Cartinoe5930 commited on
Commit
7e4132c
·
verified ·
1 Parent(s): 07d17d2

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +4 -0
  2. checkpoint-210/added_tokens.json +24 -0
  3. checkpoint-210/config.json +27 -0
  4. checkpoint-210/generation_config.json +14 -0
  5. checkpoint-210/latest +1 -0
  6. checkpoint-210/merges.txt +0 -0
  7. checkpoint-210/model.safetensors +3 -0
  8. checkpoint-210/rng_state_0.pth +3 -0
  9. checkpoint-210/rng_state_1.pth +3 -0
  10. checkpoint-210/scheduler.pt +3 -0
  11. checkpoint-210/special_tokens_map.json +31 -0
  12. checkpoint-210/tokenizer.json +3 -0
  13. checkpoint-210/tokenizer_config.json +208 -0
  14. checkpoint-210/trainer_state.json +1504 -0
  15. checkpoint-210/training_args.bin +3 -0
  16. checkpoint-210/vocab.json +0 -0
  17. checkpoint-210/zero_to_fp32.py +674 -0
  18. checkpoint-315/added_tokens.json +24 -0
  19. checkpoint-315/config.json +27 -0
  20. checkpoint-315/generation_config.json +14 -0
  21. checkpoint-315/latest +1 -0
  22. checkpoint-315/merges.txt +0 -0
  23. checkpoint-315/model.safetensors +3 -0
  24. checkpoint-315/rng_state_0.pth +3 -0
  25. checkpoint-315/rng_state_1.pth +3 -0
  26. checkpoint-315/scheduler.pt +3 -0
  27. checkpoint-315/special_tokens_map.json +31 -0
  28. checkpoint-315/tokenizer.json +3 -0
  29. checkpoint-315/tokenizer_config.json +208 -0
  30. checkpoint-315/trainer_state.json +2239 -0
  31. checkpoint-315/training_args.bin +3 -0
  32. checkpoint-315/vocab.json +0 -0
  33. checkpoint-315/zero_to_fp32.py +674 -0
  34. checkpoint-420/added_tokens.json +24 -0
  35. checkpoint-420/config.json +27 -0
  36. checkpoint-420/generation_config.json +14 -0
  37. checkpoint-420/latest +1 -0
  38. checkpoint-420/merges.txt +0 -0
  39. checkpoint-420/model.safetensors +3 -0
  40. checkpoint-420/rng_state_0.pth +3 -0
  41. checkpoint-420/rng_state_1.pth +3 -0
  42. checkpoint-420/scheduler.pt +3 -0
  43. checkpoint-420/special_tokens_map.json +31 -0
  44. checkpoint-420/tokenizer.json +3 -0
  45. checkpoint-420/tokenizer_config.json +208 -0
  46. checkpoint-420/trainer_state.json +2974 -0
  47. checkpoint-420/training_args.bin +3 -0
  48. checkpoint-420/vocab.json +0 -0
  49. checkpoint-420/zero_to_fp32.py +674 -0
  50. checkpoint-522/added_tokens.json +24 -0
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-210/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-315/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-420/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ checkpoint-522/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-210/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-210/config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "eos_token_id": 151645,
7
+ "hidden_act": "silu",
8
+ "hidden_size": 1536,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 8960,
11
+ "max_position_embeddings": 32768,
12
+ "max_window_layers": 21,
13
+ "model_type": "qwen2",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 28,
16
+ "num_key_value_heads": 2,
17
+ "rms_norm_eps": 1e-06,
18
+ "rope_scaling": null,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": 32768,
21
+ "tie_word_embeddings": true,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.51.3",
24
+ "use_cache": false,
25
+ "use_sliding_window": false,
26
+ "vocab_size": 151936
27
+ }
checkpoint-210/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.51.3"
14
+ }
checkpoint-210/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step210
checkpoint-210/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-210/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a06c293277e50009d04ed093425fc41eecc8905751f0a0333c48dea1ce508ac
3
+ size 3554214752
checkpoint-210/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad792af33c7cfa8b15298ecc9d976ebdcdeb444ca0e704c7b0657f41ee6547eb
3
+ size 14512
checkpoint-210/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:722c924fceffd85f8ab1a5445f1ea1e6c502644b6a42e2ff6b5a9a76ea26e1fe
3
+ size 14512
checkpoint-210/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd9619b29ba8eccd0bac55eb76eb51a451347acd8a0824d109fe4121ffbee803
3
+ size 1064
checkpoint-210/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-210/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-210/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-210/trainer_state.json ADDED
@@ -0,0 +1,1504 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.40210627094303497,
6
+ "eval_steps": 500,
7
+ "global_step": 210,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0019147917663954045,
14
+ "grad_norm": 2.4612040519714355,
15
+ "learning_rate": 0.0,
16
+ "loss": 0.6068,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.003829583532790809,
21
+ "grad_norm": 2.5184295177459717,
22
+ "learning_rate": 3.846153846153847e-07,
23
+ "loss": 0.5979,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.0057443752991862135,
28
+ "grad_norm": 2.515437602996826,
29
+ "learning_rate": 7.692307692307694e-07,
30
+ "loss": 0.6487,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.007659167065581618,
35
+ "grad_norm": 2.2364346981048584,
36
+ "learning_rate": 1.153846153846154e-06,
37
+ "loss": 0.6041,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.009573958831977022,
42
+ "grad_norm": 2.1685123443603516,
43
+ "learning_rate": 1.5384615384615387e-06,
44
+ "loss": 0.5414,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.011488750598372427,
49
+ "grad_norm": 2.6281416416168213,
50
+ "learning_rate": 1.9230769230769234e-06,
51
+ "loss": 0.5794,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.013403542364767831,
56
+ "grad_norm": 2.0852179527282715,
57
+ "learning_rate": 2.307692307692308e-06,
58
+ "loss": 0.5518,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.015318334131163236,
63
+ "grad_norm": 1.9601969718933105,
64
+ "learning_rate": 2.6923076923076923e-06,
65
+ "loss": 0.557,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.01723312589755864,
70
+ "grad_norm": 1.822036862373352,
71
+ "learning_rate": 3.0769230769230774e-06,
72
+ "loss": 0.5732,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.019147917663954045,
77
+ "grad_norm": 1.6944836378097534,
78
+ "learning_rate": 3.4615384615384617e-06,
79
+ "loss": 0.5451,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.02106270943034945,
84
+ "grad_norm": 1.521175503730774,
85
+ "learning_rate": 3.846153846153847e-06,
86
+ "loss": 0.5148,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.022977501196744854,
91
+ "grad_norm": 1.573475956916809,
92
+ "learning_rate": 4.230769230769231e-06,
93
+ "loss": 0.512,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.02489229296314026,
98
+ "grad_norm": 1.4469544887542725,
99
+ "learning_rate": 4.615384615384616e-06,
100
+ "loss": 0.5542,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.026807084729535663,
105
+ "grad_norm": 1.3531206846237183,
106
+ "learning_rate": 5e-06,
107
+ "loss": 0.4868,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.028721876495931067,
112
+ "grad_norm": 1.3297739028930664,
113
+ "learning_rate": 5.384615384615385e-06,
114
+ "loss": 0.4713,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.030636668262326472,
119
+ "grad_norm": 1.430997610092163,
120
+ "learning_rate": 5.769230769230769e-06,
121
+ "loss": 0.4683,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.032551460028721876,
126
+ "grad_norm": 1.2832906246185303,
127
+ "learning_rate": 6.153846153846155e-06,
128
+ "loss": 0.4275,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.03446625179511728,
133
+ "grad_norm": 1.1449981927871704,
134
+ "learning_rate": 6.538461538461539e-06,
135
+ "loss": 0.4692,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.036381043561512685,
140
+ "grad_norm": 1.1069403886795044,
141
+ "learning_rate": 6.923076923076923e-06,
142
+ "loss": 0.4925,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.03829583532790809,
147
+ "grad_norm": 1.066596508026123,
148
+ "learning_rate": 7.307692307692308e-06,
149
+ "loss": 0.4809,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.040210627094303494,
154
+ "grad_norm": 1.0530707836151123,
155
+ "learning_rate": 7.692307692307694e-06,
156
+ "loss": 0.4645,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.0421254188606989,
161
+ "grad_norm": 1.0063157081604004,
162
+ "learning_rate": 8.076923076923077e-06,
163
+ "loss": 0.465,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.0440402106270943,
168
+ "grad_norm": 1.1088693141937256,
169
+ "learning_rate": 8.461538461538462e-06,
170
+ "loss": 0.4824,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.04595500239348971,
175
+ "grad_norm": 1.0253574848175049,
176
+ "learning_rate": 8.846153846153847e-06,
177
+ "loss": 0.4559,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.04786979415988511,
182
+ "grad_norm": 1.0317028760910034,
183
+ "learning_rate": 9.230769230769232e-06,
184
+ "loss": 0.4687,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.04978458592628052,
189
+ "grad_norm": 0.9329833388328552,
190
+ "learning_rate": 9.615384615384616e-06,
191
+ "loss": 0.4785,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.05169937769267592,
196
+ "grad_norm": 0.9087225794792175,
197
+ "learning_rate": 1e-05,
198
+ "loss": 0.4505,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.053614169459071326,
203
+ "grad_norm": 1.0503875017166138,
204
+ "learning_rate": 9.999899706000774e-06,
205
+ "loss": 0.4866,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.05552896122546673,
210
+ "grad_norm": 0.9580711722373962,
211
+ "learning_rate": 9.999598828026644e-06,
212
+ "loss": 0.4759,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.057443752991862135,
217
+ "grad_norm": 0.8906879425048828,
218
+ "learning_rate": 9.999097378148116e-06,
219
+ "loss": 0.4455,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.05935854475825754,
224
+ "grad_norm": 0.8807913064956665,
225
+ "learning_rate": 9.998395376482152e-06,
226
+ "loss": 0.4335,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.061273336524652944,
231
+ "grad_norm": 0.8745759129524231,
232
+ "learning_rate": 9.99749285119138e-06,
233
+ "loss": 0.43,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.06318812829104835,
238
+ "grad_norm": 0.9661962389945984,
239
+ "learning_rate": 9.996389838482942e-06,
240
+ "loss": 0.5295,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.06510292005744375,
245
+ "grad_norm": 0.9019286036491394,
246
+ "learning_rate": 9.995086382607064e-06,
247
+ "loss": 0.4774,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.06701771182383916,
252
+ "grad_norm": 0.8906053900718689,
253
+ "learning_rate": 9.993582535855265e-06,
254
+ "loss": 0.4577,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.06893250359023456,
259
+ "grad_norm": 0.8857560753822327,
260
+ "learning_rate": 9.991878358558267e-06,
261
+ "loss": 0.4785,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.07084729535662997,
266
+ "grad_norm": 0.9806991219520569,
267
+ "learning_rate": 9.989973919083576e-06,
268
+ "loss": 0.4662,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.07276208712302537,
273
+ "grad_norm": 0.9356399774551392,
274
+ "learning_rate": 9.987869293832727e-06,
275
+ "loss": 0.4669,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.07467687888942078,
280
+ "grad_norm": 0.7924108505249023,
281
+ "learning_rate": 9.985564567238237e-06,
282
+ "loss": 0.4451,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.07659167065581618,
287
+ "grad_norm": 0.9577414393424988,
288
+ "learning_rate": 9.983059831760205e-06,
289
+ "loss": 0.4837,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.07850646242221158,
294
+ "grad_norm": 0.8300902843475342,
295
+ "learning_rate": 9.980355187882606e-06,
296
+ "loss": 0.4438,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.08042125418860699,
301
+ "grad_norm": 0.8420023918151855,
302
+ "learning_rate": 9.977450744109258e-06,
303
+ "loss": 0.4223,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.0823360459550024,
308
+ "grad_norm": 0.8297982811927795,
309
+ "learning_rate": 9.974346616959476e-06,
310
+ "loss": 0.4366,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.0842508377213978,
315
+ "grad_norm": 0.9187960624694824,
316
+ "learning_rate": 9.97104293096339e-06,
317
+ "loss": 0.4739,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.0861656294877932,
322
+ "grad_norm": 0.9509177803993225,
323
+ "learning_rate": 9.967539818656953e-06,
324
+ "loss": 0.4587,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.0880804212541886,
329
+ "grad_norm": 0.9072842001914978,
330
+ "learning_rate": 9.96383742057662e-06,
331
+ "loss": 0.5177,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.08999521302058401,
336
+ "grad_norm": 0.8744245767593384,
337
+ "learning_rate": 9.959935885253715e-06,
338
+ "loss": 0.4454,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.09191000478697942,
343
+ "grad_norm": 0.8209521174430847,
344
+ "learning_rate": 9.955835369208475e-06,
345
+ "loss": 0.4243,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.09382479655337482,
350
+ "grad_norm": 0.793670654296875,
351
+ "learning_rate": 9.951536036943753e-06,
352
+ "loss": 0.4256,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.09573958831977022,
357
+ "grad_norm": 0.8487685322761536,
358
+ "learning_rate": 9.94703806093845e-06,
359
+ "loss": 0.4625,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.09765438008616563,
364
+ "grad_norm": 0.8209853768348694,
365
+ "learning_rate": 9.942341621640558e-06,
366
+ "loss": 0.4385,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.09956917185256103,
371
+ "grad_norm": 0.8096733689308167,
372
+ "learning_rate": 9.937446907459954e-06,
373
+ "loss": 0.4575,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.10148396361895644,
378
+ "grad_norm": 0.8126389384269714,
379
+ "learning_rate": 9.932354114760819e-06,
380
+ "loss": 0.4262,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.10339875538535184,
385
+ "grad_norm": 0.968154788017273,
386
+ "learning_rate": 9.92706344785377e-06,
387
+ "loss": 0.5304,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.10531354715174725,
392
+ "grad_norm": 0.7662584781646729,
393
+ "learning_rate": 9.921575118987672e-06,
394
+ "loss": 0.4076,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.10722833891814265,
399
+ "grad_norm": 0.8463670015335083,
400
+ "learning_rate": 9.915889348341098e-06,
401
+ "loss": 0.4434,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.10914313068453806,
406
+ "grad_norm": 0.8167222142219543,
407
+ "learning_rate": 9.910006364013522e-06,
408
+ "loss": 0.4079,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.11105792245093346,
413
+ "grad_norm": 0.8205484747886658,
414
+ "learning_rate": 9.903926402016153e-06,
415
+ "loss": 0.4167,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.11297271421732887,
420
+ "grad_norm": 0.901168942451477,
421
+ "learning_rate": 9.897649706262474e-06,
422
+ "loss": 0.4762,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.11488750598372427,
427
+ "grad_norm": 0.8437636494636536,
428
+ "learning_rate": 9.891176528558451e-06,
429
+ "loss": 0.4327,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.11680229775011967,
434
+ "grad_norm": 0.8409866094589233,
435
+ "learning_rate": 9.884507128592435e-06,
436
+ "loss": 0.446,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.11871708951651508,
441
+ "grad_norm": 0.8613469004631042,
442
+ "learning_rate": 9.877641773924748e-06,
443
+ "loss": 0.4217,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.12063188128291048,
448
+ "grad_norm": 0.8663684129714966,
449
+ "learning_rate": 9.870580739976936e-06,
450
+ "loss": 0.4211,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.12254667304930589,
455
+ "grad_norm": 0.8156937956809998,
456
+ "learning_rate": 9.863324310020735e-06,
457
+ "loss": 0.4273,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.12446146481570129,
462
+ "grad_norm": 0.8753077387809753,
463
+ "learning_rate": 9.855872775166696e-06,
464
+ "loss": 0.4663,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.1263762565820967,
469
+ "grad_norm": 0.81593918800354,
470
+ "learning_rate": 9.848226434352513e-06,
471
+ "loss": 0.4398,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.12829104834849211,
476
+ "grad_norm": 0.8915799260139465,
477
+ "learning_rate": 9.840385594331022e-06,
478
+ "loss": 0.4758,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.1302058401148875,
483
+ "grad_norm": 0.8952628374099731,
484
+ "learning_rate": 9.83235056965791e-06,
485
+ "loss": 0.4884,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.13212063188128292,
490
+ "grad_norm": 0.874907910823822,
491
+ "learning_rate": 9.824121682679072e-06,
492
+ "loss": 0.4411,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.13403542364767831,
497
+ "grad_norm": 0.8349279761314392,
498
+ "learning_rate": 9.815699263517712e-06,
499
+ "loss": 0.438,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.13595021541407373,
504
+ "grad_norm": 0.8123260736465454,
505
+ "learning_rate": 9.807083650061063e-06,
506
+ "loss": 0.4483,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.13786500718046912,
511
+ "grad_norm": 0.8606418371200562,
512
+ "learning_rate": 9.798275187946859e-06,
513
+ "loss": 0.44,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.13977979894686454,
518
+ "grad_norm": 0.778163492679596,
519
+ "learning_rate": 9.789274230549456e-06,
520
+ "loss": 0.4054,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.14169459071325993,
525
+ "grad_norm": 0.7578093409538269,
526
+ "learning_rate": 9.780081138965663e-06,
527
+ "loss": 0.3794,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.14360938247965535,
532
+ "grad_norm": 0.904350221157074,
533
+ "learning_rate": 9.770696282000245e-06,
534
+ "loss": 0.4538,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.14552417424605074,
539
+ "grad_norm": 0.8594577312469482,
540
+ "learning_rate": 9.761120036151138e-06,
541
+ "loss": 0.4211,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.14743896601244616,
546
+ "grad_norm": 0.7970111966133118,
547
+ "learning_rate": 9.751352785594337e-06,
548
+ "loss": 0.401,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.14935375777884155,
553
+ "grad_norm": 0.9434993267059326,
554
+ "learning_rate": 9.741394922168495e-06,
555
+ "loss": 0.4868,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.15126854954523697,
560
+ "grad_norm": 0.7988068461418152,
561
+ "learning_rate": 9.731246845359187e-06,
562
+ "loss": 0.4088,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.15318334131163236,
567
+ "grad_norm": 0.7606924176216125,
568
+ "learning_rate": 9.720908962282893e-06,
569
+ "loss": 0.4026,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.15509813307802778,
574
+ "grad_norm": 0.8167851567268372,
575
+ "learning_rate": 9.710381687670675e-06,
576
+ "loss": 0.4347,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.15701292484442317,
581
+ "grad_norm": 0.910528838634491,
582
+ "learning_rate": 9.699665443851518e-06,
583
+ "loss": 0.4445,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.1589277166108186,
588
+ "grad_norm": 0.77234947681427,
589
+ "learning_rate": 9.688760660735403e-06,
590
+ "loss": 0.4022,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.16084250837721398,
595
+ "grad_norm": 0.7472870945930481,
596
+ "learning_rate": 9.677667775796052e-06,
597
+ "loss": 0.3996,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.1627573001436094,
602
+ "grad_norm": 0.874338686466217,
603
+ "learning_rate": 9.666387234053385e-06,
604
+ "loss": 0.45,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.1646720919100048,
609
+ "grad_norm": 0.8861207962036133,
610
+ "learning_rate": 9.654919488055656e-06,
611
+ "loss": 0.4388,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.1665868836764002,
616
+ "grad_norm": 0.8397772908210754,
617
+ "learning_rate": 9.643264997861312e-06,
618
+ "loss": 0.4182,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.1685016754427956,
623
+ "grad_norm": 0.8450121283531189,
624
+ "learning_rate": 9.631424231020523e-06,
625
+ "loss": 0.4433,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.170416467209191,
630
+ "grad_norm": 0.908657431602478,
631
+ "learning_rate": 9.619397662556434e-06,
632
+ "loss": 0.4481,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.1723312589755864,
637
+ "grad_norm": 0.9613133072853088,
638
+ "learning_rate": 9.607185774946106e-06,
639
+ "loss": 0.5182,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.17424605074198182,
644
+ "grad_norm": 0.9044798016548157,
645
+ "learning_rate": 9.594789058101154e-06,
646
+ "loss": 0.4445,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.1761608425083772,
651
+ "grad_norm": 0.8073885440826416,
652
+ "learning_rate": 9.582208009348104e-06,
653
+ "loss": 0.4103,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.17807563427477263,
658
+ "grad_norm": 0.866552472114563,
659
+ "learning_rate": 9.569443133408434e-06,
660
+ "loss": 0.4573,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.17999042604116802,
665
+ "grad_norm": 0.8651822805404663,
666
+ "learning_rate": 9.556494942378328e-06,
667
+ "loss": 0.4369,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.18190521780756344,
672
+ "grad_norm": 0.8955625295639038,
673
+ "learning_rate": 9.543363955708124e-06,
674
+ "loss": 0.4493,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.18382000957395883,
679
+ "grad_norm": 0.7363105416297913,
680
+ "learning_rate": 9.530050700181499e-06,
681
+ "loss": 0.3666,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.18573480134035425,
686
+ "grad_norm": 0.7756189107894897,
687
+ "learning_rate": 9.5165557098943e-06,
688
+ "loss": 0.4105,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.18764959310674964,
693
+ "grad_norm": 0.8105975985527039,
694
+ "learning_rate": 9.502879526233151e-06,
695
+ "loss": 0.4026,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.18956438487314506,
700
+ "grad_norm": 0.8235639929771423,
701
+ "learning_rate": 9.48902269785371e-06,
702
+ "loss": 0.4235,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.19147917663954045,
707
+ "grad_norm": 0.9181493520736694,
708
+ "learning_rate": 9.47498578065867e-06,
709
+ "loss": 0.4123,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.19339396840593587,
714
+ "grad_norm": 0.8257604241371155,
715
+ "learning_rate": 9.460769337775461e-06,
716
+ "loss": 0.4304,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.19530876017233126,
721
+ "grad_norm": 0.8084312081336975,
722
+ "learning_rate": 9.446373939533642e-06,
723
+ "loss": 0.3962,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.19722355193872668,
