0.023         | -               | -                          | -                                      | -              |

| 8.7652 | 13700 | 0.0256        | -               | -                          | -                                      | -              |

| 8.7972 | 13750 | -             | 1.5154          | 0.8781                     | 0.6337                                 | 0.9379         |

| 8.8292 | 13800 | 0.0563        | -               | -                          | -                                      | -              |

| 8.8932 | 13900 | 0.029         | -               | -                          | -                                      | -              |

| 8.9571 | 14000 | 0.0395        | 1.5503          | 0.8771                     | 0.6344                                 | 0.9390         |

| 9.0211 | 14100 | 0.0296        | -               | -                          | -                                      | -              |

| 9.0851 | 14200 | 0.0308        | -               | -                          | -                                      | -              |

| 9.1171 | 14250 | -             | 1.5385          | 0.8771                     | 0.6363                                 | 0.9391         |

| 9.1491 | 14300 | 0.035         | -               | -                          | -                                      | -              |

| 9.2131 | 14400 | 0.0217        | -               | -                          | -                                      | -              |

| 9.2770 | 14500 | 0.0192        | 1.5592          | 0.8777                     | 0.6373                                 | 0.9393         |

| 9.3410 | 14600 | 0.0369        | -               | -                          | -                                      | -              |

| 9.4050 | 14700 | 0.0186        | -               | -                          | -                                      | -              |

| 9.4370 | 14750 | -             | 1.5626          | 0.8771                     | 0.6368                                 | 0.9389         |

| 9.4690 | 14800 | 0.0303        | -               | -                          | -                                      | -              |

| 9.5329 | 14900 | 0.0181        | -               | -                          | -                                      | -              |

| 9.5969 | 15000 | 0.0217        | 1.5466          | 0.8782                     | 0.6387                                 | 0.9390         |

| 9.6609 | 15100 | 0.0463        | -               | -                          | -                                      | -              |

| 9.7249 | 15200 | 0.0211        | -               | -                          | -                                      | -              |

| 9.7569 | 15250 | -             | 1.5440          | 0.8772                     | 0.6401                                 | 0.9395         |

| 9.7889 | 15300 | 0.0216        | -               | -                          | -                                      | -              |

| 9.8528 | 15400 | 0.0328        | -               | -                          | -                                      | -              |

| 9.9168 | 15500 | 0.0154        | 1.5399          | 0.8773                     | 0.6393                                 | 0.9388         |

| 9.9808 | 15600 | 0.0263        | -               | -                          | -                                      | -              |



</details>



### Framework Versions

- Python: 3.12.9

- Sentence Transformers: 4.1.0

- Transformers: 4.51.3

- PyTorch: 2.7.0+cu126

- Accelerate: 1.7.0

- Datasets: 3.6.0

- Tokenizers: 0.21.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->