728
+ "grad_norm": 0.8189854025840759,
729
+ "learning_rate": 9.431800163442043e-06,
730
+ "loss": 0.4111,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.19913834370512207,
735
+ "grad_norm": 0.8247345089912415,
736
+ "learning_rate": 9.417048594165572e-06,
737
+ "loss": 0.4485,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.20105313547151749,
742
+ "grad_norm": 0.8686959147453308,
743
+ "learning_rate": 9.402119823501787e-06,
744
+ "loss": 0.4304,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.20296792723791288,
749
+ "grad_norm": 0.839127779006958,
750
+ "learning_rate": 9.387014450357128e-06,
751
+ "loss": 0.4148,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.2048827190043083,
756
+ "grad_norm": 0.9121819734573364,
757
+ "learning_rate": 9.371733080722911e-06,
758
+ "loss": 0.4842,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.20679751077070369,
763
+ "grad_norm": 0.8987030982971191,
764
+ "learning_rate": 9.356276327651006e-06,
765
+ "loss": 0.4387,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.2087123025370991,
770
+ "grad_norm": 0.8091103434562683,
771
+ "learning_rate": 9.340644811229243e-06,
772
+ "loss": 0.4024,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.2106270943034945,
777
+ "grad_norm": 0.7413907051086426,
778
+ "learning_rate": 9.324839158556542e-06,
779
+ "loss": 0.3791,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.2125418860698899,
784
+ "grad_norm": 0.8281195163726807,
785
+ "learning_rate": 9.308860003717748e-06,
786
+ "loss": 0.4151,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.2144566778362853,
791
+ "grad_norm": 0.8579381704330444,
792
+ "learning_rate": 9.292707987758202e-06,
793
+ "loss": 0.4446,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.21637146960268072,
798
+ "grad_norm": 0.833625853061676,
799
+ "learning_rate": 9.27638375865801e-06,
800
+ "loss": 0.4311,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.2182862613690761,
805
+ "grad_norm": 0.8704817891120911,
806
+ "learning_rate": 9.259887971306064e-06,
807
+ "loss": 0.4852,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.22020105313547153,
812
+ "grad_norm": 0.8960813283920288,
813
+ "learning_rate": 9.243221287473755e-06,
814
+ "loss": 0.4477,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.22211584490186692,
819
+ "grad_norm": 0.8218123316764832,
820
+ "learning_rate": 9.226384375788435e-06,
821
+ "loss": 0.4169,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.22403063666826234,
826
+ "grad_norm": 0.8349615931510925,
827
+ "learning_rate": 9.209377911706585e-06,
828
+ "loss": 0.4045,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.22594542843465773,
833
+ "grad_norm": 0.8087317943572998,
834
+ "learning_rate": 9.192202577486725e-06,
835
+ "loss": 0.3923,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.22786022020105315,
840
+ "grad_norm": 0.8312190175056458,
841
+ "learning_rate": 9.174859062162037e-06,
842
+ "loss": 0.3958,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.22977501196744854,
847
+ "grad_norm": 0.8147414326667786,
848
+ "learning_rate": 9.157348061512728e-06,
849
+ "loss": 0.4417,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.23168980373384396,
854
+ "grad_norm": 0.860390305519104,
855
+ "learning_rate": 9.139670278038109e-06,
856
+ "loss": 0.4404,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.23360459550023935,
861
+ "grad_norm": 0.7553086280822754,
862
+ "learning_rate": 9.121826420928421e-06,
863
+ "loss": 0.3684,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.23551938726663477,
868
+ "grad_norm": 0.8265523314476013,
869
+ "learning_rate": 9.103817206036383e-06,
870
+ "loss": 0.4025,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.23743417903303016,
875
+ "grad_norm": 0.8537978529930115,
876
+ "learning_rate": 9.085643355848468e-06,
877
+ "loss": 0.4419,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.23934897079942558,
882
+ "grad_norm": 0.8403013348579407,
883
+ "learning_rate": 9.06730559945592e-06,
884
+ "loss": 0.4013,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.24126376256582097,
889
+ "grad_norm": 0.831799328327179,
890
+ "learning_rate": 9.048804672525513e-06,
891
+ "loss": 0.417,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.24317855433221638,
896
+ "grad_norm": 0.7995438575744629,
897
+ "learning_rate": 9.030141317270026e-06,
898
+ "loss": 0.3941,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.24509334609861178,
903
+ "grad_norm": 0.8485874533653259,
904
+ "learning_rate": 9.011316282418474e-06,
905
+ "loss": 0.4128,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.2470081378650072,
910
+ "grad_norm": 0.8879005908966064,
911
+ "learning_rate": 8.992330323186069e-06,
912
+ "loss": 0.4445,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.24892292963140258,
917
+ "grad_norm": 0.9082502722740173,
918
+ "learning_rate": 8.973184201243922e-06,
919
+ "loss": 0.4825,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.250837721397798,
924
+ "grad_norm": 0.8748418688774109,
925
+ "learning_rate": 8.953878684688492e-06,
926
+ "loss": 0.4209,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.2527525131641934,
931
+ "grad_norm": 0.8313506245613098,
932
+ "learning_rate": 8.934414548010764e-06,
933
+ "loss": 0.4083,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.2546673049305888,
938
+ "grad_norm": 0.8159312009811401,
939
+ "learning_rate": 8.914792572065178e-06,
940
+ "loss": 0.4166,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.25658209669698423,
945
+ "grad_norm": 0.9007822275161743,
946
+ "learning_rate": 8.89501354403831e-06,
947
+ "loss": 0.4591,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.2584968884633796,
952
+ "grad_norm": 0.9515888690948486,
953
+ "learning_rate": 8.875078257417294e-06,
954
+ "loss": 0.4659,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.260411680229775,
959
+ "grad_norm": 0.8637048602104187,
960
+ "learning_rate": 8.854987511957974e-06,
961
+ "loss": 0.4387,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.26232647199617043,
966
+ "grad_norm": 0.8459029793739319,
967
+ "learning_rate": 8.834742113652835e-06,
968
+ "loss": 0.4285,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.26424126376256585,
973
+ "grad_norm": 0.7771206498146057,
974
+ "learning_rate": 8.81434287469866e-06,
975
+ "loss": 0.3803,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.2661560555289612,
980
+ "grad_norm": 0.8040123581886292,
981
+ "learning_rate": 8.793790613463956e-06,
982
+ "loss": 0.411,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.26807084729535663,
987
+ "grad_norm": 0.8000430464744568,
988
+ "learning_rate": 8.773086154456106e-06,
989
+ "loss": 0.4165,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.26998563906175205,
994
+ "grad_norm": 0.9271606802940369,
995
+ "learning_rate": 8.752230328288314e-06,
996
+ "loss": 0.4755,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.27190043082814747,
1001
+ "grad_norm": 0.7970160841941833,
1002
+ "learning_rate": 8.731223971646261e-06,
1003
+ "loss": 0.3916,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.27381522259454283,
1008
+ "grad_norm": 0.7897955775260925,
1009
+ "learning_rate": 8.710067927254555e-06,
1010
+ "loss": 0.3846,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.27573001436093825,
1015
+ "grad_norm": 0.8004978895187378,
1016
+ "learning_rate": 8.688763043842916e-06,
1017
+ "loss": 0.4077,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.27764480612733367,
1022
+ "grad_norm": 0.8318747282028198,
1023
+ "learning_rate": 8.66731017611213e-06,
1024
+ "loss": 0.4334,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.2795595978937291,
1029
+ "grad_norm": 0.8479062914848328,
1030
+ "learning_rate": 8.645710184699756e-06,
1031
+ "loss": 0.4172,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.28147438966012445,
1036
+ "grad_norm": 0.8077636361122131,
1037
+ "learning_rate": 8.6239639361456e-06,
1038
+ "loss": 0.4104,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.28338918142651986,
1043
+ "grad_norm": 0.8098336458206177,
1044
+ "learning_rate": 8.602072302856961e-06,
1045
+ "loss": 0.406,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.2853039731929153,
1050
+ "grad_norm": 0.8435089588165283,
1051
+ "learning_rate": 8.580036163073615e-06,
1052
+ "loss": 0.4312,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.2872187649593107,
1057
+ "grad_norm": 0.8346257209777832,
1058
+ "learning_rate": 8.5578564008326e-06,
1059
+ "loss": 0.3888,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.28913355672570606,
1064
+ "grad_norm": 0.8100122213363647,
1065
+ "learning_rate": 8.535533905932739e-06,
1066
+ "loss": 0.4042,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.2910483484921015,
1071
+ "grad_norm": 0.8516131043434143,
1072
+ "learning_rate": 8.513069573898944e-06,
1073
+ "loss": 0.4161,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.2929631402584969,
1078
+ "grad_norm": 0.8350062966346741,
1079
+ "learning_rate": 8.490464305946296e-06,
1080
+ "loss": 0.4231,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.2948779320248923,
1085
+ "grad_norm": 0.8145307302474976,
1086
+ "learning_rate": 8.467719008943886e-06,
1087
+ "loss": 0.4125,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.2967927237912877,
1092
+ "grad_norm": 0.8515341281890869,
1093
+ "learning_rate": 8.444834595378434e-06,
1094
+ "loss": 0.4192,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.2987075155576831,
1099
+ "grad_norm": 0.8017379641532898,
1100
+ "learning_rate": 8.421811983317682e-06,
1101
+ "loss": 0.4007,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.3006223073240785,
1106
+ "grad_norm": 0.8179863691329956,
1107
+ "learning_rate": 8.398652096373566e-06,
1108
+ "loss": 0.4188,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.30253709909047394,
1113
+ "grad_norm": 0.8272606730461121,
1114
+ "learning_rate": 8.375355863665155e-06,
1115
+ "loss": 0.4035,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.3044518908568693,
1120
+ "grad_norm": 0.8340199589729309,
1121
+ "learning_rate": 8.351924219781393e-06,
1122
+ "loss": 0.4414,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.3063666826232647,
1127
+ "grad_norm": 0.82643723487854,
1128
+ "learning_rate": 8.328358104743588e-06,
1129
+ "loss": 0.4143,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.30828147438966014,
1134
+ "grad_norm": 0.7954344153404236,
1135
+ "learning_rate": 8.304658463967705e-06,
1136
+ "loss": 0.4128,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.31019626615605556,
1141
+ "grad_norm": 0.7908764481544495,
1142
+ "learning_rate": 8.28082624822645e-06,
1143
+ "loss": 0.3813,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.3121110579224509,
1148
+ "grad_norm": 0.7368812561035156,
1149
+ "learning_rate": 8.256862413611113e-06,
1150
+ "loss": 0.3879,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.31402584968884634,
1155
+ "grad_norm": 0.8204508423805237,
1156
+ "learning_rate": 8.232767921493216e-06,
1157
+ "loss": 0.4308,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.31594064145524176,
1162
+ "grad_norm": 0.8691006302833557,
1163
+ "learning_rate": 8.20854373848595e-06,
1164
+ "loss": 0.4518,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.3178554332216372,
1169
+ "grad_norm": 0.7581012845039368,
1170
+ "learning_rate": 8.184190836405394e-06,
1171
+ "loss": 0.3711,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.31977022498803254,
1176
+ "grad_norm": 0.7817586660385132,
1177
+ "learning_rate": 8.15971019223152e-06,
1178
+ "loss": 0.4057,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.32168501675442795,
1183
+ "grad_norm": 0.7559137344360352,
1184
+ "learning_rate": 8.135102788069015e-06,
1185
+ "loss": 0.361,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.3235998085208234,
1190
+ "grad_norm": 0.7424903512001038,
1191
+ "learning_rate": 8.110369611107869e-06,
1192
+ "loss": 0.3667,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.3255146002872188,
1197
+ "grad_norm": 0.7965791821479797,
1198
+ "learning_rate": 8.085511653583772e-06,
1199
+ "loss": 0.3814,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.32742939205361415,
1204
+ "grad_norm": 0.8504881262779236,
1205
+ "learning_rate": 8.060529912738316e-06,
1206
+ "loss": 0.4453,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.3293441838200096,
1211
+ "grad_norm": 0.8762128353118896,
1212
+ "learning_rate": 8.035425390778975e-06,
1213
+ "loss": 0.4516,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.331258975586405,
1218
+ "grad_norm": 0.8157339692115784,
1219
+ "learning_rate": 8.010199094838915e-06,
1220
+ "loss": 0.4204,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.3331737673528004,
1225
+ "grad_norm": 0.8493944406509399,
1226
+ "learning_rate": 7.984852036936578e-06,
1227
+ "loss": 0.39,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.3350885591191958,
1232
+ "grad_norm": 0.838901937007904,
1233
+ "learning_rate": 7.959385233935087e-06,
1234
+ "loss": 0.4417,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.3370033508855912,
1239
+ "grad_norm": 0.7574141621589661,
1240
+ "learning_rate": 7.933799707501448e-06,
1241
+ "loss": 0.3515,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.3389181426519866,
1246
+ "grad_norm": 0.8099052906036377,
1247
+ "learning_rate": 7.908096484065569e-06,
1248
+ "loss": 0.4091,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.340832934418382,
1253
+ "grad_norm": 0.8116398453712463,
1254
+ "learning_rate": 7.88227659477908e-06,
1255
+ "loss": 0.4137,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.3427477261847774,
1260
+ "grad_norm": 0.7785760164260864,
1261
+ "learning_rate": 7.856341075473963e-06,
1262
+ "loss": 0.3829,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.3446625179511728,
1267
+ "grad_norm": 0.7929257154464722,
1268
+ "learning_rate": 7.830290966620997e-06,
1269
+ "loss": 0.3739,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.3465773097175682,
1274
+ "grad_norm": 0.8796236515045166,
1275
+ "learning_rate": 7.804127313288023e-06,
1276
+ "loss": 0.4027,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.34849210148396365,
1281
+ "grad_norm": 0.8447411060333252,
1282
+ "learning_rate": 7.777851165098012e-06,
1283
+ "loss": 0.4202,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.350406893250359,
1288
+ "grad_norm": 0.7473250031471252,
1289
+ "learning_rate": 7.751463576186957e-06,
1290
+ "loss": 0.3777,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.3523216850167544,
1295
+ "grad_norm": 0.8254420757293701,
1296
+ "learning_rate": 7.72496560516159e-06,
1297
+ "loss": 0.4147,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.35423647678314985,
1302
+ "grad_norm": 0.8766903281211853,
1303
+ "learning_rate": 7.6983583150569e-06,
1304
+ "loss": 0.4212,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.35615126854954526,
1309
+ "grad_norm": 0.8106472492218018,
1310
+ "learning_rate": 7.671642773293506e-06,
1311
+ "loss": 0.3897,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.3580660603159406,
1316
+ "grad_norm": 0.8969345092773438,
1317
+ "learning_rate": 7.644820051634813e-06,
1318
+ "loss": 0.4166,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.35998085208233604,
1323
+ "grad_norm": 0.9210174679756165,
1324
+ "learning_rate": 7.617891226144034e-06,
1325
+ "loss": 0.4744,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.36189564384873146,
1330
+ "grad_norm": 0.8183197379112244,
1331
+ "learning_rate": 7.59085737714101e-06,
1332
+ "loss": 0.3909,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.3638104356151269,
1337
+ "grad_norm": 0.9258884191513062,
1338
+ "learning_rate": 7.563719589158874e-06,
1339
+ "loss": 0.4191,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.36572522738152224,
1344
+ "grad_norm": 0.8379626274108887,
1345
+ "learning_rate": 7.536478950900537e-06,
1346
+ "loss": 0.4081,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.36764001914791766,
1351
+ "grad_norm": 0.8194741010665894,
1352
+ "learning_rate": 7.509136555195025e-06,
1353
+ "loss": 0.3983,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.3695548109143131,
1358
+ "grad_norm": 0.8078919649124146,
1359
+ "learning_rate": 7.481693498953621e-06,
1360
+ "loss": 0.4117,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.3714696026807085,
1365
+ "grad_norm": 0.8059271574020386,
1366
+ "learning_rate": 7.4541508831258695e-06,
1367
+ "loss": 0.3919,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.37338439444710386,
1372
+ "grad_norm": 0.7913739681243896,
1373
+ "learning_rate": 7.4265098126554065e-06,
1374
+ "loss": 0.3786,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.3752991862134993,
1379
+ "grad_norm": 0.8568047285079956,
1380
+ "learning_rate": 7.3987713964356335e-06,
1381
+ "loss": 0.4505,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.3772139779798947,
1386
+ "grad_norm": 0.9244000315666199,
1387
+ "learning_rate": 7.370936747265226e-06,
1388
+ "loss": 0.4546,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.3791287697462901,
1393
+ "grad_norm": 0.7795801162719727,
1394
+ "learning_rate": 7.3430069818035e-06,
1395
+ "loss": 0.3955,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.3810435615126855,
1400
+ "grad_norm": 0.7940351366996765,
1401
+ "learning_rate": 7.314983220525604e-06,
1402
+ "loss": 0.4043,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.3829583532790809,
1407
+ "grad_norm": 0.7889821529388428,
1408
+ "learning_rate": 7.286866587677576e-06,
1409
+ "loss": 0.3883,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.3848731450454763,
1414
+ "grad_norm": 0.857402503490448,
1415
+ "learning_rate": 7.2586582112312355e-06,
1416
+ "loss": 0.4288,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.38678793681187174,
1421
+ "grad_norm": 0.7854819893836975,
1422
+ "learning_rate": 7.230359222838939e-06,
1423
+ "loss": 0.3884,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.3887027285782671,
1428
+ "grad_norm": 0.9061365723609924,
1429
+ "learning_rate": 7.201970757788172e-06,
1430
+ "loss": 0.458,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.3906175203446625,
1435
+ "grad_norm": 0.7978100776672363,
1436
+ "learning_rate": 7.173493954956012e-06,
1437
+ "loss": 0.3903,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.39253231211105793,
1442
+ "grad_norm": 0.8213270902633667,
1443
+ "learning_rate": 7.144929956763438e-06,
1444
+ "loss": 0.4035,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.39444710387745335,
1449
+ "grad_norm": 0.9091420769691467,
1450
+ "learning_rate": 7.116279909129492e-06,
1451
+ "loss": 0.4505,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.3963618956438487,
1456
+ "grad_norm": 0.8489376306533813,
1457
+ "learning_rate": 7.087544961425317e-06,
1458
+ "loss": 0.4037,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.39827668741024413,
1463
+ "grad_norm": 0.805548369884491,
1464
+ "learning_rate": 7.058726266428042e-06,
1465
+ "loss": 0.4053,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.40019147917663955,
1470
+ "grad_norm": 0.7785957455635071,
1471
+ "learning_rate": 7.029824980274536e-06,
1472
+ "loss": 0.3719,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.40210627094303497,
1477
+ "grad_norm": 0.8519039154052734,
1478
+ "learning_rate": 7.0008422624150285e-06,
1479
+ "loss": 0.4176,
1480
+ "step": 210
1481
+ }
1482
+ ],
1483
+ "logging_steps": 1,
1484
+ "max_steps": 522,
1485
+ "num_input_tokens_seen": 0,
1486
+ "num_train_epochs": 1,
1487
+ "save_steps": 105,
1488
+ "stateful_callbacks": {
1489
+ "TrainerControl": {
1490
+ "args": {
1491
+ "should_epoch_stop": false,
1492
+ "should_evaluate": false,
1493
+ "should_log": false,
1494
+ "should_save": true,
1495
+ "should_training_stop": false
1496
+ },
1497
+ "attributes": {}
1498
+ }
1499
+ },
1500
+ "total_flos": 1.1029906388628275e+17,
1501
+ "train_batch_size": 8,
1502
+ "trial_name": null,
1503
+ "trial_params": null
1504
+ }
checkpoint-210/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66ffb9355835ef1e788c4b73fef523b9594f231dd9bde187500393bdf3018899
3
+ size 10936
checkpoint-210/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-210/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoint-315/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-315/config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "eos_token_id": 151645,
7
+ "hidden_act": "silu",
8
+ "hidden_size": 1536,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 8960,
11
+ "max_position_embeddings": 32768,
12
+ "max_window_layers": 21,
13
+ "model_type": "qwen2",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 28,
16
+ "num_key_value_heads": 2,
17
+ "rms_norm_eps": 1e-06,
18
+ "rope_scaling": null,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": 32768,
21
+ "tie_word_embeddings": true,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.51.3",
24
+ "use_cache": false,
25
+ "use_sliding_window": false,
26
+ "vocab_size": 151936
27
+ }
checkpoint-315/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.51.3"
14
+ }
checkpoint-315/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step315
checkpoint-315/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-315/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7458f4d552c6240cc4a4ec473ccc86badb2cc7e33ec73fd4591f3deccea7dda1
3
+ size 3554214752
checkpoint-315/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad792af33c7cfa8b15298ecc9d976ebdcdeb444ca0e704c7b0657f41ee6547eb
3
+ size 14512
checkpoint-315/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:722c924fceffd85f8ab1a5445f1ea1e6c502644b6a42e2ff6b5a9a76ea26e1fe
3
+ size 14512
checkpoint-315/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4ec420f7da6d05dd8e17b1cc8fc882ab1f031dca3a4f53381815b864453c833
3
+ size 1064
checkpoint-315/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-315/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-315/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-315/trainer_state.json ADDED
@@ -0,0 +1,2239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.6031594064145525,
6
+ "eval_steps": 500,
7
+ "global_step": 315,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0019147917663954045,
14
+ "grad_norm": 2.4612040519714355,
15
+ "learning_rate": 0.0,
16
+ "loss": 0.6068,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.003829583532790809,
21
+ "grad_norm": 2.5184295177459717,
22
+ "learning_rate": 3.846153846153847e-07,
23
+ "loss": 0.5979,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.0057443752991862135,
28
+ "grad_norm": 2.515437602996826,
29
+ "learning_rate": 7.692307692307694e-07,
30
+ "loss": 0.6487,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.007659167065581618,
35
+ "grad_norm": 2.2364346981048584,
36
+ "learning_rate": 1.153846153846154e-06,
37
+ "loss": 0.6041,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.009573958831977022,
42
+ "grad_norm": 2.1685123443603516,
43
+ "learning_rate": 1.5384615384615387e-06,
44
+ "loss": 0.5414,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.011488750598372427,
49
+ "grad_norm": 2.6281416416168213,
50
+ "learning_rate": 1.9230769230769234e-06,
51
+ "loss": 0.5794,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.013403542364767831,
56
+ "grad_norm": 2.0852179527282715,
57
+ "learning_rate": 2.307692307692308e-06,
58
+ "loss": 0.5518,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.015318334131163236,
63
+ "grad_norm": 1.9601969718933105,
64
+ "learning_rate": 2.6923076923076923e-06,
65
+ "loss": 0.557,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.01723312589755864,
70
+ "grad_norm": 1.822036862373352,
71
+ "learning_rate": 3.0769230769230774e-06,
72
+ "loss": 0.5732,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.019147917663954045,
77
+ "grad_norm": 1.6944836378097534,
78
+ "learning_rate": 3.4615384615384617e-06,
79
+ "loss": 0.5451,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.02106270943034945,
84
+ "grad_norm": 1.521175503730774,
85
+ "learning_rate": 3.846153846153847e-06,
86
+ "loss": 0.5148,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.022977501196744854,
91
+ "grad_norm": 1.573475956916809,
92
+ "learning_rate": 4.230769230769231e-06,
93
+ "loss": 0.512,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.02489229296314026,
98
+ "grad_norm": 1.4469544887542725,
99
+ "learning_rate": 4.615384615384616e-06,
100
+ "loss": 0.5542,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.026807084729535663,
105
+ "grad_norm": 1.3531206846237183,
106
+ "learning_rate": 5e-06,
107
+ "loss": 0.4868,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.028721876495931067,
112
+ "grad_norm": 1.3297739028930664,
113
+ "learning_rate": 5.384615384615385e-06,
114
+ "loss": 0.4713,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.030636668262326472,
119
+ "grad_norm": 1.430997610092163,
120
+ "learning_rate": 5.769230769230769e-06,
121
+ "loss": 0.4683,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.032551460028721876,
126
+ "grad_norm": 1.2832906246185303,
127
+ "learning_rate": 6.153846153846155e-06,
128
+ "loss": 0.4275,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.03446625179511728,
133
+ "grad_norm": 1.1449981927871704,
134
+ "learning_rate": 6.538461538461539e-06,
135
+ "loss": 0.4692,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.036381043561512685,
140
+ "grad_norm": 1.1069403886795044,
141
+ "learning_rate": 6.923076923076923e-06,
142
+ "loss": 0.4925,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.03829583532790809,
147
+ "grad_norm": 1.066596508026123,
148
+ "learning_rate": 7.307692307692308e-06,
149
+ "loss": 0.4809,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.040210627094303494,
154
+ "grad_norm": 1.0530707836151123,
155
+ "learning_rate": 7.692307692307694e-06,
156
+ "loss": 0.4645,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.0421254188606989,
161
+ "grad_norm": 1.0063157081604004,
162
+ "learning_rate": 8.076923076923077e-06,
163
+ "loss": 0.465,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.0440402106270943,
168
+ "grad_norm": 1.1088693141937256,
169
+ "learning_rate": 8.461538461538462e-06,
170
+ "loss": 0.4824,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.04595500239348971,
175
+ "grad_norm": 1.0253574848175049,
176
+ "learning_rate": 8.846153846153847e-06,
177
+ "loss": 0.4559,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.04786979415988511,
182
+ "grad_norm": 1.0317028760910034,
183
+ "learning_rate": 9.230769230769232e-06,
184
+ "loss": 0.4687,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.04978458592628052,
189
+ "grad_norm": 0.9329833388328552,
190
+ "learning_rate": 9.615384615384616e-06,
191
+ "loss": 0.4785,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.05169937769267592,
196
+ "grad_norm": 0.9087225794792175,
197
+ "learning_rate": 1e-05,
198
+ "loss": 0.4505,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.053614169459071326,
203
+ "grad_norm": 1.0503875017166138,
204
+ "learning_rate": 9.999899706000774e-06,
205
+ "loss": 0.4866,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.05552896122546673,
210
+ "grad_norm": 0.9580711722373962,
211
+ "learning_rate": 9.999598828026644e-06,
212
+ "loss": 0.4759,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.057443752991862135,
217
+ "grad_norm": 0.8906879425048828,
218
+ "learning_rate": 9.999097378148116e-06,
219
+ "loss": 0.4455,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.05935854475825754,
224
+ "grad_norm": 0.8807913064956665,
225
+ "learning_rate": 9.998395376482152e-06,
226
+ "loss": 0.4335,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.061273336524652944,
231
+ "grad_norm": 0.8745759129524231,
232
+ "learning_rate": 9.99749285119138e-06,
233
+ "loss": 0.43,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.06318812829104835,
238
+ "grad_norm": 0.9661962389945984,
239
+ "learning_rate": 9.996389838482942e-06,
240
+ "loss": 0.5295,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.06510292005744375,
245
+ "grad_norm": 0.9019286036491394,
246
+ "learning_rate": 9.995086382607064e-06,
247
+ "loss": 0.4774,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.06701771182383916,
252
+ "grad_norm": 0.8906053900718689,
253
+ "learning_rate": 9.993582535855265e-06,
254
+ "loss": 0.4577,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.06893250359023456,
259
+ "grad_norm": 0.8857560753822327,
260
+ "learning_rate": 9.991878358558267e-06,
261
+ "loss": 0.4785,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.07084729535662997,
266
+ "grad_norm": 0.9806991219520569,
267
+ "learning_rate": 9.989973919083576e-06,
268
+ "loss": 0.4662,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.07276208712302537,
273
+ "grad_norm": 0.9356399774551392,
274
+ "learning_rate": 9.987869293832727e-06,
275
+ "loss": 0.4669,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.07467687888942078,
280
+ "grad_norm": 0.7924108505249023,
281
+ "learning_rate": 9.985564567238237e-06,
282
+ "loss": 0.4451,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.07659167065581618,
287
+ "grad_norm": 0.9577414393424988,
288
+ "learning_rate": 9.983059831760205e-06,
289
+ "loss": 0.4837,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.07850646242221158,
294
+ "grad_norm": 0.8300902843475342,
295
+ "learning_rate": 9.980355187882606e-06,
296
+ "loss": 0.4438,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.08042125418860699,
301
+ "grad_norm": 0.8420023918151855,
302
+ "learning_rate": 9.977450744109258e-06,
303
+ "loss": 0.4223,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.0823360459550024,
308
+ "grad_norm": 0.8297982811927795,
309
+ "learning_rate": 9.974346616959476e-06,
310
+ "loss": 0.4366,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.0842508377213978,
315
+ "grad_norm": 0.9187960624694824,
316
+ "learning_rate": 9.97104293096339e-06,
317
+ "loss": 0.4739,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.0861656294877932,
322
+ "grad_norm": 0.9509177803993225,
323
+ "learning_rate": 9.967539818656953e-06,
324
+ "loss": 0.4587,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.0880804212541886,
329
+ "grad_norm": 0.9072842001914978,
330
+ "learning_rate": 9.96383742057662e-06,
331
+ "loss": 0.5177,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.08999521302058401,
336
+ "grad_norm": 0.8744245767593384,
337
+ "learning_rate": 9.959935885253715e-06,
338
+ "loss": 0.4454,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.09191000478697942,
343
+ "grad_norm": 0.8209521174430847,
344
+ "learning_rate": 9.955835369208475e-06,
345
+ "loss": 0.4243,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.09382479655337482,
350
+ "grad_norm": 0.793670654296875,
351
+ "learning_rate": 9.951536036943753e-06,
352
+ "loss": 0.4256,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.09573958831977022,
357
+ "grad_norm": 0.8487685322761536,
358
+ "learning_rate": 9.94703806093845e-06,
359
+ "loss": 0.4625,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.09765438008616563,
364
+ "grad_norm": 0.8209853768348694,
365
+ "learning_rate": 9.942341621640558e-06,
366
+ "loss": 0.4385,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.09956917185256103,
371
+ "grad_norm": 0.8096733689308167,
372
+ "learning_rate": 9.937446907459954e-06,
373
+ "loss": 0.4575,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.10148396361895644,
378
+ "grad_norm": 0.8126389384269714,
379
+ "learning_rate": 9.932354114760819e-06,
380
+ "loss": 0.4262,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.10339875538535184,
385
+ "grad_norm": 0.968154788017273,
386
+ "learning_rate": 9.92706344785377e-06,
387
+ "loss": 0.5304,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.10531354715174725,
392
+ "grad_norm": 0.7662584781646729,
393
+ "learning_rate": 9.921575118987672e-06,
394
+ "loss": 0.4076,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.10722833891814265,
399
+ "grad_norm": 0.8463670015335083,
400
+ "learning_rate": 9.915889348341098e-06,
401
+ "loss": 0.4434,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.10914313068453806,
406
+ "grad_norm": 0.8167222142219543,
407
+ "learning_rate": 9.910006364013522e-06,
408
+ "loss": 0.4079,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.11105792245093346,
413
+ "grad_norm": 0.8205484747886658,
414
+ "learning_rate": 9.903926402016153e-06,
415
+ "loss": 0.4167,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.11297271421732887,
420
+ "grad_norm": 0.901168942451477,
421
+ "learning_rate": 9.897649706262474e-06,
422
+ "loss": 0.4762,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.11488750598372427,
427
+ "grad_norm": 0.8437636494636536,
428
+ "learning_rate": 9.891176528558451e-06,
429
+ "loss": 0.4327,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.11680229775011967,
434
+ "grad_norm": 0.8409866094589233,
435
+ "learning_rate": 9.884507128592435e-06,
436
+ "loss": 0.446,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.11871708951651508,
441
+ "grad_norm": 0.8613469004631042,
442
+ "learning_rate": 9.877641773924748e-06,
443
+ "loss": 0.4217,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.12063188128291048,
448
+ "grad_norm": 0.8663684129714966,
449
+ "learning_rate": 9.870580739976936e-06,
450
+ "loss": 0.4211,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.12254667304930589,
455
+ "grad_norm": 0.8156937956809998,
456
+ "learning_rate": 9.863324310020735e-06,
457
+ "loss": 0.4273,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.12446146481570129,
462
+ "grad_norm": 0.8753077387809753,
463
+ "learning_rate": 9.855872775166696e-06,
464
+ "loss": 0.4663,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.1263762565820967,
469
+ "grad_norm": 0.81593918800354,
470
+ "learning_rate": 9.848226434352513e-06,
471
+ "loss": 0.4398,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.12829104834849211,
476
+ "grad_norm": 0.8915799260139465,
477
+ "learning_rate": 9.840385594331022e-06,
478
+ "loss": 0.4758,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.1302058401148875,
483
+ "grad_norm": 0.8952628374099731,
484
+ "learning_rate": 9.83235056965791e-06,
485
+ "loss": 0.4884,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.13212063188128292,
490
+ "grad_norm": 0.874907910823822,
491
+ "learning_rate": 9.824121682679072e-06,
492
+ "loss": 0.4411,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.13403542364767831,
497
+ "grad_norm": 0.8349279761314392,
498
+ "learning_rate": 9.815699263517712e-06,
499
+ "loss": 0.438,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.13595021541407373,
504
+ "grad_norm": 0.8123260736465454,
505
+ "learning_rate": 9.807083650061063e-06,
506
+ "loss": 0.4483,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.13786500718046912,
511
+ "grad_norm": 0.8606418371200562,
512
+ "learning_rate": 9.798275187946859e-06,
513
+ "loss": 0.44,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.13977979894686454,
518
+ "grad_norm": 0.778163492679596,
519
+ "learning_rate": 9.789274230549456e-06,
520
+ "loss": 0.4054,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.14169459071325993,
525
+ "grad_norm": 0.7578093409538269,
526
+ "learning_rate": 9.780081138965663e-06,
527
+ "loss": 0.3794,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.14360938247965535,
532
+ "grad_norm": 0.904350221157074,
533
+ "learning_rate": 9.770696282000245e-06,
534
+ "loss": 0.4538,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.14552417424605074,
539
+ "grad_norm": 0.8594577312469482,
540
+ "learning_rate": 9.761120036151138e-06,
541
+ "loss": 0.4211,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.14743896601244616,
546
+ "grad_norm": 0.7970111966133118,
547
+ "learning_rate": 9.751352785594337e-06,
548
+ "loss": 0.401,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.14935375777884155,
553
+ "grad_norm": 0.9434993267059326,
554
+ "learning_rate": 9.741394922168495e-06,
555
+ "loss": 0.4868,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.15126854954523697,
560
+ "grad_norm": 0.7988068461418152,
561
+ "learning_rate": 9.731246845359187e-06,
562
+ "loss": 0.4088,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.15318334131163236,
567
+ "grad_norm": 0.7606924176216125,
568
+ "learning_rate": 9.720908962282893e-06,
569
+ "loss": 0.4026,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.15509813307802778,
574
+ "grad_norm": 0.8167851567268372,
575
+ "learning_rate": 9.710381687670675e-06,
576
+ "loss": 0.4347,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.15701292484442317,
581
+ "grad_norm": 0.910528838634491,
582
+ "learning_rate": 9.699665443851518e-06,
583
+ "loss": 0.4445,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.1589277166108186,
588
+ "grad_norm": 0.77234947681427,
589
+ "learning_rate": 9.688760660735403e-06,
590
+ "loss": 0.4022,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.16084250837721398,
595
+ "grad_norm": 0.7472870945930481,
596
+ "learning_rate": 9.677667775796052e-06,
597
+ "loss": 0.3996,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.1627573001436094,
602
+ "grad_norm": 0.874338686466217,
603
+ "learning_rate": 9.666387234053385e-06,
604
+ "loss": 0.45,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.1646720919100048,
609
+ "grad_norm": 0.8861207962036133,
610
+ "learning_rate": 9.654919488055656e-06,
611
+ "loss": 0.4388,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.1665868836764002,
616
+ "grad_norm": 0.8397772908210754,
617
+ "learning_rate": 9.643264997861312e-06,
618
+ "loss": 0.4182,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.1685016754427956,
623
+ "grad_norm": 0.8450121283531189,
624
+ "learning_rate": 9.631424231020523e-06,
625
+ "loss": 0.4433,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.170416467209191,
630
+ "grad_norm": 0.908657431602478,
631
+ "learning_rate": 9.619397662556434e-06,
632
+ "loss": 0.4481,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.1723312589755864,
637
+ "grad_norm": 0.9613133072853088,
638
+ "learning_rate": 9.607185774946106e-06,
639
+ "loss": 0.5182,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.17424605074198182,
644
+ "grad_norm": 0.9044798016548157,
645
+ "learning_rate": 9.594789058101154e-06,
646
+ "loss": 0.4445,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.1761608425083772,
651
+ "grad_norm": 0.8073885440826416,
652
+ "learning_rate": 9.582208009348104e-06,
653
+ "loss": 0.4103,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.17807563427477263,
658
+ "grad_norm": 0.866552472114563,
659
+ "learning_rate": 9.569443133408434e-06,
660
+ "loss": 0.4573,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.17999042604116802,
665
+ "grad_norm": 0.8651822805404663,
666
+ "learning_rate": 9.556494942378328e-06,
667
+ "loss": 0.4369,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.18190521780756344,
672
+ "grad_norm": 0.8955625295639038,
673
+ "learning_rate": 9.543363955708124e-06,
674
+ "loss": 0.4493,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.18382000957395883,
679
+ "grad_norm": 0.7363105416297913,
680
+ "learning_rate": 9.530050700181499e-06,
681
+ "loss": 0.3666,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.18573480134035425,
686
+ "grad_norm": 0.7756189107894897,
687
+ "learning_rate": 9.5165557098943e-06,
688
+ "loss": 0.4105,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.18764959310674964,
693
+ "grad_norm": 0.8105975985527039,
694
+ "learning_rate": 9.502879526233151e-06,
695
+ "loss": 0.4026,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.18956438487314506,
700
+ "grad_norm": 0.8235639929771423,
701
+ "learning_rate": 9.48902269785371e-06,
702
+ "loss": 0.4235,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.19147917663954045,
707
+ "grad_norm": 0.9181493520736694,
708
+ "learning_rate": 9.47498578065867e-06,
709
+ "loss": 0.4123,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.19339396840593587,
714
+ "grad_norm": 0.8257604241371155,
715
+ "learning_rate": 9.460769337775461e-06,
716
+ "loss": 0.4304,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.19530876017233126,
721
+ "grad_norm": 0.8084312081336975,
722
+ "learning_rate": 9.446373939533642e-06,
723
+ "loss": 0.3962,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.19722355193872668,
728
+ "grad_norm": 0.8189854025840759,
729
+ "learning_rate": 9.431800163442043e-06,
730
+ "loss": 0.4111,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.19913834370512207,
735
+ "grad_norm": 0.8247345089912415,
736
+ "learning_rate": 9.417048594165572e-06,
737
+ "loss": 0.4485,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.20105313547151749,
742
+ "grad_norm": 0.8686959147453308,
743
+ "learning_rate": 9.402119823501787e-06,
744
+ "loss": 0.4304,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.20296792723791288,
749
+ "grad_norm": 0.839127779006958,
750
+ "learning_rate": 9.387014450357128e-06,
751
+ "loss": 0.4148,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.2048827190043083,
756
+ "grad_norm": 0.9121819734573364,
757
+ "learning_rate": 9.371733080722911e-06,
758
+ "loss": 0.4842,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.20679751077070369,
763
+ "grad_norm": 0.8987030982971191,
764
+ "learning_rate": 9.356276327651006e-06,
765
+ "loss": 0.4387,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.2087123025370991,
770
+ "grad_norm": 0.8091103434562683,
771
+ "learning_rate": 9.340644811229243e-06,
772
+ "loss": 0.4024,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.2106270943034945,
777
+ "grad_norm": 0.7413907051086426,
778
+ "learning_rate": 9.324839158556542e-06,
779
+ "loss": 0.3791,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.2125418860698899,
784
+ "grad_norm": 0.8281195163726807,
785
+ "learning_rate": 9.308860003717748e-06,
786
+ "loss": 0.4151,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.2144566778362853,
791
+ "grad_norm": 0.8579381704330444,
792
+ "learning_rate": 9.292707987758202e-06,
793
+ "loss": 0.4446,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.21637146960268072,
798
+ "grad_norm": 0.833625853061676,
799
+ "learning_rate": 9.27638375865801e-06,
800
+ "loss": 0.4311,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.2182862613690761,
805
+ "grad_norm": 0.8704817891120911,
806
+ "learning_rate": 9.259887971306064e-06,
807
+ "loss": 0.4852,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.22020105313547153,
812
+ "grad_norm": 0.8960813283920288,
813
+ "learning_rate": 9.243221287473755e-06,
814
+ "loss": 0.4477,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.22211584490186692,
819
+ "grad_norm": 0.8218123316764832,
820
+ "learning_rate": 9.226384375788435e-06,
821
+ "loss": 0.4169,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.22403063666826234,
826
+ "grad_norm": 0.8349615931510925,
827
+ "learning_rate": 9.209377911706585e-06,
828
+ "loss": 0.4045,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.22594542843465773,
833
+ "grad_norm": 0.8087317943572998,
834
+ "learning_rate": 9.192202577486725e-06,
835
+ "loss": 0.3923,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.22786022020105315,
840
+ "grad_norm": 0.8312190175056458,
841
+ "learning_rate": 9.174859062162037e-06,
842
+ "loss": 0.3958,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.22977501196744854,
847
+ "grad_norm": 0.8147414326667786,
848
+ "learning_rate": 9.157348061512728e-06,
849
+ "loss": 0.4417,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.23168980373384396,
854
+ "grad_norm": 0.860390305519104,
855
+ "learning_rate": 9.139670278038109e-06,
856
+ "loss": 0.4404,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.23360459550023935,
861
+ "grad_norm": 0.7553086280822754,
862
+ "learning_rate": 9.121826420928421e-06,
863
+ "loss": 0.3684,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.23551938726663477,
868
+ "grad_norm": 0.8265523314476013,
869
+ "learning_rate": 9.103817206036383e-06,
870
+ "loss": 0.4025,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.23743417903303016,
875
+ "grad_norm": 0.8537978529930115,
876
+ "learning_rate": 9.085643355848468e-06,
877
+ "loss": 0.4419,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.23934897079942558,
882
+ "grad_norm": 0.8403013348579407,
883
+ "learning_rate": 9.06730559945592e-06,
884
+ "loss": 0.4013,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.24126376256582097,
889
+ "grad_norm": 0.831799328327179,
890
+ "learning_rate": 9.048804672525513e-06,
891
+ "loss": 0.417,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.24317855433221638,
896
+ "grad_norm": 0.7995438575744629,
897
+ "learning_rate": 9.030141317270026e-06,
898
+ "loss": 0.3941,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.24509334609861178,
903
+ "grad_norm": 0.8485874533653259,
904
+ "learning_rate": 9.011316282418474e-06,
905
+ "loss": 0.4128,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.2470081378650072,
910
+ "grad_norm": 0.8879005908966064,
911
+ "learning_rate": 8.992330323186069e-06,
912
+ "loss": 0.4445,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.24892292963140258,
917
+ "grad_norm": 0.9082502722740173,
918
+ "learning_rate": 8.973184201243922e-06,
919
+ "loss": 0.4825,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.250837721397798,
924
+ "grad_norm": 0.8748418688774109,
925
+ "learning_rate": 8.953878684688492e-06,
926
+ "loss": 0.4209,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.2527525131641934,
931
+ "grad_norm": 0.8313506245613098,
932
+ "learning_rate": 8.934414548010764e-06,
933
+ "loss": 0.4083,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.2546673049305888,
938
+ "grad_norm": 0.8159312009811401,
939
+ "learning_rate": 8.914792572065178e-06,
940
+ "loss": 0.4166,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.25658209669698423,
945
+ "grad_norm": 0.9007822275161743,
946
+ "learning_rate": 8.89501354403831e-06,
947
+ "loss": 0.4591,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.2584968884633796,
952
+ "grad_norm": 0.9515888690948486,
953
+ "learning_rate": 8.875078257417294e-06,
954
+ "loss": 0.4659,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.260411680229775,
959
+ "grad_norm": 0.8637048602104187,
960
+ "learning_rate": 8.854987511957974e-06,
961
+ "loss": 0.4387,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.26232647199617043,
966
+ "grad_norm": 0.8459029793739319,
967
+ "learning_rate": 8.834742113652835e-06,
968
+ "loss": 0.4285,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.26424126376256585,
973
+ "grad_norm": 0.7771206498146057,
974
+ "learning_rate": 8.81434287469866e-06,
975
+ "loss": 0.3803,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.2661560555289612,
980
+ "grad_norm": 0.8040123581886292,
981
+ "learning_rate": 8.793790613463956e-06,
982
+ "loss": 0.411,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.26807084729535663,
987
+ "grad_norm": 0.8000430464744568,
988
+ "learning_rate": 8.773086154456106e-06,
989
+ "loss": 0.4165,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.26998563906175205,
994
+ "grad_norm": 0.9271606802940369,
995
+ "learning_rate": 8.752230328288314e-06,
996
+ "loss": 0.4755,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.27190043082814747,
1001
+ "grad_norm": 0.7970160841941833,
1002
+ "learning_rate": 8.731223971646261e-06,
1003
+ "loss": 0.3916,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.27381522259454283,
1008
+ "grad_norm": 0.7897955775260925,
1009
+ "learning_rate": 8.710067927254555e-06,
1010
+ "loss": 0.3846,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.27573001436093825,
1015
+ "grad_norm": 0.8004978895187378,
1016
+ "learning_rate": 8.688763043842916e-06,
1017
+ "loss": 0.4077,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.27764480612733367,
1022
+ "grad_norm": 0.8318747282028198,
1023
+ "learning_rate": 8.66731017611213e-06,
1024
+ "loss": 0.4334,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.2795595978937291,
1029
+ "grad_norm": 0.8479062914848328,
1030
+ "learning_rate": 8.645710184699756e-06,
1031
+ "loss": 0.4172,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.28147438966012445,
1036
+ "grad_norm": 0.8077636361122131,
1037
+ "learning_rate": 8.6239639361456e-06,
1038
+ "loss": 0.4104,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.28338918142651986,
1043
+ "grad_norm": 0.8098336458206177,
1044
+ "learning_rate": 8.602072302856961e-06,
1045
+ "loss": 0.406,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.2853039731929153,
1050
+ "grad_norm": 0.8435089588165283,
1051
+ "learning_rate": 8.580036163073615e-06,
1052
+ "loss": 0.4312,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.2872187649593107,
1057
+ "grad_norm": 0.8346257209777832,
1058
+ "learning_rate": 8.5578564008326e-06,
1059
+ "loss": 0.3888,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.28913355672570606,
1064
+ "grad_norm": 0.8100122213363647,
1065
+ "learning_rate": 8.535533905932739e-06,
1066
+ "loss": 0.4042,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.2910483484921015,
1071
+ "grad_norm": 0.8516131043434143,
1072
+ "learning_rate": 8.513069573898944e-06,
1073
+ "loss": 0.4161,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.2929631402584969,
1078
+ "grad_norm": 0.8350062966346741,
1079
+ "learning_rate": 8.490464305946296e-06,
1080
+ "loss": 0.4231,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.2948779320248923,
1085
+ "grad_norm": 0.8145307302474976,
1086
+ "learning_rate": 8.467719008943886e-06,
1087
+ "loss": 0.4125,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.2967927237912877,
1092
+ "grad_norm": 0.8515341281890869,
1093
+ "learning_rate": 8.444834595378434e-06,
1094
+ "loss": 0.4192,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.2987075155576831,
1099
+ "grad_norm": 0.8017379641532898,
1100
+ "learning_rate": 8.421811983317682e-06,
1101
+ "loss": 0.4007,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.3006223073240785,
1106
+ "grad_norm": 0.8179863691329956,
1107
+ "learning_rate": 8.398652096373566e-06,
1108
+ "loss": 0.4188,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.30253709909047394,
1113
+ "grad_norm": 0.8272606730461121,
1114
+ "learning_rate": 8.375355863665155e-06,
1115
+ "loss": 0.4035,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.3044518908568693,
1120
+ "grad_norm": 0.8340199589729309,
1121
+ "learning_rate": 8.351924219781393e-06,
1122
+ "loss": 0.4414,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.3063666826232647,
1127
+ "grad_norm": 0.82643723487854,
1128
+ "learning_rate": 8.328358104743588e-06,
1129
+ "loss": 0.4143,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.30828147438966014,
1134
+ "grad_norm": 0.7954344153404236,
1135
+ "learning_rate": 8.304658463967705e-06,
1136
+ "loss": 0.4128,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.31019626615605556,
1141
+ "grad_norm": 0.7908764481544495,
1142
+ "learning_rate": 8.28082624822645e-06,
1143
+ "loss": 0.3813,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.3121110579224509,
1148
+ "grad_norm": 0.7368812561035156,
1149
+ "learning_rate": 8.256862413611113e-06,
1150
+ "loss": 0.3879,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.31402584968884634,
1155
+ "grad_norm": 0.8204508423805237,
1156
+ "learning_rate": 8.232767921493216e-06,
1157
+ "loss": 0.4308,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.31594064145524176,
1162
+ "grad_norm": 0.8691006302833557,
1163
+ "learning_rate": 8.20854373848595e-06,
1164
+ "loss": 0.4518,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.3178554332216372,
1169
+ "grad_norm": 0.7581012845039368,
1170
+ "learning_rate": 8.184190836405394e-06,
1171
+ "loss": 0.3711,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.31977022498803254,
1176
+ "grad_norm": 0.7817586660385132,
1177
+ "learning_rate": 8.15971019223152e-06,
1178
+ "loss": 0.4057,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.32168501675442795,
1183
+ "grad_norm": 0.7559137344360352,
1184
+ "learning_rate": 8.135102788069015e-06,
1185
+ "loss": 0.361,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.3235998085208234,
1190
+ "grad_norm": 0.7424903512001038,
1191
+ "learning_rate": 8.110369611107869e-06,
1192
+ "loss": 0.3667,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.3255146002872188,
1197
+ "grad_norm": 0.7965791821479797,
1198
+ "learning_rate": 8.085511653583772e-06,
1199
+ "loss": 0.3814,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.32742939205361415,
1204
+ "grad_norm": 0.8504881262779236,
1205
+ "learning_rate": 8.060529912738316e-06,
1206
+ "loss": 0.4453,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.3293441838200096,
1211
+ "grad_norm": 0.8762128353118896,
1212
+ "learning_rate": 8.035425390778975e-06,
1213
+ "loss": 0.4516,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.331258975586405,
1218
+ "grad_norm": 0.8157339692115784,
1219
+ "learning_rate": 8.010199094838915e-06,
1220
+ "loss": 0.4204,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.3331737673528004,
1225
+ "grad_norm": 0.8493944406509399,
1226
+ "learning_rate": 7.984852036936578e-06,
1227
+ "loss": 0.39,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.3350885591191958,
1232
+ "grad_norm": 0.838901937007904,
1233
+ "learning_rate": 7.959385233935087e-06,
1234
+ "loss": 0.4417,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.3370033508855912,
1239
+ "grad_norm": 0.7574141621589661,
1240
+ "learning_rate": 7.933799707501448e-06,
1241
+ "loss": 0.3515,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.3389181426519866,
1246
+ "grad_norm": 0.8099052906036377,
1247
+ "learning_rate": 7.908096484065569e-06,
1248
+ "loss": 0.4091,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.340832934418382,
1253
+ "grad_norm": 0.8116398453712463,
1254
+ "learning_rate": 7.88227659477908e-06,
1255
+ "loss": 0.4137,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.3427477261847774,
1260
+ "grad_norm": 0.7785760164260864,
1261
+ "learning_rate": 7.856341075473963e-06,
1262
+ "loss": 0.3829,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.3446625179511728,
1267
+ "grad_norm": 0.7929257154464722,
1268
+ "learning_rate": 7.830290966620997e-06,
1269
+ "loss": 0.3739,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.3465773097175682,
1274
+ "grad_norm": 0.8796236515045166,
1275
+ "learning_rate": 7.804127313288023e-06,
1276
+ "loss": 0.4027,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.34849210148396365,
1281
+ "grad_norm": 0.8447411060333252,
1282
+ "learning_rate": 7.777851165098012e-06,
1283
+ "loss": 0.4202,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.350406893250359,
1288
+ "grad_norm": 0.7473250031471252,
1289
+ "learning_rate": 7.751463576186957e-06,
1290
+ "loss": 0.3777,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.3523216850167544,
1295
+ "grad_norm": 0.8254420757293701,
1296
+ "learning_rate": 7.72496560516159e-06,
1297
+ "loss": 0.4147,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.35423647678314985,
1302
+ "grad_norm": 0.8766903281211853,
1303
+ "learning_rate": 7.6983583150569e-06,
1304
+ "loss": 0.4212,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.35615126854954526,
1309
+ "grad_norm": 0.8106472492218018,
1310
+ "learning_rate": 7.671642773293506e-06,
1311
+ "loss": 0.3897,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.3580660603159406,
1316
+ "grad_norm": 0.8969345092773438,
1317
+ "learning_rate": 7.644820051634813e-06,
1318
+ "loss": 0.4166,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.35998085208233604,
1323
+ "grad_norm": 0.9210174679756165,
1324
+ "learning_rate": 7.617891226144034e-06,
1325
+ "loss": 0.4744,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.36189564384873146,
1330
+ "grad_norm": 0.8183197379112244,
1331
+ "learning_rate": 7.59085737714101e-06,
1332
+ "loss": 0.3909,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.3638104356151269,
1337
+ "grad_norm": 0.9258884191513062,
1338
+ "learning_rate": 7.563719589158874e-06,
1339
+ "loss": 0.4191,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.36572522738152224,
1344
+ "grad_norm": 0.8379626274108887,
1345
+ "learning_rate": 7.536478950900537e-06,
1346
+ "loss": 0.4081,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.36764001914791766,
1351
+ "grad_norm": 0.8194741010665894,
1352
+ "learning_rate": 7.509136555195025e-06,
1353
+ "loss": 0.3983,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.3695548109143131,
1358
+ "grad_norm": 0.8078919649124146,
1359
+ "learning_rate": 7.481693498953621e-06,
1360
+ "loss": 0.4117,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.3714696026807085,
1365
+ "grad_norm": 0.8059271574020386,
1366
+ "learning_rate": 7.4541508831258695e-06,
1367
+ "loss": 0.3919,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.37338439444710386,
1372
+ "grad_norm": 0.7913739681243896,
1373
+ "learning_rate": 7.4265098126554065e-06,
1374
+ "loss": 0.3786,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.3752991862134993,
1379
+ "grad_norm": 0.8568047285079956,
1380
+ "learning_rate": 7.3987713964356335e-06,
1381
+ "loss": 0.4505,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.3772139779798947,
1386
+ "grad_norm": 0.9244000315666199,
1387
+ "learning_rate": 7.370936747265226e-06,
1388
+ "loss": 0.4546,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.3791287697462901,
1393
+ "grad_norm": 0.7795801162719727,
1394
+ "learning_rate": 7.3430069818035e-06,
1395
+ "loss": 0.3955,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.3810435615126855,
1400
+ "grad_norm": 0.7940351366996765,
1401
+ "learning_rate": 7.314983220525604e-06,
1402
+ "loss": 0.4043,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.3829583532790809,
1407
+ "grad_norm": 0.7889821529388428,
1408
+ "learning_rate": 7.286866587677576e-06,
1409
+ "loss": 0.3883,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.3848731450454763,
1414
+ "grad_norm": 0.857402503490448,
1415
+ "learning_rate": 7.2586582112312355e-06,
1416
+ "loss": 0.4288,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.38678793681187174,
1421
+ "grad_norm": 0.7854819893836975,
1422
+ "learning_rate": 7.230359222838939e-06,
1423
+ "loss": 0.3884,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.3887027285782671,
1428
+ "grad_norm": 0.9061365723609924,
1429
+ "learning_rate": 7.201970757788172e-06,
1430
+ "loss": 0.458,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.3906175203446625,
1435
+ "grad_norm": 0.7978100776672363,
1436
+ "learning_rate": 7.173493954956012e-06,
1437
+ "loss": 0.3903,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.39253231211105793,
1442
+ "grad_norm": 0.8213270902633667,
1443
+ "learning_rate": 7.144929956763438e-06,
1444
+ "loss": 0.4035,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.39444710387745335,
1449
+ "grad_norm": 0.9091420769691467,
1450
+ "learning_rate": 7.116279909129492e-06,
1451
+ "loss": 0.4505,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.3963618956438487,
1456
+ "grad_norm": 0.8489376306533813,
1457
+ "learning_rate": 7.087544961425317e-06,
1458
+ "loss": 0.4037,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.39827668741024413,
1463
+ "grad_norm": 0.805548369884491,
1464
+ "learning_rate": 7.058726266428042e-06,
1465
+ "loss": 0.4053,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.40019147917663955,
1470
+ "grad_norm": 0.7785957455635071,
1471
+ "learning_rate": 7.029824980274536e-06,
1472
+ "loss": 0.3719,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.40210627094303497,
1477
+ "grad_norm": 0.8519039154052734,
1478
+ "learning_rate": 7.0008422624150285e-06,
1479
+ "loss": 0.4176,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 0.40402106270943033,
1484
+ "grad_norm": 0.8210786581039429,
1485
+ "learning_rate": 6.971779275566593e-06,
1486
+ "loss": 0.4162,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 0.40593585447582575,
1491
+ "grad_norm": 0.8121908903121948,
1492
+ "learning_rate": 6.9426371856665005e-06,
1493
+ "loss": 0.4204,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 0.40785064624222117,
1498
+ "grad_norm": 0.8359207510948181,
1499
+ "learning_rate": 6.913417161825449e-06,
1500
+ "loss": 0.4251,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 0.4097654380086166,
1505
+ "grad_norm": 0.8265076279640198,
1506
+ "learning_rate": 6.884120376280658e-06,
1507
+ "loss": 0.3983,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 0.41168022977501195,
1512
+ "grad_norm": 0.8334207534790039,
1513
+ "learning_rate": 6.85474800434884e-06,
1514
+ "loss": 0.4287,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 0.41359502154140737,
1519
+ "grad_norm": 0.7907735705375671,
1520
+ "learning_rate": 6.8253012243790565e-06,
1521
+ "loss": 0.4068,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 0.4155098133078028,
1526
+ "grad_norm": 0.8516376614570618,
1527
+ "learning_rate": 6.795781217705436e-06,
1528
+ "loss": 0.4531,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 0.4174246050741982,
1533
+ "grad_norm": 0.7719292640686035,
1534
+ "learning_rate": 6.76618916859979e-06,
1535
+ "loss": 0.3641,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 0.41933939684059357,
1540
+ "grad_norm": 0.769619882106781,
1541
+ "learning_rate": 6.736526264224101e-06,
1542
+ "loss": 0.389,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 0.421254188606989,
1547
+ "grad_norm": 0.8193688988685608,
1548
+ "learning_rate": 6.706793694582892e-06,
1549
+ "loss": 0.381,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 0.4231689803733844,
1554
+ "grad_norm": 0.8246089220046997,
1555
+ "learning_rate": 6.676992652475487e-06,
1556
+ "loss": 0.4105,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 0.4250837721397798,
1561
+ "grad_norm": 0.7855746746063232,
1562
+ "learning_rate": 6.647124333448165e-06,
1563
+ "loss": 0.3711,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 0.4269985639061752,
1568
+ "grad_norm": 0.8676920533180237,
1569
+ "learning_rate": 6.617189935746191e-06,
1570
+ "loss": 0.4071,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 0.4289133556725706,
1575
+ "grad_norm": 0.8358131647109985,
1576
+ "learning_rate": 6.587190660265752e-06,
1577
+ "loss": 0.425,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 0.430828147438966,
1582
+ "grad_norm": 0.8328396677970886,
1583
+ "learning_rate": 6.55712771050577e-06,
1584
+ "loss": 0.4156,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 0.43274293920536144,
1589
+ "grad_norm": 0.7680657505989075,
1590
+ "learning_rate": 6.52700229251963e-06,
1591
+ "loss": 0.393,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 0.4346577309717568,
1596
+ "grad_norm": 0.8950127959251404,
1597
+ "learning_rate": 6.496815614866792e-06,
1598
+ "loss": 0.4035,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 0.4365725227381522,
1603
+ "grad_norm": 0.8672182559967041,
1604
+ "learning_rate": 6.466568888564303e-06,
1605
+ "loss": 0.4581,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 0.43848731450454764,
1610
+ "grad_norm": 0.8580407500267029,
1611
+ "learning_rate": 6.436263327038225e-06,
1612
+ "loss": 0.4039,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 0.44040210627094306,
1617
+ "grad_norm": 0.8145782351493835,
1618
+ "learning_rate": 6.405900146074941e-06,
1619
+ "loss": 0.3873,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 0.4423168980373384,
1624
+ "grad_norm": 0.8403171896934509,
1625
+ "learning_rate": 6.375480563772391e-06,
1626
+ "loss": 0.4373,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 0.44423168980373384,
1631
+ "grad_norm": 0.7500009536743164,
1632
+ "learning_rate": 6.3450058004912004e-06,
1633
+ "loss": 0.3661,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 0.44614648157012926,
1638
+ "grad_norm": 0.8253698945045471,
1639
+ "learning_rate": 6.314477078805724e-06,
1640
+ "loss": 0.4005,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 0.4480612733365247,
1645
+ "grad_norm": 0.7586554884910583,
1646
+ "learning_rate": 6.283895623454997e-06,
1647
+ "loss": 0.3858,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 0.44997606510292004,
1652
+ "grad_norm": 0.8090248107910156,
1653
+ "learning_rate": 6.2532626612936035e-06,
1654
+ "loss": 0.4085,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 0.45189085686931546,
1659
+ "grad_norm": 0.8589561581611633,
1660
+ "learning_rate": 6.2225794212424565e-06,
1661
+ "loss": 0.4402,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 0.4538056486357109,
1666
+ "grad_norm": 0.8317797780036926,
1667
+ "learning_rate": 6.191847134239496e-06,
1668
+ "loss": 0.4,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 0.4557204404021063,
1673
+ "grad_norm": 0.8422788381576538,
1674
+ "learning_rate": 6.161067033190311e-06,
1675
+ "loss": 0.4026,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 0.45763523216850166,
1680
+ "grad_norm": 0.763214647769928,
1681
+ "learning_rate": 6.130240352918675e-06,
1682
+ "loss": 0.3976,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 0.4595500239348971,
1687
+ "grad_norm": 0.8719058036804199,
1688
+ "learning_rate": 6.0993683301170046e-06,
1689
+ "loss": 0.4356,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 0.4614648157012925,
1694
+ "grad_norm": 0.7786772847175598,
1695
+ "learning_rate": 6.068452203296754e-06,
1696
+ "loss": 0.3858,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 0.4633796074676879,
1701
+ "grad_norm": 0.7639849185943604,
1702
+ "learning_rate": 6.0374932127387234e-06,
1703
+ "loss": 0.3936,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 0.4652943992340833,
1708
+ "grad_norm": 0.8484832644462585,
1709
+ "learning_rate": 6.006492600443301e-06,
1710
+ "loss": 0.4006,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 0.4672091910004787,
1715
+ "grad_norm": 0.835634708404541,
1716
+ "learning_rate": 5.975451610080643e-06,
1717
+ "loss": 0.3826,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 0.4691239827668741,
1722
+ "grad_norm": 0.8132709860801697,
1723
+ "learning_rate": 5.944371486940772e-06,
1724
+ "loss": 0.3934,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 0.47103877453326953,
1729
+ "grad_norm": 0.93300861120224,
1730
+ "learning_rate": 5.913253477883629e-06,
1731
+ "loss": 0.4376,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 0.4729535662996649,
1736
+ "grad_norm": 0.8036344647407532,
1737
+ "learning_rate": 5.882098831289044e-06,
1738
+ "loss": 0.3892,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 0.4748683580660603,
1743
+ "grad_norm": 0.7971835732460022,
1744
+ "learning_rate": 5.850908797006656e-06,
1745
+ "loss": 0.399,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 0.47678314983245573,
1750
+ "grad_norm": 0.8496800065040588,
1751
+ "learning_rate": 5.819684626305776e-06,
1752
+ "loss": 0.4385,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 0.47869794159885115,
1757
+ "grad_norm": 0.8178644776344299,
1758
+ "learning_rate": 5.788427571825186e-06,
1759
+ "loss": 0.3946,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 0.4806127333652465,
1764
+ "grad_norm": 0.8840231895446777,
1765
+ "learning_rate": 5.757138887522884e-06,
1766
+ "loss": 0.4125,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 0.48252752513164193,
1771
+ "grad_norm": 0.831671416759491,
1772
+ "learning_rate": 5.725819828625782e-06,
1773
+ "loss": 0.413,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 0.48444231689803735,
1778
+ "grad_norm": 0.7894381880760193,
1779
+ "learning_rate": 5.694471651579346e-06,
1780
+ "loss": 0.399,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 0.48635710866443277,
1785
+ "grad_norm": 0.8008851408958435,
1786
+ "learning_rate": 5.663095613997196e-06,
1787
+ "loss": 0.3875,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 0.48827190043082813,
1792
+ "grad_norm": 0.7766909003257751,
1793
+ "learning_rate": 5.631692974610647e-06,
1794
+ "loss": 0.3755,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 0.49018669219722355,
1799
+ "grad_norm": 0.8729162812232971,
1800
+ "learning_rate": 5.600264993218215e-06,
1801
+ "loss": 0.4103,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 0.49210148396361897,
1806
+ "grad_norm": 0.8618749380111694,
1807
+ "learning_rate": 5.568812930635076e-06,
1808
+ "loss": 0.3963,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 0.4940162757300144,
1813
+ "grad_norm": 0.8580813407897949,
1814
+ "learning_rate": 5.537338048642487e-06,
1815
+ "loss": 0.4353,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 0.49593106749640975,
1820
+ "grad_norm": 0.8418040871620178,
1821
+ "learning_rate": 5.505841609937162e-06,
1822
+ "loss": 0.3801,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 0.49784585926280517,
1827
+ "grad_norm": 0.7449955940246582,
1828
+ "learning_rate": 5.474324878080623e-06,
1829
+ "loss": 0.3355,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 0.4997606510292006,
1834
+ "grad_norm": 0.8238184452056885,
1835
+ "learning_rate": 5.4427891174485014e-06,
1836
+ "loss": 0.3868,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 0.501675442795596,
1841
+ "grad_norm": 0.8558638691902161,
1842
+ "learning_rate": 5.41123559317982e-06,
1843
+ "loss": 0.4149,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 0.5035902345619914,
1848
+ "grad_norm": 0.836510956287384,
1849
+ "learning_rate": 5.379665571126232e-06,
1850
+ "loss": 0.378,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 0.5055050263283868,
1855
+ "grad_norm": 0.7436261177062988,
1856
+ "learning_rate": 5.348080317801244e-06,
1857
+ "loss": 0.3672,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 0.5074198180947822,
1862
+ "grad_norm": 0.897144079208374,
1863
+ "learning_rate": 5.316481100329408e-06,
1864
+ "loss": 0.4309,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 0.5093346098611776,
1869
+ "grad_norm": 0.8236995935440063,
1870
+ "learning_rate": 5.284869186395478e-06,
1871
+ "loss": 0.4164,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 0.511249401627573,
1876
+ "grad_norm": 0.8249524831771851,
1877
+ "learning_rate": 5.253245844193564e-06,
1878
+ "loss": 0.408,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 0.5131641933939685,
1883
+ "grad_norm": 0.8149250745773315,
1884
+ "learning_rate": 5.22161234237625e-06,
1885
+ "loss": 0.4014,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 0.5150789851603638,
1890
+ "grad_norm": 0.8144116401672363,
1891
+ "learning_rate": 5.189969950003697e-06,
1892
+ "loss": 0.4013,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 0.5169937769267592,
1897
+ "grad_norm": 0.8883258700370789,
1898
+ "learning_rate": 5.158319936492736e-06,
1899
+ "loss": 0.4262,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 0.5189085686931546,
1904
+ "grad_norm": 0.7828565239906311,
1905
+ "learning_rate": 5.12666357156594e-06,
1906
+ "loss": 0.3877,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 0.52082336045955,
1911
+ "grad_norm": 0.8680728673934937,
1912
+ "learning_rate": 5.0950021252006845e-06,
1913
+ "loss": 0.4288,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 0.5227381522259454,
1918
+ "grad_norm": 0.8556041121482849,
1919
+ "learning_rate": 5.063336867578201e-06,
1920
+ "loss": 0.4397,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 0.5246529439923409,
1925
+ "grad_norm": 0.83294278383255,
1926
+ "learning_rate": 5.0316690690326175e-06,
1927
+ "loss": 0.3855,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 0.5265677357587363,
1932
+ "grad_norm": 0.8231511116027832,
1933
+ "learning_rate": 5e-06,
1934
+ "loss": 0.3712,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 0.5284825275251317,
1939
+ "grad_norm": 0.8193358182907104,
1940
+ "learning_rate": 4.9683309309673825e-06,
1941
+ "loss": 0.3833,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 0.530397319291527,
1946
+ "grad_norm": 0.7521802186965942,
1947
+ "learning_rate": 4.936663132421801e-06,
1948
+ "loss": 0.3668,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 0.5323121110579224,
1953
+ "grad_norm": 0.7623764872550964,
1954
+ "learning_rate": 4.904997874799316e-06,
1955
+ "loss": 0.3825,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 0.5342269028243178,
1960
+ "grad_norm": 0.8101343512535095,
1961
+ "learning_rate": 4.873336428434062e-06,
1962
+ "loss": 0.3864,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 0.5361416945907133,
1967
+ "grad_norm": 0.8006393909454346,
1968
+ "learning_rate": 4.841680063507265e-06,
1969
+ "loss": 0.4227,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 0.5380564863571087,
1974
+ "grad_norm": 0.8386540412902832,
1975
+ "learning_rate": 4.8100300499963045e-06,
1976
+ "loss": 0.4131,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 0.5399712781235041,
1981
+ "grad_norm": 0.7718150019645691,
1982
+ "learning_rate": 4.778387657623751e-06,
1983
+ "loss": 0.3768,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 0.5418860698898995,
1988
+ "grad_norm": 0.8466550707817078,
1989
+ "learning_rate": 4.746754155806437e-06,
1990
+ "loss": 0.4512,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 0.5438008616562949,
1995
+ "grad_norm": 0.8129767775535583,
1996
+ "learning_rate": 4.715130813604522e-06,
1997
+ "loss": 0.3961,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 0.5457156534226902,
2002
+ "grad_norm": 0.8341888189315796,
2003
+ "learning_rate": 4.683518899670594e-06,
2004
+ "loss": 0.3919,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 0.5476304451890857,
2009
+ "grad_norm": 0.8497266173362732,
2010
+ "learning_rate": 4.651919682198756e-06,
2011
+ "loss": 0.394,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 0.5495452369554811,
2016
+ "grad_norm": 0.8146570920944214,
2017
+ "learning_rate": 4.62033442887377e-06,
2018
+ "loss": 0.3989,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 0.5514600287218765,
2023
+ "grad_norm": 0.806999921798706,
2024
+ "learning_rate": 4.588764406820181e-06,
2025
+ "loss": 0.4288,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 0.5533748204882719,
2030
+ "grad_norm": 0.7479027509689331,
2031
+ "learning_rate": 4.5572108825515e-06,
2032
+ "loss": 0.3616,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 0.5552896122546673,
2037
+ "grad_norm": 0.7727148532867432,
2038
+ "learning_rate": 4.5256751219193784e-06,
2039
+ "loss": 0.3902,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 0.5572044040210627,
2044
+ "grad_norm": 0.8226932883262634,
2045
+ "learning_rate": 4.49415839006284e-06,
2046
+ "loss": 0.4038,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 0.5591191957874582,
2051
+ "grad_norm": 0.8253747224807739,
2052
+ "learning_rate": 4.462661951357515e-06,
2053
+ "loss": 0.4052,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 0.5610339875538535,
2058
+ "grad_norm": 0.8564761877059937,
2059
+ "learning_rate": 4.431187069364927e-06,
2060
+ "loss": 0.4099,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 0.5629487793202489,
2065
+ "grad_norm": 0.812239408493042,
2066
+ "learning_rate": 4.3997350067817866e-06,
2067
+ "loss": 0.3939,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 0.5648635710866443,
2072
+ "grad_norm": 0.8617464303970337,
2073
+ "learning_rate": 4.368307025389355e-06,
2074
+ "loss": 0.4189,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 0.5667783628530397,
2079
+ "grad_norm": 0.8013660907745361,
2080
+ "learning_rate": 4.336904386002805e-06,
2081
+ "loss": 0.3853,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 0.5686931546194351,
2086
+ "grad_norm": 0.8232107162475586,
2087
+ "learning_rate": 4.3055283484206565e-06,
2088
+ "loss": 0.4228,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 0.5706079463858306,
2093
+ "grad_norm": 0.7978037595748901,
2094
+ "learning_rate": 4.27418017137422e-06,
2095
+ "loss": 0.3745,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 0.572522738152226,
2100
+ "grad_norm": 0.786128044128418,
2101
+ "learning_rate": 4.2428611124771184e-06,
2102
+ "loss": 0.3708,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 0.5744375299186214,
2107
+ "grad_norm": 0.7764582633972168,
2108
+ "learning_rate": 4.211572428174816e-06,
2109
+ "loss": 0.3617,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 0.5763523216850167,
2114
+ "grad_norm": 0.8071704506874084,
2115
+ "learning_rate": 4.180315373694225e-06,
2116
+ "loss": 0.4013,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 0.5782671134514121,
2121
+ "grad_norm": 0.8064809441566467,
2122
+ "learning_rate": 4.149091202993345e-06,
2123
+ "loss": 0.3593,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 0.5801819052178075,
2128
+ "grad_norm": 0.8199291229248047,
2129
+ "learning_rate": 4.11790116871096e-06,
2130
+ "loss": 0.4174,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 0.582096696984203,
2135
+ "grad_norm": 0.9001505374908447,
2136
+ "learning_rate": 4.086746522116372e-06,
2137
+ "loss": 0.4535,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 0.5840114887505984,
2142
+ "grad_norm": 0.7408649325370789,
2143
+ "learning_rate": 4.055628513059231e-06,
2144
+ "loss": 0.3874,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 0.5859262805169938,
2149
+ "grad_norm": 0.8281508684158325,
2150
+ "learning_rate": 4.02454838991936e-06,
2151
+ "loss": 0.3783,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 0.5878410722833892,
2156
+ "grad_norm": 0.8515765070915222,
2157
+ "learning_rate": 3.993507399556699e-06,
2158
+ "loss": 0.4306,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 0.5897558640497846,
2163
+ "grad_norm": 0.8016983270645142,
2164
+ "learning_rate": 3.962506787261278e-06,
2165
+ "loss": 0.3988,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 0.59167065581618,
2170
+ "grad_norm": 0.7859688997268677,
2171
+ "learning_rate": 3.931547796703245e-06,
2172
+ "loss": 0.3801,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 0.5935854475825754,
2177
+ "grad_norm": 0.8068103194236755,
2178
+ "learning_rate": 3.900631669882996e-06,
2179
+ "loss": 0.3925,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 0.5955002393489708,
2184
+ "grad_norm": 0.811817467212677,
2185
+ "learning_rate": 3.869759647081326e-06,
2186
+ "loss": 0.3693,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 0.5974150311153662,
2191
+ "grad_norm": 0.7820096611976624,
2192
+ "learning_rate": 3.83893296680969e-06,
2193
+ "loss": 0.3837,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 0.5993298228817616,
2198
+ "grad_norm": 0.7839851379394531,
2199
+ "learning_rate": 3.8081528657605045e-06,
2200
+ "loss": 0.3762,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 0.601244614648157,
2205
+ "grad_norm": 0.7672075033187866,
2206
+ "learning_rate": 3.7774205787575455e-06,
2207
+ "loss": 0.3872,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 0.6031594064145525,
2212
+ "grad_norm": 0.8048450946807861,
2213
+ "learning_rate": 3.7467373387063973e-06,
2214
+ "loss": 0.4239,
2215
+ "step": 315
2216
+ }
2217
+ ],
2218
+ "logging_steps": 1,
2219
+ "max_steps": 522,
2220
+ "num_input_tokens_seen": 0,
2221
+ "num_train_epochs": 1,
2222
+ "save_steps": 105,
2223
+ "stateful_callbacks": {
2224
+ "TrainerControl": {
2225
+ "args": {
2226
+ "should_epoch_stop": false,
2227
+ "should_evaluate": false,
2228
+ "should_log": false,
2229
+ "should_save": true,
2230
+ "should_training_stop": false
2231
+ },
2232
+ "attributes": {}
2233
+ }
2234
+ },
2235
+ "total_flos": 1.6526141583628698e+17,
2236
+ "train_batch_size": 8,
2237
+ "trial_name": null,
2238
+ "trial_params": null
2239
+ }
checkpoint-315/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66ffb9355835ef1e788c4b73fef523b9594f231dd9bde187500393bdf3018899
3
+ size 10936
checkpoint-315/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-315/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoint-420/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-420/config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "eos_token_id": 151645,
7
+ "hidden_act": "silu",
8
+ "hidden_size": 1536,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 8960,
11
+ "max_position_embeddings": 32768,
12
+ "max_window_layers": 21,
13
+ "model_type": "qwen2",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 28,
16
+ "num_key_value_heads": 2,
17
+ "rms_norm_eps": 1e-06,
18
+ "rope_scaling": null,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": 32768,
21
+ "tie_word_embeddings": true,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.51.3",
24
+ "use_cache": false,
25
+ "use_sliding_window": false,
26
+ "vocab_size": 151936
27
+ }
checkpoint-420/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.51.3"
14
+ }
checkpoint-420/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step420
checkpoint-420/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-420/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:104b680822dddde737cee0c31b472c44542d6f82418d9197f380cd5eca875cc6
3
+ size 3554214752
checkpoint-420/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad792af33c7cfa8b15298ecc9d976ebdcdeb444ca0e704c7b0657f41ee6547eb
3
+ size 14512
checkpoint-420/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:722c924fceffd85f8ab1a5445f1ea1e6c502644b6a42e2ff6b5a9a76ea26e1fe
3
+ size 14512
checkpoint-420/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8053bdf2e6680f6d7e7620f3d7ecd8cf15c34074cc261de25bfc326ba659e816
3
+ size 1064
checkpoint-420/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-420/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-420/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-420/trainer_state.json ADDED
@@ -0,0 +1,2974 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.8042125418860699,
6
+ "eval_steps": 500,
7
+ "global_step": 420,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0019147917663954045,
14
+ "grad_norm": 2.4612040519714355,
15
+ "learning_rate": 0.0,
16
+ "loss": 0.6068,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.003829583532790809,
21
+ "grad_norm": 2.5184295177459717,
22
+ "learning_rate": 3.846153846153847e-07,
23
+ "loss": 0.5979,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.0057443752991862135,
28
+ "grad_norm": 2.515437602996826,
29
+ "learning_rate": 7.692307692307694e-07,
30
+ "loss": 0.6487,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.007659167065581618,
35
+ "grad_norm": 2.2364346981048584,
36
+ "learning_rate": 1.153846153846154e-06,
37
+ "loss": 0.6041,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.009573958831977022,
42
+ "grad_norm": 2.1685123443603516,
43
+ "learning_rate": 1.5384615384615387e-06,
44
+ "loss": 0.5414,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.011488750598372427,
49
+ "grad_norm": 2.6281416416168213,
50
+ "learning_rate": 1.9230769230769234e-06,
51
+ "loss": 0.5794,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.013403542364767831,
56
+ "grad_norm": 2.0852179527282715,
57
+ "learning_rate": 2.307692307692308e-06,
58
+ "loss": 0.5518,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.015318334131163236,
63
+ "grad_norm": 1.9601969718933105,
64
+ "learning_rate": 2.6923076923076923e-06,
65
+ "loss": 0.557,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.01723312589755864,
70
+ "grad_norm": 1.822036862373352,
71
+ "learning_rate": 3.0769230769230774e-06,
72
+ "loss": 0.5732,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.019147917663954045,
77
+ "grad_norm": 1.6944836378097534,
78
+ "learning_rate": 3.4615384615384617e-06,
79
+ "loss": 0.5451,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.02106270943034945,
84
+ "grad_norm": 1.521175503730774,
85
+ "learning_rate": 3.846153846153847e-06,
86
+ "loss": 0.5148,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.022977501196744854,
91
+ "grad_norm": 1.573475956916809,
92
+ "learning_rate": 4.230769230769231e-06,
93
+ "loss": 0.512,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.02489229296314026,
98
+ "grad_norm": 1.4469544887542725,
99
+ "learning_rate": 4.615384615384616e-06,
100
+ "loss": 0.5542,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.026807084729535663,
105
+ "grad_norm": 1.3531206846237183,
106
+ "learning_rate": 5e-06,
107
+ "loss": 0.4868,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.028721876495931067,
112
+ "grad_norm": 1.3297739028930664,
113
+ "learning_rate": 5.384615384615385e-06,
114
+ "loss": 0.4713,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.030636668262326472,
119
+ "grad_norm": 1.430997610092163,
120
+ "learning_rate": 5.769230769230769e-06,
121
+ "loss": 0.4683,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.032551460028721876,
126
+ "grad_norm": 1.2832906246185303,
127
+ "learning_rate": 6.153846153846155e-06,
128
+ "loss": 0.4275,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.03446625179511728,
133
+ "grad_norm": 1.1449981927871704,
134
+ "learning_rate": 6.538461538461539e-06,
135
+ "loss": 0.4692,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.036381043561512685,
140
+ "grad_norm": 1.1069403886795044,
141
+ "learning_rate": 6.923076923076923e-06,
142
+ "loss": 0.4925,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.03829583532790809,
147
+ "grad_norm": 1.066596508026123,
148
+ "learning_rate": 7.307692307692308e-06,
149
+ "loss": 0.4809,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.040210627094303494,
154
+ "grad_norm": 1.0530707836151123,
155
+ "learning_rate": 7.692307692307694e-06,
156
+ "loss": 0.4645,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.0421254188606989,
161
+ "grad_norm": 1.0063157081604004,
162
+ "learning_rate": 8.076923076923077e-06,
163
+ "loss": 0.465,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.0440402106270943,
168
+ "grad_norm": 1.1088693141937256,
169
+ "learning_rate": 8.461538461538462e-06,
170
+ "loss": 0.4824,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.04595500239348971,
175
+ "grad_norm": 1.0253574848175049,
176
+ "learning_rate": 8.846153846153847e-06,
177
+ "loss": 0.4559,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.04786979415988511,
182
+ "grad_norm": 1.0317028760910034,
183
+ "learning_rate": 9.230769230769232e-06,
184
+ "loss": 0.4687,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.04978458592628052,
189
+ "grad_norm": 0.9329833388328552,
190
+ "learning_rate": 9.615384615384616e-06,
191
+ "loss": 0.4785,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.05169937769267592,
196
+ "grad_norm": 0.9087225794792175,
197
+ "learning_rate": 1e-05,
198
+ "loss": 0.4505,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.053614169459071326,
203
+ "grad_norm": 1.0503875017166138,
204
+ "learning_rate": 9.999899706000774e-06,
205
+ "loss": 0.4866,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.05552896122546673,
210
+ "grad_norm": 0.9580711722373962,
211
+ "learning_rate": 9.999598828026644e-06,
212
+ "loss": 0.4759,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.057443752991862135,
217
+ "grad_norm": 0.8906879425048828,
218
+ "learning_rate": 9.999097378148116e-06,
219
+ "loss": 0.4455,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.05935854475825754,
224
+ "grad_norm": 0.8807913064956665,
225
+ "learning_rate": 9.998395376482152e-06,
226
+ "loss": 0.4335,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.061273336524652944,
231
+ "grad_norm": 0.8745759129524231,
232
+ "learning_rate": 9.99749285119138e-06,
233
+ "loss": 0.43,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.06318812829104835,
238
+ "grad_norm": 0.9661962389945984,
239
+ "learning_rate": 9.996389838482942e-06,
240
+ "loss": 0.5295,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.06510292005744375,
245
+ "grad_norm": 0.9019286036491394,
246
+ "learning_rate": 9.995086382607064e-06,
247
+ "loss": 0.4774,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.06701771182383916,
252
+ "grad_norm": 0.8906053900718689,
253
+ "learning_rate": 9.993582535855265e-06,
254
+ "loss": 0.4577,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.06893250359023456,
259
+ "grad_norm": 0.8857560753822327,
260
+ "learning_rate": 9.991878358558267e-06,
261
+ "loss": 0.4785,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.07084729535662997,
266
+ "grad_norm": 0.9806991219520569,
267
+ "learning_rate": 9.989973919083576e-06,
268
+ "loss": 0.4662,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.07276208712302537,
273
+ "grad_norm": 0.9356399774551392,
274
+ "learning_rate": 9.987869293832727e-06,
275
+ "loss": 0.4669,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.07467687888942078,
280
+ "grad_norm": 0.7924108505249023,
281
+ "learning_rate": 9.985564567238237e-06,
282
+ "loss": 0.4451,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.07659167065581618,
287
+ "grad_norm": 0.9577414393424988,
288
+ "learning_rate": 9.983059831760205e-06,
289
+ "loss": 0.4837,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.07850646242221158,
294
+ "grad_norm": 0.8300902843475342,
295
+ "learning_rate": 9.980355187882606e-06,
296
+ "loss": 0.4438,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.08042125418860699,
301
+ "grad_norm": 0.8420023918151855,
302
+ "learning_rate": 9.977450744109258e-06,
303
+ "loss": 0.4223,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.0823360459550024,
308
+ "grad_norm": 0.8297982811927795,
309
+ "learning_rate": 9.974346616959476e-06,
310
+ "loss": 0.4366,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.0842508377213978,
315
+ "grad_norm": 0.9187960624694824,
316
+ "learning_rate": 9.97104293096339e-06,
317
+ "loss": 0.4739,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.0861656294877932,
322
+ "grad_norm": 0.9509177803993225,
323
+ "learning_rate": 9.967539818656953e-06,
324
+ "loss": 0.4587,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.0880804212541886,
329
+ "grad_norm": 0.9072842001914978,
330
+ "learning_rate": 9.96383742057662e-06,
331
+ "loss": 0.5177,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.08999521302058401,
336
+ "grad_norm": 0.8744245767593384,
337
+ "learning_rate": 9.959935885253715e-06,
338
+ "loss": 0.4454,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.09191000478697942,
343
+ "grad_norm": 0.8209521174430847,
344
+ "learning_rate": 9.955835369208475e-06,
345
+ "loss": 0.4243,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.09382479655337482,
350
+ "grad_norm": 0.793670654296875,
351
+ "learning_rate": 9.951536036943753e-06,
352
+ "loss": 0.4256,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.09573958831977022,
357
+ "grad_norm": 0.8487685322761536,
358
+ "learning_rate": 9.94703806093845e-06,
359
+ "loss": 0.4625,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.09765438008616563,
364
+ "grad_norm": 0.8209853768348694,
365
+ "learning_rate": 9.942341621640558e-06,
366
+ "loss": 0.4385,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.09956917185256103,
371
+ "grad_norm": 0.8096733689308167,
372
+ "learning_rate": 9.937446907459954e-06,
373
+ "loss": 0.4575,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.10148396361895644,
378
+ "grad_norm": 0.8126389384269714,
379
+ "learning_rate": 9.932354114760819e-06,
380
+ "loss": 0.4262,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.10339875538535184,
385
+ "grad_norm": 0.968154788017273,
386
+ "learning_rate": 9.92706344785377e-06,
387
+ "loss": 0.5304,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.10531354715174725,
392
+ "grad_norm": 0.7662584781646729,
393
+ "learning_rate": 9.921575118987672e-06,
394
+ "loss": 0.4076,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.10722833891814265,
399
+ "grad_norm": 0.8463670015335083,
400
+ "learning_rate": 9.915889348341098e-06,
401
+ "loss": 0.4434,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.10914313068453806,
406
+ "grad_norm": 0.8167222142219543,
407
+ "learning_rate": 9.910006364013522e-06,
408
+ "loss": 0.4079,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.11105792245093346,
413
+ "grad_norm": 0.8205484747886658,
414
+ "learning_rate": 9.903926402016153e-06,
415
+ "loss": 0.4167,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.11297271421732887,
420
+ "grad_norm": 0.901168942451477,
421
+ "learning_rate": 9.897649706262474e-06,
422
+ "loss": 0.4762,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.11488750598372427,
427
+ "grad_norm": 0.8437636494636536,
428
+ "learning_rate": 9.891176528558451e-06,
429
+ "loss": 0.4327,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.11680229775011967,
434
+ "grad_norm": 0.8409866094589233,
435
+ "learning_rate": 9.884507128592435e-06,
436
+ "loss": 0.446,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.11871708951651508,
441
+ "grad_norm": 0.8613469004631042,
442
+ "learning_rate": 9.877641773924748e-06,
443
+ "loss": 0.4217,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.12063188128291048,
448
+ "grad_norm": 0.8663684129714966,
449
+ "learning_rate": 9.870580739976936e-06,
450
+ "loss": 0.4211,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.12254667304930589,
455
+ "grad_norm": 0.8156937956809998,
456
+ "learning_rate": 9.863324310020735e-06,
457
+ "loss": 0.4273,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.12446146481570129,
462
+ "grad_norm": 0.8753077387809753,
463
+ "learning_rate": 9.855872775166696e-06,
464
+ "loss": 0.4663,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.1263762565820967,
469
+ "grad_norm": 0.81593918800354,
470
+ "learning_rate": 9.848226434352513e-06,
471
+ "loss": 0.4398,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.12829104834849211,
476
+ "grad_norm": 0.8915799260139465,
477
+ "learning_rate": 9.840385594331022e-06,
478
+ "loss": 0.4758,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.1302058401148875,
483
+ "grad_norm": 0.8952628374099731,
484
+ "learning_rate": 9.83235056965791e-06,
485
+ "loss": 0.4884,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.13212063188128292,
490
+ "grad_norm": 0.874907910823822,
491
+ "learning_rate": 9.824121682679072e-06,
492
+ "loss": 0.4411,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.13403542364767831,
497
+ "grad_norm": 0.8349279761314392,
498
+ "learning_rate": 9.815699263517712e-06,
499
+ "loss": 0.438,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.13595021541407373,
504
+ "grad_norm": 0.8123260736465454,
505
+ "learning_rate": 9.807083650061063e-06,
506
+ "loss": 0.4483,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.13786500718046912,
511
+ "grad_norm": 0.8606418371200562,
512
+ "learning_rate": 9.798275187946859e-06,
513
+ "loss": 0.44,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.13977979894686454,
518
+ "grad_norm": 0.778163492679596,
519
+ "learning_rate": 9.789274230549456e-06,
520
+ "loss": 0.4054,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.14169459071325993,
525
+ "grad_norm": 0.7578093409538269,
526
+ "learning_rate": 9.780081138965663e-06,
527
+ "loss": 0.3794,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.14360938247965535,
532
+ "grad_norm": 0.904350221157074,
533
+ "learning_rate": 9.770696282000245e-06,
534
+ "loss": 0.4538,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.14552417424605074,
539
+ "grad_norm": 0.8594577312469482,
540
+ "learning_rate": 9.761120036151138e-06,
541
+ "loss": 0.4211,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.14743896601244616,
546
+ "grad_norm": 0.7970111966133118,
547
+ "learning_rate": 9.751352785594337e-06,
548
+ "loss": 0.401,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.14935375777884155,
553
+ "grad_norm": 0.9434993267059326,
554
+ "learning_rate": 9.741394922168495e-06,
555
+ "loss": 0.4868,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.15126854954523697,
560
+ "grad_norm": 0.7988068461418152,
561
+ "learning_rate": 9.731246845359187e-06,
562
+ "loss": 0.4088,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.15318334131163236,
567
+ "grad_norm": 0.7606924176216125,
568
+ "learning_rate": 9.720908962282893e-06,
569
+ "loss": 0.4026,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.15509813307802778,
574
+ "grad_norm": 0.8167851567268372,
575
+ "learning_rate": 9.710381687670675e-06,
576
+ "loss": 0.4347,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.15701292484442317,
581
+ "grad_norm": 0.910528838634491,
582
+ "learning_rate": 9.699665443851518e-06,
583
+ "loss": 0.4445,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.1589277166108186,
588
+ "grad_norm": 0.77234947681427,
589
+ "learning_rate": 9.688760660735403e-06,
590
+ "loss": 0.4022,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.16084250837721398,
595
+ "grad_norm": 0.7472870945930481,
596
+ "learning_rate": 9.677667775796052e-06,
597
+ "loss": 0.3996,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.1627573001436094,
602
+ "grad_norm": 0.874338686466217,
603
+ "learning_rate": 9.666387234053385e-06,
604
+ "loss": 0.45,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.1646720919100048,
609
+ "grad_norm": 0.8861207962036133,
610
+ "learning_rate": 9.654919488055656e-06,
611
+ "loss": 0.4388,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.1665868836764002,
616
+ "grad_norm": 0.8397772908210754,
617
+ "learning_rate": 9.643264997861312e-06,
618
+ "loss": 0.4182,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.1685016754427956,
623
+ "grad_norm": 0.8450121283531189,
624
+ "learning_rate": 9.631424231020523e-06,
625
+ "loss": 0.4433,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.170416467209191,
630
+ "grad_norm": 0.908657431602478,
631
+ "learning_rate": 9.619397662556434e-06,
632
+ "loss": 0.4481,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.1723312589755864,
637
+ "grad_norm": 0.9613133072853088,
638
+ "learning_rate": 9.607185774946106e-06,
639
+ "loss": 0.5182,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.17424605074198182,
644
+ "grad_norm": 0.9044798016548157,
645
+ "learning_rate": 9.594789058101154e-06,
646
+ "loss": 0.4445,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.1761608425083772,
651
+ "grad_norm": 0.8073885440826416,
652
+ "learning_rate": 9.582208009348104e-06,
653
+ "loss": 0.4103,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.17807563427477263,
658
+ "grad_norm": 0.866552472114563,
659
+ "learning_rate": 9.569443133408434e-06,
660
+ "loss": 0.4573,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.17999042604116802,
665
+ "grad_norm": 0.8651822805404663,
666
+ "learning_rate": 9.556494942378328e-06,
667
+ "loss": 0.4369,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.18190521780756344,
672
+ "grad_norm": 0.8955625295639038,
673
+ "learning_rate": 9.543363955708124e-06,
674
+ "loss": 0.4493,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.18382000957395883,
679
+ "grad_norm": 0.7363105416297913,
680
+ "learning_rate": 9.530050700181499e-06,
681
+ "loss": 0.3666,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.18573480134035425,
686
+ "grad_norm": 0.7756189107894897,
687
+ "learning_rate": 9.5165557098943e-06,
688
+ "loss": 0.4105,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.18764959310674964,
693
+ "grad_norm": 0.8105975985527039,
694
+ "learning_rate": 9.502879526233151e-06,
695
+ "loss": 0.4026,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.18956438487314506,
700
+ "grad_norm": 0.8235639929771423,
701
+ "learning_rate": 9.48902269785371e-06,
702
+ "loss": 0.4235,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.19147917663954045,
707
+ "grad_norm": 0.9181493520736694,
708
+ "learning_rate": 9.47498578065867e-06,
709
+ "loss": 0.4123,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.19339396840593587,
714
+ "grad_norm": 0.8257604241371155,
715
+ "learning_rate": 9.460769337775461e-06,
716
+ "loss": 0.4304,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.19530876017233126,
721
+ "grad_norm": 0.8084312081336975,
722
+ "learning_rate": 9.446373939533642e-06,
723
+ "loss": 0.3962,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.19722355193872668,
728
+ "grad_norm": 0.8189854025840759,
729
+ "learning_rate": 9.431800163442043e-06,
730
+ "loss": 0.4111,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.19913834370512207,
735
+ "grad_norm": 0.8247345089912415,
736
+ "learning_rate": 9.417048594165572e-06,
737
+ "loss": 0.4485,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.20105313547151749,
742
+ "grad_norm": 0.8686959147453308,
743
+ "learning_rate": 9.402119823501787e-06,
744
+ "loss": 0.4304,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.20296792723791288,
749
+ "grad_norm": 0.839127779006958,
750
+ "learning_rate": 9.387014450357128e-06,
751
+ "loss": 0.4148,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.2048827190043083,
756
+ "grad_norm": 0.9121819734573364,
757
+ "learning_rate": 9.371733080722911e-06,
758
+ "loss": 0.4842,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.20679751077070369,
763
+ "grad_norm": 0.8987030982971191,
764
+ "learning_rate": 9.356276327651006e-06,
765
+ "loss": 0.4387,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.2087123025370991,
770
+ "grad_norm": 0.8091103434562683,
771
+ "learning_rate": 9.340644811229243e-06,
772
+ "loss": 0.4024,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.2106270943034945,
777
+ "grad_norm": 0.7413907051086426,
778
+ "learning_rate": 9.324839158556542e-06,
779
+ "loss": 0.3791,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.2125418860698899,
784
+ "grad_norm": 0.8281195163726807,
785
+ "learning_rate": 9.308860003717748e-06,
786
+ "loss": 0.4151,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.2144566778362853,
791
+ "grad_norm": 0.8579381704330444,
792
+ "learning_rate": 9.292707987758202e-06,
793
+ "loss": 0.4446,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.21637146960268072,
798
+ "grad_norm": 0.833625853061676,
799
+ "learning_rate": 9.27638375865801e-06,
800
+ "loss": 0.4311,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.2182862613690761,
805
+ "grad_norm": 0.8704817891120911,
806
+ "learning_rate": 9.259887971306064e-06,
807
+ "loss": 0.4852,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.22020105313547153,
812
+ "grad_norm": 0.8960813283920288,
813
+ "learning_rate": 9.243221287473755e-06,
814
+ "loss": 0.4477,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.22211584490186692,
819
+ "grad_norm": 0.8218123316764832,
820
+ "learning_rate": 9.226384375788435e-06,
821
+ "loss": 0.4169,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.22403063666826234,
826
+ "grad_norm": 0.8349615931510925,
827
+ "learning_rate": 9.209377911706585e-06,
828
+ "loss": 0.4045,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.22594542843465773,
833
+ "grad_norm": 0.8087317943572998,
834
+ "learning_rate": 9.192202577486725e-06,
835
+ "loss": 0.3923,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.22786022020105315,
840
+ "grad_norm": 0.8312190175056458,
841
+ "learning_rate": 9.174859062162037e-06,
842
+ "loss": 0.3958,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.22977501196744854,
847
+ "grad_norm": 0.8147414326667786,
848
+ "learning_rate": 9.157348061512728e-06,
849
+ "loss": 0.4417,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.23168980373384396,
854
+ "grad_norm": 0.860390305519104,
855
+ "learning_rate": 9.139670278038109e-06,
856
+ "loss": 0.4404,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.23360459550023935,
861
+ "grad_norm": 0.7553086280822754,
862
+ "learning_rate": 9.121826420928421e-06,
863
+ "loss": 0.3684,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.23551938726663477,
868
+ "grad_norm": 0.8265523314476013,
869
+ "learning_rate": 9.103817206036383e-06,
870
+ "loss": 0.4025,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.23743417903303016,
875
+ "grad_norm": 0.8537978529930115,
876
+ "learning_rate": 9.085643355848468e-06,
877
+ "loss": 0.4419,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.23934897079942558,
882
+ "grad_norm": 0.8403013348579407,
883
+ "learning_rate": 9.06730559945592e-06,
884
+ "loss": 0.4013,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.24126376256582097,
889
+ "grad_norm": 0.831799328327179,
890
+ "learning_rate": 9.048804672525513e-06,
891
+ "loss": 0.417,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.24317855433221638,
896
+ "grad_norm": 0.7995438575744629,
897
+ "learning_rate": 9.030141317270026e-06,
898
+ "loss": 0.3941,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.24509334609861178,
903
+ "grad_norm": 0.8485874533653259,
904
+ "learning_rate": 9.011316282418474e-06,
905
+ "loss": 0.4128,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.2470081378650072,
910
+ "grad_norm": 0.8879005908966064,
911
+ "learning_rate": 8.992330323186069e-06,
912
+ "loss": 0.4445,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.24892292963140258,
917
+ "grad_norm": 0.9082502722740173,
918
+ "learning_rate": 8.973184201243922e-06,
919
+ "loss": 0.4825,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.250837721397798,
924
+ "grad_norm": 0.8748418688774109,
925
+ "learning_rate": 8.953878684688492e-06,
926
+ "loss": 0.4209,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.2527525131641934,
931
+ "grad_norm": 0.8313506245613098,
932
+ "learning_rate": 8.934414548010764e-06,
933
+ "loss": 0.4083,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.2546673049305888,
938
+ "grad_norm": 0.8159312009811401,
939
+ "learning_rate": 8.914792572065178e-06,
940
+ "loss": 0.4166,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.25658209669698423,
945
+ "grad_norm": 0.9007822275161743,
946
+ "learning_rate": 8.89501354403831e-06,
947
+ "loss": 0.4591,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.2584968884633796,
952
+ "grad_norm": 0.9515888690948486,
953
+ "learning_rate": 8.875078257417294e-06,
954
+ "loss": 0.4659,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.260411680229775,
959
+ "grad_norm": 0.8637048602104187,
960
+ "learning_rate": 8.854987511957974e-06,
961
+ "loss": 0.4387,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.26232647199617043,
966
+ "grad_norm": 0.8459029793739319,
967
+ "learning_rate": 8.834742113652835e-06,
968
+ "loss": 0.4285,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.26424126376256585,
973
+ "grad_norm": 0.7771206498146057,
974
+ "learning_rate": 8.81434287469866e-06,
975
+ "loss": 0.3803,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.2661560555289612,
980
+ "grad_norm": 0.8040123581886292,
981
+ "learning_rate": 8.793790613463956e-06,
982
+ "loss": 0.411,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.26807084729535663,
987
+ "grad_norm": 0.8000430464744568,
988
+ "learning_rate": 8.773086154456106e-06,
989
+ "loss": 0.4165,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.26998563906175205,
994
+ "grad_norm": 0.9271606802940369,
995
+ "learning_rate": 8.752230328288314e-06,
996
+ "loss": 0.4755,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.27190043082814747,
1001
+ "grad_norm": 0.7970160841941833,
1002
+ "learning_rate": 8.731223971646261e-06,
1003
+ "loss": 0.3916,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.27381522259454283,
1008
+ "grad_norm": 0.7897955775260925,
1009
+ "learning_rate": 8.710067927254555e-06,
1010
+ "loss": 0.3846,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.27573001436093825,
1015
+ "grad_norm": 0.8004978895187378,
1016
+ "learning_rate": 8.688763043842916e-06,
1017
+ "loss": 0.4077,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.27764480612733367,
1022
+ "grad_norm": 0.8318747282028198,
1023
+ "learning_rate": 8.66731017611213e-06,
1024
+ "loss": 0.4334,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.2795595978937291,
1029
+ "grad_norm": 0.8479062914848328,
1030
+ "learning_rate": 8.645710184699756e-06,
1031
+ "loss": 0.4172,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.28147438966012445,
1036
+ "grad_norm": 0.8077636361122131,
1037
+ "learning_rate": 8.6239639361456e-06,
1038
+ "loss": 0.4104,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.28338918142651986,
1043
+ "grad_norm": 0.8098336458206177,
1044
+ "learning_rate": 8.602072302856961e-06,
1045
+ "loss": 0.406,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.2853039731929153,
1050
+ "grad_norm": 0.8435089588165283,
1051
+ "learning_rate": 8.580036163073615e-06,
1052
+ "loss": 0.4312,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.2872187649593107,
1057
+ "grad_norm": 0.8346257209777832,
1058
+ "learning_rate": 8.5578564008326e-06,
1059
+ "loss": 0.3888,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.28913355672570606,
1064
+ "grad_norm": 0.8100122213363647,
1065
+ "learning_rate": 8.535533905932739e-06,
1066
+ "loss": 0.4042,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.2910483484921015,
1071
+ "grad_norm": 0.8516131043434143,
1072
+ "learning_rate": 8.513069573898944e-06,
1073
+ "loss": 0.4161,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.2929631402584969,
1078
+ "grad_norm": 0.8350062966346741,
1079
+ "learning_rate": 8.490464305946296e-06,
1080
+ "loss": 0.4231,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.2948779320248923,
1085
+ "grad_norm": 0.8145307302474976,
1086
+ "learning_rate": 8.467719008943886e-06,
1087
+ "loss": 0.4125,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.2967927237912877,
1092
+ "grad_norm": 0.8515341281890869,
1093
+ "learning_rate": 8.444834595378434e-06,
1094
+ "loss": 0.4192,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.2987075155576831,
1099
+ "grad_norm": 0.8017379641532898,
1100
+ "learning_rate": 8.421811983317682e-06,
1101
+ "loss": 0.4007,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.3006223073240785,
1106
+ "grad_norm": 0.8179863691329956,
1107
+ "learning_rate": 8.398652096373566e-06,
1108
+ "loss": 0.4188,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.30253709909047394,
1113
+ "grad_norm": 0.8272606730461121,
1114
+ "learning_rate": 8.375355863665155e-06,
1115
+ "loss": 0.4035,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.3044518908568693,
1120
+ "grad_norm": 0.8340199589729309,
1121
+ "learning_rate": 8.351924219781393e-06,
1122
+ "loss": 0.4414,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.3063666826232647,
1127
+ "grad_norm": 0.82643723487854,
1128
+ "learning_rate": 8.328358104743588e-06,
1129
+ "loss": 0.4143,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.30828147438966014,
1134
+ "grad_norm": 0.7954344153404236,
1135
+ "learning_rate": 8.304658463967705e-06,
1136
+ "loss": 0.4128,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.31019626615605556,
1141
+ "grad_norm": 0.7908764481544495,
1142
+ "learning_rate": 8.28082624822645e-06,
1143
+ "loss": 0.3813,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.3121110579224509,
1148
+ "grad_norm": 0.7368812561035156,
1149
+ "learning_rate": 8.256862413611113e-06,
1150
+ "loss": 0.3879,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.31402584968884634,
1155
+ "grad_norm": 0.8204508423805237,
1156
+ "learning_rate": 8.232767921493216e-06,
1157
+ "loss": 0.4308,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.31594064145524176,
1162
+ "grad_norm": 0.8691006302833557,
1163
+ "learning_rate": 8.20854373848595e-06,
1164
+ "loss": 0.4518,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.3178554332216372,
1169
+ "grad_norm": 0.7581012845039368,
1170
+ "learning_rate": 8.184190836405394e-06,
1171
+ "loss": 0.3711,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.31977022498803254,
1176
+ "grad_norm": 0.7817586660385132,
1177
+ "learning_rate": 8.15971019223152e-06,
1178
+ "loss": 0.4057,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.32168501675442795,
1183
+ "grad_norm": 0.7559137344360352,
1184
+ "learning_rate": 8.135102788069015e-06,
1185
+ "loss": 0.361,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.3235998085208234,
1190
+ "grad_norm": 0.7424903512001038,
1191
+ "learning_rate": 8.110369611107869e-06,
1192
+ "loss": 0.3667,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.3255146002872188,
1197
+ "grad_norm": 0.7965791821479797,
1198
+ "learning_rate": 8.085511653583772e-06,
1199
+ "loss": 0.3814,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.32742939205361415,
1204
+ "grad_norm": 0.8504881262779236,
1205
+ "learning_rate": 8.060529912738316e-06,
1206
+ "loss": 0.4453,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.3293441838200096,
1211
+ "grad_norm": 0.8762128353118896,
1212
+ "learning_rate": 8.035425390778975e-06,
1213
+ "loss": 0.4516,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.331258975586405,
1218
+ "grad_norm": 0.8157339692115784,
1219
+ "learning_rate": 8.010199094838915e-06,
1220
+ "loss": 0.4204,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.3331737673528004,
1225
+ "grad_norm": 0.8493944406509399,
1226
+ "learning_rate": 7.984852036936578e-06,
1227
+ "loss": 0.39,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.3350885591191958,
1232
+ "grad_norm": 0.838901937007904,
1233
+ "learning_rate": 7.959385233935087e-06,
1234
+ "loss": 0.4417,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.3370033508855912,
1239
+ "grad_norm": 0.7574141621589661,
1240
+ "learning_rate": 7.933799707501448e-06,
1241
+ "loss": 0.3515,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.3389181426519866,
1246
+ "grad_norm": 0.8099052906036377,
1247
+ "learning_rate": 7.908096484065569e-06,
1248
+ "loss": 0.4091,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.340832934418382,
1253
+ "grad_norm": 0.8116398453712463,
1254
+ "learning_rate": 7.88227659477908e-06,
1255
+ "loss": 0.4137,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.3427477261847774,
1260
+ "grad_norm": 0.7785760164260864,
1261
+ "learning_rate": 7.856341075473963e-06,
1262
+ "loss": 0.3829,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.3446625179511728,
1267
+ "grad_norm": 0.7929257154464722,
1268
+ "learning_rate": 7.830290966620997e-06,
1269
+ "loss": 0.3739,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.3465773097175682,
1274
+ "grad_norm": 0.8796236515045166,
1275
+ "learning_rate": 7.804127313288023e-06,
1276
+ "loss": 0.4027,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.34849210148396365,
1281
+ "grad_norm": 0.8447411060333252,
1282
+ "learning_rate": 7.777851165098012e-06,
1283
+ "loss": 0.4202,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.350406893250359,
1288
+ "grad_norm": 0.7473250031471252,
1289
+ "learning_rate": 7.751463576186957e-06,
1290
+ "loss": 0.3777,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.3523216850167544,
1295
+ "grad_norm": 0.8254420757293701,
1296
+ "learning_rate": 7.72496560516159e-06,
1297
+ "loss": 0.4147,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.35423647678314985,
1302
+ "grad_norm": 0.8766903281211853,
1303
+ "learning_rate": 7.6983583150569e-06,
1304
+ "loss": 0.4212,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.35615126854954526,
1309
+ "grad_norm": 0.8106472492218018,
1310
+ "learning_rate": 7.671642773293506e-06,
1311
+ "loss": 0.3897,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.3580660603159406,
1316
+ "grad_norm": 0.8969345092773438,
1317
+ "learning_rate": 7.644820051634813e-06,
1318
+ "loss": 0.4166,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.35998085208233604,
1323
+ "grad_norm": 0.9210174679756165,
1324
+ "learning_rate": 7.617891226144034e-06,
1325
+ "loss": 0.4744,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.36189564384873146,
1330
+ "grad_norm": 0.8183197379112244,
1331
+ "learning_rate": 7.59085737714101e-06,
1332
+ "loss": 0.3909,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.3638104356151269,
1337
+ "grad_norm": 0.9258884191513062,
1338
+ "learning_rate": 7.563719589158874e-06,
1339
+ "loss": 0.4191,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.36572522738152224,
1344
+ "grad_norm": 0.8379626274108887,
1345
+ "learning_rate": 7.536478950900537e-06,
1346
+ "loss": 0.4081,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.36764001914791766,
1351
+ "grad_norm": 0.8194741010665894,
1352
+ "learning_rate": 7.509136555195025e-06,
1353
+ "loss": 0.3983,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.3695548109143131,
1358
+ "grad_norm": 0.8078919649124146,
1359
+ "learning_rate": 7.481693498953621e-06,
1360
+ "loss": 0.4117,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.3714696026807085,
1365
+ "grad_norm": 0.8059271574020386,
1366
+ "learning_rate": 7.4541508831258695e-06,
1367
+ "loss": 0.3919,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.37338439444710386,
1372
+ "grad_norm": 0.7913739681243896,
1373
+ "learning_rate": 7.4265098126554065e-06,
1374
+ "loss": 0.3786,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.3752991862134993,
1379
+ "grad_norm": 0.8568047285079956,
1380
+ "learning_rate": 7.3987713964356335e-06,
1381
+ "loss": 0.4505,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.3772139779798947,
1386
+ "grad_norm": 0.9244000315666199,
1387
+ "learning_rate": 7.370936747265226e-06,
1388
+ "loss": 0.4546,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.3791287697462901,
1393
+ "grad_norm": 0.7795801162719727,
1394
+ "learning_rate": 7.3430069818035e-06,
1395
+ "loss": 0.3955,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.3810435615126855,
1400
+ "grad_norm": 0.7940351366996765,
1401
+ "learning_rate": 7.314983220525604e-06,
1402
+ "loss": 0.4043,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.3829583532790809,
1407
+ "grad_norm": 0.7889821529388428,
1408
+ "learning_rate": 7.286866587677576e-06,
1409
+ "loss": 0.3883,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.3848731450454763,
1414
+ "grad_norm": 0.857402503490448,
1415
+ "learning_rate": 7.2586582112312355e-06,
1416
+ "loss": 0.4288,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.38678793681187174,
1421
+ "grad_norm": 0.7854819893836975,
1422
+ "learning_rate": 7.230359222838939e-06,
1423
+ "loss": 0.3884,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.3887027285782671,
1428
+ "grad_norm": 0.9061365723609924,
1429
+ "learning_rate": 7.201970757788172e-06,
1430
+ "loss": 0.458,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.3906175203446625,
1435
+ "grad_norm": 0.7978100776672363,
1436
+ "learning_rate": 7.173493954956012e-06,
1437
+ "loss": 0.3903,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.39253231211105793,
1442
+ "grad_norm": 0.8213270902633667,
1443
+ "learning_rate": 7.144929956763438e-06,
1444
+ "loss": 0.4035,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.39444710387745335,
1449
+ "grad_norm": 0.9091420769691467,
1450
+ "learning_rate": 7.116279909129492e-06,
1451
+ "loss": 0.4505,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.3963618956438487,
1456
+ "grad_norm": 0.8489376306533813,
1457
+ "learning_rate": 7.087544961425317e-06,
1458
+ "loss": 0.4037,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.39827668741024413,
1463
+ "grad_norm": 0.805548369884491,
1464
+ "learning_rate": 7.058726266428042e-06,
1465
+ "loss": 0.4053,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.40019147917663955,
1470
+ "grad_norm": 0.7785957455635071,
1471
+ "learning_rate": 7.029824980274536e-06,
1472
+ "loss": 0.3719,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.40210627094303497,
1477
+ "grad_norm": 0.8519039154052734,
1478
+ "learning_rate": 7.0008422624150285e-06,
1479
+ "loss": 0.4176,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 0.40402106270943033,
1484
+ "grad_norm": 0.8210786581039429,
1485
+ "learning_rate": 6.971779275566593e-06,
1486
+ "loss": 0.4162,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 0.40593585447582575,
1491
+ "grad_norm": 0.8121908903121948,
1492
+ "learning_rate": 6.9426371856665005e-06,
1493
+ "loss": 0.4204,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 0.40785064624222117,
1498
+ "grad_norm": 0.8359207510948181,
1499
+ "learning_rate": 6.913417161825449e-06,
1500
+ "loss": 0.4251,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 0.4097654380086166,
1505
+ "grad_norm": 0.8265076279640198,
1506
+ "learning_rate": 6.884120376280658e-06,
1507
+ "loss": 0.3983,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 0.41168022977501195,
1512
+ "grad_norm": 0.8334207534790039,
1513
+ "learning_rate": 6.85474800434884e-06,
1514
+ "loss": 0.4287,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 0.41359502154140737,
1519
+ "grad_norm": 0.7907735705375671,
1520
+ "learning_rate": 6.8253012243790565e-06,
1521
+ "loss": 0.4068,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 0.4155098133078028,
1526
+ "grad_norm": 0.8516376614570618,
1527
+ "learning_rate": 6.795781217705436e-06,
1528
+ "loss": 0.4531,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 0.4174246050741982,
1533
+ "grad_norm": 0.7719292640686035,
1534
+ "learning_rate": 6.76618916859979e-06,
1535
+ "loss": 0.3641,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 0.41933939684059357,
1540
+ "grad_norm": 0.769619882106781,
1541
+ "learning_rate": 6.736526264224101e-06,
1542
+ "loss": 0.389,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 0.421254188606989,
1547
+ "grad_norm": 0.8193688988685608,
1548
+ "learning_rate": 6.706793694582892e-06,
1549
+ "loss": 0.381,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 0.4231689803733844,
1554
+ "grad_norm": 0.8246089220046997,
1555
+ "learning_rate": 6.676992652475487e-06,
1556
+ "loss": 0.4105,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 0.4250837721397798,
1561
+ "grad_norm": 0.7855746746063232,
1562
+ "learning_rate": 6.647124333448165e-06,
1563
+ "loss": 0.3711,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 0.4269985639061752,
1568
+ "grad_norm": 0.8676920533180237,
1569
+ "learning_rate": 6.617189935746191e-06,
1570
+ "loss": 0.4071,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 0.4289133556725706,
1575
+ "grad_norm": 0.8358131647109985,
1576
+ "learning_rate": 6.587190660265752e-06,
1577
+ "loss": 0.425,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 0.430828147438966,
1582
+ "grad_norm": 0.8328396677970886,
1583
+ "learning_rate": 6.55712771050577e-06,
1584
+ "loss": 0.4156,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 0.43274293920536144,
1589
+ "grad_norm": 0.7680657505989075,
1590
+ "learning_rate": 6.52700229251963e-06,
1591
+ "loss": 0.393,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 0.4346577309717568,
1596
+ "grad_norm": 0.8950127959251404,
1597
+ "learning_rate": 6.496815614866792e-06,
1598
+ "loss": 0.4035,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 0.4365725227381522,
1603
+ "grad_norm": 0.8672182559967041,
1604
+ "learning_rate": 6.466568888564303e-06,
1605
+ "loss": 0.4581,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 0.43848731450454764,
1610
+ "grad_norm": 0.8580407500267029,
1611
+ "learning_rate": 6.436263327038225e-06,
1612
+ "loss": 0.4039,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 0.44040210627094306,
1617
+ "grad_norm": 0.8145782351493835,
1618
+ "learning_rate": 6.405900146074941e-06,
1619
+ "loss": 0.3873,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 0.4423168980373384,
1624
+ "grad_norm": 0.8403171896934509,
1625
+ "learning_rate": 6.375480563772391e-06,
1626
+ "loss": 0.4373,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 0.44423168980373384,
1631
+ "grad_norm": 0.7500009536743164,
1632
+ "learning_rate": 6.3450058004912004e-06,
1633
+ "loss": 0.3661,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 0.44614648157012926,
1638
+ "grad_norm": 0.8253698945045471,
1639
+ "learning_rate": 6.314477078805724e-06,
1640
+ "loss": 0.4005,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 0.4480612733365247,
1645
+ "grad_norm": 0.7586554884910583,
1646
+ "learning_rate": 6.283895623454997e-06,
1647
+ "loss": 0.3858,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 0.44997606510292004,
1652
+ "grad_norm": 0.8090248107910156,
1653
+ "learning_rate": 6.2532626612936035e-06,
1654
+ "loss": 0.4085,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 0.45189085686931546,
1659
+ "grad_norm": 0.8589561581611633,
1660
+ "learning_rate": 6.2225794212424565e-06,
1661
+ "loss": 0.4402,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 0.4538056486357109,
1666
+ "grad_norm": 0.8317797780036926,
1667
+ "learning_rate": 6.191847134239496e-06,
1668
+ "loss": 0.4,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 0.4557204404021063,
1673
+ "grad_norm": 0.8422788381576538,
1674
+ "learning_rate": 6.161067033190311e-06,
1675
+ "loss": 0.4026,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 0.45763523216850166,
1680
+ "grad_norm": 0.763214647769928,
1681
+ "learning_rate": 6.130240352918675e-06,
1682
+ "loss": 0.3976,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 0.4595500239348971,
1687
+ "grad_norm": 0.8719058036804199,
1688
+ "learning_rate": 6.0993683301170046e-06,
1689
+ "loss": 0.4356,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 0.4614648157012925,
1694
+ "grad_norm": 0.7786772847175598,
1695
+ "learning_rate": 6.068452203296754e-06,
1696
+ "loss": 0.3858,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 0.4633796074676879,
1701
+ "grad_norm": 0.7639849185943604,
1702
+ "learning_rate": 6.0374932127387234e-06,
1703
+ "loss": 0.3936,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 0.4652943992340833,
1708
+ "grad_norm": 0.8484832644462585,
1709
+ "learning_rate": 6.006492600443301e-06,
1710
+ "loss": 0.4006,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 0.4672091910004787,
1715
+ "grad_norm": 0.835634708404541,
1716
+ "learning_rate": 5.975451610080643e-06,
1717
+ "loss": 0.3826,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 0.4691239827668741,
1722
+ "grad_norm": 0.8132709860801697,
1723
+ "learning_rate": 5.944371486940772e-06,
1724
+ "loss": 0.3934,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 0.47103877453326953,
1729
+ "grad_norm": 0.93300861120224,
1730
+ "learning_rate": 5.913253477883629e-06,
1731
+ "loss": 0.4376,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 0.4729535662996649,
1736
+ "grad_norm": 0.8036344647407532,
1737
+ "learning_rate": 5.882098831289044e-06,
1738
+ "loss": 0.3892,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 0.4748683580660603,
1743
+ "grad_norm": 0.7971835732460022,
1744
+ "learning_rate": 5.850908797006656e-06,
1745
+ "loss": 0.399,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 0.47678314983245573,
1750
+ "grad_norm": 0.8496800065040588,
1751
+ "learning_rate": 5.819684626305776e-06,
1752
+ "loss": 0.4385,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 0.47869794159885115,
1757
+ "grad_norm": 0.8178644776344299,
1758
+ "learning_rate": 5.788427571825186e-06,
1759
+ "loss": 0.3946,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 0.4806127333652465,
1764
+ "grad_norm": 0.8840231895446777,
1765
+ "learning_rate": 5.757138887522884e-06,
1766
+ "loss": 0.4125,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 0.48252752513164193,
1771
+ "grad_norm": 0.831671416759491,
1772
+ "learning_rate": 5.725819828625782e-06,
1773
+ "loss": 0.413,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 0.48444231689803735,
1778
+ "grad_norm": 0.7894381880760193,
1779
+ "learning_rate": 5.694471651579346e-06,
1780
+ "loss": 0.399,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 0.48635710866443277,
1785
+ "grad_norm": 0.8008851408958435,
1786
+ "learning_rate": 5.663095613997196e-06,
1787
+ "loss": 0.3875,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 0.48827190043082813,
1792
+ "grad_norm": 0.7766909003257751,
1793
+ "learning_rate": 5.631692974610647e-06,
1794
+ "loss": 0.3755,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 0.49018669219722355,
1799
+ "grad_norm": 0.8729162812232971,
1800
+ "learning_rate": 5.600264993218215e-06,
1801
+ "loss": 0.4103,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 0.49210148396361897,
1806
+ "grad_norm": 0.8618749380111694,
1807
+ "learning_rate": 5.568812930635076e-06,
1808
+ "loss": 0.3963,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 0.4940162757300144,
1813
+ "grad_norm": 0.8580813407897949,
1814
+ "learning_rate": 5.537338048642487e-06,
1815
+ "loss": 0.4353,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 0.49593106749640975,
1820
+ "grad_norm": 0.8418040871620178,
1821
+ "learning_rate": 5.505841609937162e-06,
1822
+ "loss": 0.3801,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 0.49784585926280517,
1827
+ "grad_norm": 0.7449955940246582,
1828
+ "learning_rate": 5.474324878080623e-06,
1829
+ "loss": 0.3355,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 0.4997606510292006,
1834
+ "grad_norm": 0.8238184452056885,
1835
+ "learning_rate": 5.4427891174485014e-06,
1836
+ "loss": 0.3868,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 0.501675442795596,
1841
+ "grad_norm": 0.8558638691902161,
1842
+ "learning_rate": 5.41123559317982e-06,
1843
+ "loss": 0.4149,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 0.5035902345619914,
1848
+ "grad_norm": 0.836510956287384,
1849
+ "learning_rate": 5.379665571126232e-06,
1850
+ "loss": 0.378,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 0.5055050263283868,
1855
+ "grad_norm": 0.7436261177062988,
1856
+ "learning_rate": 5.348080317801244e-06,
1857
+ "loss": 0.3672,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 0.5074198180947822,
1862
+ "grad_norm": 0.897144079208374,
1863
+ "learning_rate": 5.316481100329408e-06,
1864
+ "loss": 0.4309,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 0.5093346098611776,
1869
+ "grad_norm": 0.8236995935440063,
1870
+ "learning_rate": 5.284869186395478e-06,
1871
+ "loss": 0.4164,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 0.511249401627573,
1876
+ "grad_norm": 0.8249524831771851,
1877
+ "learning_rate": 5.253245844193564e-06,
1878
+ "loss": 0.408,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 0.5131641933939685,
1883
+ "grad_norm": 0.8149250745773315,
1884
+ "learning_rate": 5.22161234237625e-06,
1885
+ "loss": 0.4014,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 0.5150789851603638,
1890
+ "grad_norm": 0.8144116401672363,
1891
+ "learning_rate": 5.189969950003697e-06,
1892
+ "loss": 0.4013,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 0.5169937769267592,
1897
+ "grad_norm": 0.8883258700370789,
1898
+ "learning_rate": 5.158319936492736e-06,
1899
+ "loss": 0.4262,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 0.5189085686931546,
1904
+ "grad_norm": 0.7828565239906311,
1905
+ "learning_rate": 5.12666357156594e-06,
1906
+ "loss": 0.3877,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 0.52082336045955,
1911
+ "grad_norm": 0.8680728673934937,
1912
+ "learning_rate": 5.0950021252006845e-06,
1913
+ "loss": 0.4288,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 0.5227381522259454,
1918
+ "grad_norm": 0.8556041121482849,
1919
+ "learning_rate": 5.063336867578201e-06,
1920
+ "loss": 0.4397,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 0.5246529439923409,
1925
+ "grad_norm": 0.83294278383255,
1926
+ "learning_rate": 5.0316690690326175e-06,
1927
+ "loss": 0.3855,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 0.5265677357587363,
1932
+ "grad_norm": 0.8231511116027832,
1933
+ "learning_rate": 5e-06,
1934
+ "loss": 0.3712,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 0.5284825275251317,
1939
+ "grad_norm": 0.8193358182907104,
1940
+ "learning_rate": 4.9683309309673825e-06,
1941
+ "loss": 0.3833,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 0.530397319291527,
1946
+ "grad_norm": 0.7521802186965942,
1947
+ "learning_rate": 4.936663132421801e-06,
1948
+ "loss": 0.3668,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 0.5323121110579224,
1953
+ "grad_norm": 0.7623764872550964,
1954
+ "learning_rate": 4.904997874799316e-06,
1955
+ "loss": 0.3825,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 0.5342269028243178,
1960
+ "grad_norm": 0.8101343512535095,
1961
+ "learning_rate": 4.873336428434062e-06,
1962
+ "loss": 0.3864,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 0.5361416945907133,
1967
+ "grad_norm": 0.8006393909454346,
1968
+ "learning_rate": 4.841680063507265e-06,
1969
+ "loss": 0.4227,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 0.5380564863571087,
1974
+ "grad_norm": 0.8386540412902832,
1975
+ "learning_rate": 4.8100300499963045e-06,
1976
+ "loss": 0.4131,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 0.5399712781235041,
1981
+ "grad_norm": 0.7718150019645691,
1982
+ "learning_rate": 4.778387657623751e-06,
1983
+ "loss": 0.3768,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 0.5418860698898995,
1988
+ "grad_norm": 0.8466550707817078,
1989
+ "learning_rate": 4.746754155806437e-06,
1990
+ "loss": 0.4512,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 0.5438008616562949,
1995
+ "grad_norm": 0.8129767775535583,
1996
+ "learning_rate": 4.715130813604522e-06,
1997
+ "loss": 0.3961,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 0.5457156534226902,
2002
+ "grad_norm": 0.8341888189315796,
2003
+ "learning_rate": 4.683518899670594e-06,
2004
+ "loss": 0.3919,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 0.5476304451890857,
2009
+ "grad_norm": 0.8497266173362732,
2010
+ "learning_rate": 4.651919682198756e-06,
2011
+ "loss": 0.394,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 0.5495452369554811,
2016
+ "grad_norm": 0.8146570920944214,
2017
+ "learning_rate": 4.62033442887377e-06,
2018
+ "loss": 0.3989,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 0.5514600287218765,
2023
+ "grad_norm": 0.806999921798706,
2024
+ "learning_rate": 4.588764406820181e-06,
2025
+ "loss": 0.4288,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 0.5533748204882719,
2030
+ "grad_norm": 0.7479027509689331,
2031
+ "learning_rate": 4.5572108825515e-06,
2032
+ "loss": 0.3616,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 0.5552896122546673,
2037
+ "grad_norm": 0.7727148532867432,
2038
+ "learning_rate": 4.5256751219193784e-06,
2039
+ "loss": 0.3902,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 0.5572044040210627,
2044
+ "grad_norm": 0.8226932883262634,
2045
+ "learning_rate": 4.49415839006284e-06,
2046
+ "loss": 0.4038,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 0.5591191957874582,
2051
+ "grad_norm": 0.8253747224807739,
2052
+ "learning_rate": 4.462661951357515e-06,
2053
+ "loss": 0.4052,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 0.5610339875538535,
2058
+ "grad_norm": 0.8564761877059937,
2059
+ "learning_rate": 4.431187069364927e-06,
2060
+ "loss": 0.4099,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 0.5629487793202489,
2065
+ "grad_norm": 0.812239408493042,
2066
+ "learning_rate": 4.3997350067817866e-06,
2067
+ "loss": 0.3939,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 0.5648635710866443,
2072
+ "grad_norm": 0.8617464303970337,
2073
+ "learning_rate": 4.368307025389355e-06,
2074
+ "loss": 0.4189,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 0.5667783628530397,
2079
+ "grad_norm": 0.8013660907745361,
2080
+ "learning_rate": 4.336904386002805e-06,
2081
+ "loss": 0.3853,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 0.5686931546194351,
2086
+ "grad_norm": 0.8232107162475586,
2087
+ "learning_rate": 4.3055283484206565e-06,
2088
+ "loss": 0.4228,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 0.5706079463858306,
2093
+ "grad_norm": 0.7978037595748901,
2094
+ "learning_rate": 4.27418017137422e-06,
2095
+ "loss": 0.3745,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 0.572522738152226,
2100
+ "grad_norm": 0.786128044128418,
2101
+ "learning_rate": 4.2428611124771184e-06,
2102
+ "loss": 0.3708,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 0.5744375299186214,
2107
+ "grad_norm": 0.7764582633972168,
2108
+ "learning_rate": 4.211572428174816e-06,
2109
+ "loss": 0.3617,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 0.5763523216850167,
2114
+ "grad_norm": 0.8071704506874084,
2115
+ "learning_rate": 4.180315373694225e-06,
2116
+ "loss": 0.4013,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 0.5782671134514121,
2121
+ "grad_norm": 0.8064809441566467,
2122
+ "learning_rate": 4.149091202993345e-06,
2123
+ "loss": 0.3593,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 0.5801819052178075,
2128
+ "grad_norm": 0.8199291229248047,
2129
+ "learning_rate": 4.11790116871096e-06,
2130
+ "loss": 0.4174,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 0.582096696984203,
2135
+ "grad_norm": 0.9001505374908447,
2136
+ "learning_rate": 4.086746522116372e-06,
2137
+ "loss": 0.4535,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 0.5840114887505984,
2142
+ "grad_norm": 0.7408649325370789,
2143
+ "learning_rate": 4.055628513059231e-06,
2144
+ "loss": 0.3874,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 0.5859262805169938,
2149
+ "grad_norm": 0.8281508684158325,
2150
+ "learning_rate": 4.02454838991936e-06,
2151
+ "loss": 0.3783,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 0.5878410722833892,
2156
+ "grad_norm": 0.8515765070915222,
2157
+ "learning_rate": 3.993507399556699e-06,
2158
+ "loss": 0.4306,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 0.5897558640497846,
2163
+ "grad_norm": 0.8016983270645142,
2164
+ "learning_rate": 3.962506787261278e-06,
2165
+ "loss": 0.3988,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 0.59167065581618,
2170
+ "grad_norm": 0.7859688997268677,
2171
+ "learning_rate": 3.931547796703245e-06,
2172
+ "loss": 0.3801,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 0.5935854475825754,
2177
+ "grad_norm": 0.8068103194236755,
2178
+ "learning_rate": 3.900631669882996e-06,
2179
+ "loss": 0.3925,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 0.5955002393489708,
2184
+ "grad_norm": 0.811817467212677,
2185
+ "learning_rate": 3.869759647081326e-06,
2186
+ "loss": 0.3693,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 0.5974150311153662,
2191
+ "grad_norm": 0.7820096611976624,
2192
+ "learning_rate": 3.83893296680969e-06,
2193
+ "loss": 0.3837,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 0.5993298228817616,
2198
+ "grad_norm": 0.7839851379394531,
2199
+ "learning_rate": 3.8081528657605045e-06,
2200
+ "loss": 0.3762,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 0.601244614648157,
2205
+ "grad_norm": 0.7672075033187866,
2206
+ "learning_rate": 3.7774205787575455e-06,
2207
+ "loss": 0.3872,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 0.6031594064145525,
2212
+ "grad_norm": 0.8048450946807861,
2213
+ "learning_rate": 3.7467373387063973e-06,
2214
+ "loss": 0.4239,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 0.6050741981809479,
2219
+ "grad_norm": 0.8440662622451782,
2220
+ "learning_rate": 3.7161043765450044e-06,
2221
+ "loss": 0.4095,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 0.6069889899473432,
2226
+ "grad_norm": 0.8100243210792542,
2227
+ "learning_rate": 3.685522921194276e-06,
2228
+ "loss": 0.3772,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 0.6089037817137386,
2233
+ "grad_norm": 0.8134592175483704,
2234
+ "learning_rate": 3.6549941995088012e-06,
2235
+ "loss": 0.3983,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 0.610818573480134,
2240
+ "grad_norm": 0.8278323411941528,
2241
+ "learning_rate": 3.62451943622761e-06,
2242
+ "loss": 0.4249,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 0.6127333652465294,
2247
+ "grad_norm": 0.7204639315605164,
2248
+ "learning_rate": 3.5940998539250614e-06,
2249
+ "loss": 0.3538,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 0.6146481570129249,
2254
+ "grad_norm": 0.7791761159896851,
2255
+ "learning_rate": 3.5637366729617766e-06,
2256
+ "loss": 0.3741,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 0.6165629487793203,
2261
+ "grad_norm": 0.8510886430740356,
2262
+ "learning_rate": 3.5334311114356983e-06,
2263
+ "loss": 0.4194,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 0.6184777405457157,
2268
+ "grad_norm": 0.823306679725647,
2269
+ "learning_rate": 3.5031843851332105e-06,
2270
+ "loss": 0.4171,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 0.6203925323121111,
2275
+ "grad_norm": 0.8224660158157349,
2276
+ "learning_rate": 3.472997707480372e-06,
2277
+ "loss": 0.3959,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 0.6223073240785064,
2282
+ "grad_norm": 0.876380980014801,
2283
+ "learning_rate": 3.4428722894942313e-06,
2284
+ "loss": 0.4203,
2285
+ "step": 325
2286
+ },
2287
+ {
2288
+ "epoch": 0.6242221158449018,
2289
+ "grad_norm": 0.8525562286376953,
2290
+ "learning_rate": 3.4128093397342508e-06,
2291
+ "loss": 0.4404,
2292
+ "step": 326
2293
+ },
2294
+ {
2295
+ "epoch": 0.6261369076112973,
2296
+ "grad_norm": 0.7982501983642578,
2297
+ "learning_rate": 3.3828100642538097e-06,
2298
+ "loss": 0.3801,
2299
+ "step": 327
2300
+ },
2301
+ {
2302
+ "epoch": 0.6280516993776927,
2303
+ "grad_norm": 0.779940664768219,
2304
+ "learning_rate": 3.352875666551838e-06,
2305
+ "loss": 0.3674,
2306
+ "step": 328
2307
+ },
2308
+ {
2309
+ "epoch": 0.6299664911440881,
2310
+ "grad_norm": 0.7782029509544373,
2311
+ "learning_rate": 3.323007347524515e-06,
2312
+ "loss": 0.4004,
2313
+ "step": 329
2314
+ },
2315
+ {
2316
+ "epoch": 0.6318812829104835,
2317
+ "grad_norm": 0.7265905737876892,
2318
+ "learning_rate": 3.2932063054171108e-06,
2319
+ "loss": 0.3854,
2320
+ "step": 330
2321
+ },
2322
+ {
2323
+ "epoch": 0.6337960746768789,
2324
+ "grad_norm": 0.7720629572868347,
2325
+ "learning_rate": 3.2634737357758994e-06,
2326
+ "loss": 0.3828,
2327
+ "step": 331
2328
+ },
2329
+ {
2330
+ "epoch": 0.6357108664432743,
2331
+ "grad_norm": 0.7668139338493347,
2332
+ "learning_rate": 3.2338108314002102e-06,
2333
+ "loss": 0.3815,
2334
+ "step": 332
2335
+ },
2336
+ {
2337
+ "epoch": 0.6376256582096697,
2338
+ "grad_norm": 0.7281336784362793,
2339
+ "learning_rate": 3.204218782294565e-06,
2340
+ "loss": 0.3678,
2341
+ "step": 333
2342
+ },
2343
+ {
2344
+ "epoch": 0.6395404499760651,
2345
+ "grad_norm": 0.7879943251609802,
2346
+ "learning_rate": 3.174698775620947e-06,
2347
+ "loss": 0.3949,
2348
+ "step": 334
2349
+ },
2350
+ {
2351
+ "epoch": 0.6414552417424605,
2352
+ "grad_norm": 0.8132904171943665,
2353
+ "learning_rate": 3.145251995651162e-06,
2354
+ "loss": 0.4011,
2355
+ "step": 335
2356
+ },
2357
+ {
2358
+ "epoch": 0.6433700335088559,
2359
+ "grad_norm": 0.7830522656440735,
2360
+ "learning_rate": 3.1158796237193444e-06,
2361
+ "loss": 0.3785,
2362
+ "step": 336
2363
+ },
2364
+ {
2365
+ "epoch": 0.6452848252752513,
2366
+ "grad_norm": 0.7736674547195435,
2367
+ "learning_rate": 3.0865828381745515e-06,
2368
+ "loss": 0.3817,
2369
+ "step": 337
2370
+ },
2371
+ {
2372
+ "epoch": 0.6471996170416467,
2373
+ "grad_norm": 0.7734500765800476,
2374
+ "learning_rate": 3.0573628143334986e-06,
2375
+ "loss": 0.3623,
2376
+ "step": 338
2377
+ },
2378
+ {
2379
+ "epoch": 0.6491144088080422,
2380
+ "grad_norm": 0.7965434193611145,
2381
+ "learning_rate": 3.0282207244334084e-06,
2382
+ "loss": 0.3722,
2383
+ "step": 339
2384
+ },
2385
+ {
2386
+ "epoch": 0.6510292005744376,
2387
+ "grad_norm": 0.7860566973686218,
2388
+ "learning_rate": 2.999157737584971e-06,
2389
+ "loss": 0.3757,
2390
+ "step": 340
2391
+ },
2392
+ {
2393
+ "epoch": 0.6529439923408329,
2394
+ "grad_norm": 0.8249862790107727,
2395
+ "learning_rate": 2.970175019725465e-06,
2396
+ "loss": 0.4184,
2397
+ "step": 341
2398
+ },
2399
+ {
2400
+ "epoch": 0.6548587841072283,
2401
+ "grad_norm": 0.9115679860115051,
2402
+ "learning_rate": 2.94127373357196e-06,
2403
+ "loss": 0.4364,
2404
+ "step": 342
2405
+ },
2406
+ {
2407
+ "epoch": 0.6567735758736237,
2408
+ "grad_norm": 0.8391016125679016,
2409
+ "learning_rate": 2.912455038574686e-06,
2410
+ "loss": 0.3973,
2411
+ "step": 343
2412
+ },
2413
+ {
2414
+ "epoch": 0.6586883676400191,
2415
+ "grad_norm": 0.7986558079719543,
2416
+ "learning_rate": 2.88372009087051e-06,
2417
+ "loss": 0.4069,
2418
+ "step": 344
2419
+ },
2420
+ {
2421
+ "epoch": 0.6606031594064146,
2422
+ "grad_norm": 0.7595184445381165,
2423
+ "learning_rate": 2.8550700432365647e-06,
2424
+ "loss": 0.3619,
2425
+ "step": 345
2426
+ },
2427
+ {
2428
+ "epoch": 0.66251795117281,
2429
+ "grad_norm": 0.907979428768158,
2430
+ "learning_rate": 2.8265060450439887e-06,
2431
+ "loss": 0.4441,
2432
+ "step": 346
2433
+ },
2434
+ {
2435
+ "epoch": 0.6644327429392054,
2436
+ "grad_norm": 0.801184356212616,
2437
+ "learning_rate": 2.7980292422118282e-06,
2438
+ "loss": 0.3791,
2439
+ "step": 347
2440
+ },
2441
+ {
2442
+ "epoch": 0.6663475347056008,
2443
+ "grad_norm": 0.8330556154251099,
2444
+ "learning_rate": 2.769640777161063e-06,
2445
+ "loss": 0.3936,
2446
+ "step": 348
2447
+ },
2448
+ {
2449
+ "epoch": 0.6682623264719961,
2450
+ "grad_norm": 0.8160421252250671,
2451
+ "learning_rate": 2.7413417887687644e-06,
2452
+ "loss": 0.4238,
2453
+ "step": 349
2454
+ },
2455
+ {
2456
+ "epoch": 0.6701771182383915,
2457
+ "grad_norm": 0.8634615540504456,
2458
+ "learning_rate": 2.713133412322424e-06,
2459
+ "loss": 0.3979,
2460
+ "step": 350
2461
+ },
2462
+ {
2463
+ "epoch": 0.672091910004787,
2464
+ "grad_norm": 0.8537343144416809,
2465
+ "learning_rate": 2.6850167794743966e-06,
2466
+ "loss": 0.4244,
2467
+ "step": 351
2468
+ },
2469
+ {
2470
+ "epoch": 0.6740067017711824,
2471
+ "grad_norm": 0.7988967895507812,
2472
+ "learning_rate": 2.6569930181965e-06,
2473
+ "loss": 0.3854,
2474
+ "step": 352
2475
+ },
2476
+ {
2477
+ "epoch": 0.6759214935375778,
2478
+ "grad_norm": 0.7857111096382141,
2479
+ "learning_rate": 2.629063252734775e-06,
2480
+ "loss": 0.3956,
2481
+ "step": 353
2482
+ },
2483
+ {
2484
+ "epoch": 0.6778362853039732,
2485
+ "grad_norm": 0.8199499249458313,
2486
+ "learning_rate": 2.601228603564368e-06,
2487
+ "loss": 0.4084,
2488
+ "step": 354
2489
+ },
2490
+ {
2491
+ "epoch": 0.6797510770703686,
2492
+ "grad_norm": 0.8062904477119446,
2493
+ "learning_rate": 2.573490187344596e-06,
2494
+ "loss": 0.3897,
2495
+ "step": 355
2496
+ },
2497
+ {
2498
+ "epoch": 0.681665868836764,
2499
+ "grad_norm": 0.7628870606422424,
2500
+ "learning_rate": 2.545849116874132e-06,
2501
+ "loss": 0.3457,
2502
+ "step": 356
2503
+ },
2504
+ {
2505
+ "epoch": 0.6835806606031594,
2506
+ "grad_norm": 0.7267881631851196,
2507
+ "learning_rate": 2.5183065010463813e-06,
2508
+ "loss": 0.3646,
2509
+ "step": 357
2510
+ },
2511
+ {
2512
+ "epoch": 0.6854954523695548,
2513
+ "grad_norm": 0.7799604535102844,
2514
+ "learning_rate": 2.490863444804976e-06,
2515
+ "loss": 0.3586,
2516
+ "step": 358
2517
+ },
2518
+ {
2519
+ "epoch": 0.6874102441359502,
2520
+ "grad_norm": 0.8678038120269775,
2521
+ "learning_rate": 2.4635210490994648e-06,
2522
+ "loss": 0.4128,
2523
+ "step": 359
2524
+ },
2525
+ {
2526
+ "epoch": 0.6893250359023456,
2527
+ "grad_norm": 0.7644969820976257,
2528
+ "learning_rate": 2.436280410841128e-06,
2529
+ "loss": 0.3695,
2530
+ "step": 360
2531
+ },
2532
+ {
2533
+ "epoch": 0.691239827668741,
2534
+ "grad_norm": 0.8090047240257263,
2535
+ "learning_rate": 2.409142622858992e-06,
2536
+ "loss": 0.3784,
2537
+ "step": 361
2538
+ },
2539
+ {
2540
+ "epoch": 0.6931546194351365,
2541
+ "grad_norm": 0.7928206324577332,
2542
+ "learning_rate": 2.3821087738559674e-06,
2543
+ "loss": 0.3739,
2544
+ "step": 362
2545
+ },
2546
+ {
2547
+ "epoch": 0.6950694112015319,
2548
+ "grad_norm": 0.7725571990013123,
2549
+ "learning_rate": 2.3551799483651894e-06,
2550
+ "loss": 0.3761,
2551
+ "step": 363
2552
+ },
2553
+ {
2554
+ "epoch": 0.6969842029679273,
2555
+ "grad_norm": 0.8900219202041626,
2556
+ "learning_rate": 2.3283572267064963e-06,
2557
+ "loss": 0.4545,
2558
+ "step": 364
2559
+ },
2560
+ {
2561
+ "epoch": 0.6988989947343226,
2562
+ "grad_norm": 0.7737187743186951,
2563
+ "learning_rate": 2.3016416849431023e-06,
2564
+ "loss": 0.4071,
2565
+ "step": 365
2566
+ },
2567
+ {
2568
+ "epoch": 0.700813786500718,
2569
+ "grad_norm": 0.8239535093307495,
2570
+ "learning_rate": 2.275034394838413e-06,
2571
+ "loss": 0.4067,
2572
+ "step": 366
2573
+ },
2574
+ {
2575
+ "epoch": 0.7027285782671134,
2576
+ "grad_norm": 0.8072943687438965,
2577
+ "learning_rate": 2.2485364238130435e-06,
2578
+ "loss": 0.4037,
2579
+ "step": 367
2580
+ },
2581
+ {
2582
+ "epoch": 0.7046433700335089,
2583
+ "grad_norm": 0.7579889893531799,
2584
+ "learning_rate": 2.2221488349019903e-06,
2585
+ "loss": 0.3587,
2586
+ "step": 368
2587
+ },
2588
+ {
2589
+ "epoch": 0.7065581617999043,
2590
+ "grad_norm": 0.8152466416358948,
2591
+ "learning_rate": 2.1958726867119785e-06,
2592
+ "loss": 0.4252,
2593
+ "step": 369
2594
+ },
2595
+ {
2596
+ "epoch": 0.7084729535662997,
2597
+ "grad_norm": 0.7977010607719421,
2598
+ "learning_rate": 2.169709033379004e-06,
2599
+ "loss": 0.3942,
2600
+ "step": 370
2601
+ },
2602
+ {
2603
+ "epoch": 0.7103877453326951,
2604
+ "grad_norm": 0.81230628490448,
2605
+ "learning_rate": 2.1436589245260375e-06,
2606
+ "loss": 0.4117,
2607
+ "step": 371
2608
+ },
2609
+ {
2610
+ "epoch": 0.7123025370990905,
2611
+ "grad_norm": 0.8957315683364868,
2612
+ "learning_rate": 2.1177234052209208e-06,
2613
+ "loss": 0.4393,
2614
+ "step": 372
2615
+ },
2616
+ {
2617
+ "epoch": 0.7142173288654858,
2618
+ "grad_norm": 0.8771640658378601,
2619
+ "learning_rate": 2.09190351593443e-06,
2620
+ "loss": 0.4254,
2621
+ "step": 373
2622
+ },
2623
+ {
2624
+ "epoch": 0.7161321206318813,
2625
+ "grad_norm": 0.7827796339988708,
2626
+ "learning_rate": 2.066200292498553e-06,
2627
+ "loss": 0.389,
2628
+ "step": 374
2629
+ },
2630
+ {
2631
+ "epoch": 0.7180469123982767,
2632
+ "grad_norm": 0.7941052317619324,
2633
+ "learning_rate": 2.040614766064913e-06,
2634
+ "loss": 0.3842,
2635
+ "step": 375
2636
+ },
2637
+ {
2638
+ "epoch": 0.7199617041646721,
2639
+ "grad_norm": 0.8104212284088135,
2640
+ "learning_rate": 2.0151479630634225e-06,
2641
+ "loss": 0.4149,
2642
+ "step": 376
2643
+ },
2644
+ {
2645
+ "epoch": 0.7218764959310675,
2646
+ "grad_norm": 0.7843247056007385,
2647
+ "learning_rate": 1.9898009051610847e-06,
2648
+ "loss": 0.3723,
2649
+ "step": 377
2650
+ },
2651
+ {
2652
+ "epoch": 0.7237912876974629,
2653
+ "grad_norm": 0.7872182130813599,
2654
+ "learning_rate": 1.964574609221026e-06,
2655
+ "loss": 0.394,
2656
+ "step": 378
2657
+ },
2658
+ {
2659
+ "epoch": 0.7257060794638583,
2660
+ "grad_norm": 0.7840164303779602,
2661
+ "learning_rate": 1.9394700872616856e-06,
2662
+ "loss": 0.3603,
2663
+ "step": 379
2664
+ },
2665
+ {
2666
+ "epoch": 0.7276208712302538,
2667
+ "grad_norm": 0.8055151700973511,
2668
+ "learning_rate": 1.914488346416229e-06,
2669
+ "loss": 0.3999,
2670
+ "step": 380
2671
+ },
2672
+ {
2673
+ "epoch": 0.7295356629966491,
2674
+ "grad_norm": 0.8342682123184204,
2675
+ "learning_rate": 1.8896303888921313e-06,
2676
+ "loss": 0.4221,
2677
+ "step": 381
2678
+ },
2679
+ {
2680
+ "epoch": 0.7314504547630445,
2681
+ "grad_norm": 0.7286022305488586,
2682
+ "learning_rate": 1.8648972119309854e-06,
2683
+ "loss": 0.3635,
2684
+ "step": 382
2685
+ },
2686
+ {
2687
+ "epoch": 0.7333652465294399,
2688
+ "grad_norm": 0.839953601360321,
2689
+ "learning_rate": 1.8402898077684806e-06,
2690
+ "loss": 0.4145,
2691
+ "step": 383
2692
+ },
2693
+ {
2694
+ "epoch": 0.7352800382958353,
2695
+ "grad_norm": 0.8201612830162048,
2696
+ "learning_rate": 1.815809163594609e-06,
2697
+ "loss": 0.4102,
2698
+ "step": 384
2699
+ },
2700
+ {
2701
+ "epoch": 0.7371948300622307,
2702
+ "grad_norm": 0.8541584610939026,
2703
+ "learning_rate": 1.7914562615140507e-06,
2704
+ "loss": 0.4286,
2705
+ "step": 385
2706
+ },
2707
+ {
2708
+ "epoch": 0.7391096218286262,
2709
+ "grad_norm": 0.7880145907402039,
2710
+ "learning_rate": 1.7672320785067871e-06,
2711
+ "loss": 0.3997,
2712
+ "step": 386
2713
+ },
2714
+ {
2715
+ "epoch": 0.7410244135950216,
2716
+ "grad_norm": 0.8472251296043396,
2717
+ "learning_rate": 1.74313758638889e-06,
2718
+ "loss": 0.3665,
2719
+ "step": 387
2720
+ },
2721
+ {
2722
+ "epoch": 0.742939205361417,
2723
+ "grad_norm": 0.8149013519287109,
2724
+ "learning_rate": 1.7191737517735513e-06,
2725
+ "loss": 0.3781,
2726
+ "step": 388
2727
+ },
2728
+ {
2729
+ "epoch": 0.7448539971278123,
2730
+ "grad_norm": 0.7976882457733154,
2731
+ "learning_rate": 1.6953415360322972e-06,
2732
+ "loss": 0.3826,
2733
+ "step": 389
2734
+ },
2735
+ {
2736
+ "epoch": 0.7467687888942077,
2737
+ "grad_norm": 0.7928311824798584,
2738
+ "learning_rate": 1.6716418952564145e-06,
2739
+ "loss": 0.3658,
2740
+ "step": 390
2741
+ },
2742
+ {
2743
+ "epoch": 0.7486835806606031,
2744
+ "grad_norm": 0.7540788650512695,
2745
+ "learning_rate": 1.648075780218607e-06,
2746
+ "loss": 0.3496,
2747
+ "step": 391
2748
+ },
2749
+ {
2750
+ "epoch": 0.7505983724269986,
2751
+ "grad_norm": 0.887441873550415,
2752
+ "learning_rate": 1.6246441363348453e-06,
2753
+ "loss": 0.39,
2754
+ "step": 392
2755
+ },
2756
+ {
2757
+ "epoch": 0.752513164193394,
2758
+ "grad_norm": 0.7524732351303101,
2759
+ "learning_rate": 1.6013479036264358e-06,
2760
+ "loss": 0.373,
2761
+ "step": 393
2762
+ },
2763
+ {
2764
+ "epoch": 0.7544279559597894,
2765
+ "grad_norm": 0.7478716969490051,
2766
+ "learning_rate": 1.57818801668232e-06,
2767
+ "loss": 0.3375,
2768
+ "step": 394
2769
+ },
2770
+ {
2771
+ "epoch": 0.7563427477261848,
2772
+ "grad_norm": 0.8160089254379272,
2773
+ "learning_rate": 1.555165404621567e-06,
2774
+ "loss": 0.4017,
2775
+ "step": 395
2776
+ },
2777
+ {
2778
+ "epoch": 0.7582575394925802,
2779
+ "grad_norm": 0.9428865909576416,
2780
+ "learning_rate": 1.532280991056116e-06,
2781
+ "loss": 0.452,
2782
+ "step": 396
2783
+ },
2784
+ {
2785
+ "epoch": 0.7601723312589755,
2786
+ "grad_norm": 0.7749152779579163,
2787
+ "learning_rate": 1.5095356940537053e-06,
2788
+ "loss": 0.388,
2789
+ "step": 397
2790
+ },
2791
+ {
2792
+ "epoch": 0.762087123025371,
2793
+ "grad_norm": 0.8464208841323853,
2794
+ "learning_rate": 1.4869304261010586e-06,
2795
+ "loss": 0.4002,
2796
+ "step": 398
2797
+ },
2798
+ {
2799
+ "epoch": 0.7640019147917664,
2800
+ "grad_norm": 0.8656209707260132,
2801
+ "learning_rate": 1.4644660940672628e-06,
2802
+ "loss": 0.4426,
2803
+ "step": 399
2804
+ },
2805
+ {
2806
+ "epoch": 0.7659167065581618,
2807
+ "grad_norm": 0.7765882015228271,
2808
+ "learning_rate": 1.4421435991674e-06,
2809
+ "loss": 0.3765,
2810
+ "step": 400
2811
+ },
2812
+ {
2813
+ "epoch": 0.7678314983245572,
2814
+ "grad_norm": 0.7365686893463135,
2815
+ "learning_rate": 1.4199638369263858e-06,
2816
+ "loss": 0.3235,
2817
+ "step": 401
2818
+ },
2819
+ {
2820
+ "epoch": 0.7697462900909526,
2821
+ "grad_norm": 0.7246995568275452,
2822
+ "learning_rate": 1.3979276971430406e-06,
2823
+ "loss": 0.3426,
2824
+ "step": 402
2825
+ },
2826
+ {
2827
+ "epoch": 0.771661081857348,
2828
+ "grad_norm": 0.761492133140564,
2829
+ "learning_rate": 1.3760360638544012e-06,
2830
+ "loss": 0.3938,
2831
+ "step": 403
2832
+ },
2833
+ {
2834
+ "epoch": 0.7735758736237435,
2835
+ "grad_norm": 0.7741461992263794,
2836
+ "learning_rate": 1.3542898153002453e-06,
2837
+ "loss": 0.3781,
2838
+ "step": 404
2839
+ },
2840
+ {
2841
+ "epoch": 0.7754906653901388,
2842
+ "grad_norm": 0.8266602158546448,
2843
+ "learning_rate": 1.3326898238878716e-06,
2844
+ "loss": 0.393,
2845
+ "step": 405
2846
+ },
2847
+ {
2848
+ "epoch": 0.7774054571565342,
2849
+ "grad_norm": 0.8508222103118896,
2850
+ "learning_rate": 1.3112369561570842e-06,
2851
+ "loss": 0.3935,
2852
+ "step": 406
2853
+ },
2854
+ {
2855
+ "epoch": 0.7793202489229296,
2856
+ "grad_norm": 0.7993992567062378,
2857
+ "learning_rate": 1.2899320727454472e-06,
2858
+ "loss": 0.3647,
2859
+ "step": 407
2860
+ },
2861
+ {
2862
+ "epoch": 0.781235040689325,
2863
+ "grad_norm": 0.7505406737327576,
2864
+ "learning_rate": 1.2687760283537414e-06,
2865
+ "loss": 0.3869,
2866
+ "step": 408
2867
+ },
2868
+ {
2869
+ "epoch": 0.7831498324557205,
2870
+ "grad_norm": 0.817995548248291,
2871
+ "learning_rate": 1.2477696717116878e-06,
2872
+ "loss": 0.4346,
2873
+ "step": 409
2874
+ },
2875
+ {
2876
+ "epoch": 0.7850646242221159,
2877
+ "grad_norm": 0.7967957854270935,
2878
+ "learning_rate": 1.226913845543895e-06,
2879
+ "loss": 0.3821,
2880
+ "step": 410
2881
+ },
2882
+ {
2883
+ "epoch": 0.7869794159885113,
2884
+ "grad_norm": 0.8469412922859192,
2885
+ "learning_rate": 1.2062093865360458e-06,
2886
+ "loss": 0.4482,
2887
+ "step": 411
2888
+ },
2889
+ {
2890
+ "epoch": 0.7888942077549067,
2891
+ "grad_norm": 0.7760953903198242,
2892
+ "learning_rate": 1.1856571253013393e-06,
2893
+ "loss": 0.3687,
2894
+ "step": 412
2895
+ },
2896
+ {
2897
+ "epoch": 0.790808999521302,
2898
+ "grad_norm": 0.8256305456161499,
2899
+ "learning_rate": 1.1652578863471664e-06,
2900
+ "loss": 0.4058,
2901
+ "step": 413
2902
+ },
2903
+ {
2904
+ "epoch": 0.7927237912876974,
2905
+ "grad_norm": 0.7707417607307434,
2906
+ "learning_rate": 1.145012488042026e-06,
2907
+ "loss": 0.3646,
2908
+ "step": 414
2909
+ },
2910
+ {
2911
+ "epoch": 0.7946385830540929,
2912
+ "grad_norm": 0.9702382683753967,
2913
+ "learning_rate": 1.1249217425827063e-06,
2914
+ "loss": 0.4735,
2915
+ "step": 415
2916
+ },
2917
+ {
2918
+ "epoch": 0.7965533748204883,
2919
+ "grad_norm": 0.8380041718482971,
2920
+ "learning_rate": 1.1049864559616885e-06,
2921
+ "loss": 0.406,
2922
+ "step": 416
2923
+ },
2924
+ {
2925
+ "epoch": 0.7984681665868837,
2926
+ "grad_norm": 0.7933167815208435,
2927
+ "learning_rate": 1.0852074279348234e-06,
2928
+ "loss": 0.3765,
2929
+ "step": 417
2930
+ },
2931
+ {
2932
+ "epoch": 0.8003829583532791,
2933
+ "grad_norm": 0.7869566082954407,
2934
+ "learning_rate": 1.0655854519892367e-06,
2935
+ "loss": 0.3806,
2936
+ "step": 418
2937
+ },
2938
+ {
2939
+ "epoch": 0.8022977501196745,
2940
+ "grad_norm": 0.7924370169639587,
2941
+ "learning_rate": 1.046121315311508e-06,
2942
+ "loss": 0.3953,
2943
+ "step": 419
2944
+ },
2945
+ {
2946
+ "epoch": 0.8042125418860699,
2947
+ "grad_norm": 0.7889004945755005,
2948
+ "learning_rate": 1.0268157987560773e-06,
2949
+ "loss": 0.3996,
2950
+ "step": 420
2951
+ }
2952
+ ],
2953
+ "logging_steps": 1,
2954
+ "max_steps": 522,
2955
+ "num_input_tokens_seen": 0,
2956
+ "num_train_epochs": 1,
2957
+ "save_steps": 105,
2958
+ "stateful_callbacks": {
2959
+ "TrainerControl": {
2960
+ "args": {
2961
+ "should_epoch_stop": false,
2962
+ "should_evaluate": false,
2963
+ "should_log": false,
2964
+ "should_save": true,
2965
+ "should_training_stop": false
2966
+ },
2967
+ "attributes": {}
2968
+ }
2969
+ },
2970
+ "total_flos": 2.2094028312097587e+17,
2971
+ "train_batch_size": 8,
2972
+ "trial_name": null,
2973
+ "trial_params": null
2974
+ }
checkpoint-420/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66ffb9355835ef1e788c4b73fef523b9594f231dd9bde187500393bdf3018899
3
+ size 10936
checkpoint-420/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-420/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoint-522/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }