Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- checkpoint-210/added_tokens.json +24 -0
- checkpoint-210/config.json +28 -0
- checkpoint-210/generation_config.json +7 -0
- checkpoint-210/latest +1 -0
- checkpoint-210/merges.txt +0 -0
- checkpoint-210/model.safetensors +3 -0
- checkpoint-210/rng_state_0.pth +3 -0
- checkpoint-210/rng_state_1.pth +3 -0
- checkpoint-210/scheduler.pt +3 -0
- checkpoint-210/special_tokens_map.json +31 -0
- checkpoint-210/tokenizer.json +3 -0
- checkpoint-210/tokenizer_config.json +208 -0
- checkpoint-210/trainer_state.json +1504 -0
- checkpoint-210/training_args.bin +3 -0
- checkpoint-210/vocab.json +0 -0
- checkpoint-210/zero_to_fp32.py +674 -0
- checkpoint-315/added_tokens.json +24 -0
- checkpoint-315/config.json +28 -0
- checkpoint-315/generation_config.json +7 -0
- checkpoint-315/latest +1 -0
- checkpoint-315/merges.txt +0 -0
- checkpoint-315/model.safetensors +3 -0
- checkpoint-315/rng_state_0.pth +3 -0
- checkpoint-315/rng_state_1.pth +3 -0
- checkpoint-315/scheduler.pt +3 -0
- checkpoint-315/special_tokens_map.json +31 -0
- checkpoint-315/tokenizer.json +3 -0
- checkpoint-315/tokenizer_config.json +208 -0
- checkpoint-315/trainer_state.json +2239 -0
- checkpoint-315/training_args.bin +3 -0
- checkpoint-315/vocab.json +0 -0
- checkpoint-315/zero_to_fp32.py +674 -0
- checkpoint-420/added_tokens.json +24 -0
- checkpoint-420/config.json +28 -0
- checkpoint-420/generation_config.json +7 -0
- checkpoint-420/latest +1 -0
- checkpoint-420/merges.txt +0 -0
- checkpoint-420/model.safetensors +3 -0
- checkpoint-420/rng_state_0.pth +3 -0
- checkpoint-420/rng_state_1.pth +3 -0
- checkpoint-420/scheduler.pt +3 -0
- checkpoint-420/special_tokens_map.json +31 -0
- checkpoint-420/tokenizer.json +3 -0
- checkpoint-420/tokenizer_config.json +208 -0
- checkpoint-420/trainer_state.json +2974 -0
- checkpoint-420/training_args.bin +3 -0
- checkpoint-420/vocab.json +0 -0
- checkpoint-420/zero_to_fp32.py +674 -0
- checkpoint-522/added_tokens.json +24 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoint-210/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
checkpoint-315/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
checkpoint-420/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
39 |
+
checkpoint-522/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
checkpoint-210/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-210/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"eos_token_id": 151643,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 1536,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 8960,
|
11 |
+
"max_position_embeddings": 131072,
|
12 |
+
"max_window_layers": 28,
|
13 |
+
"model_type": "qwen2",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 28,
|
16 |
+
"num_key_value_heads": 2,
|
17 |
+
"rms_norm_eps": 1e-06,
|
18 |
+
"rope_scaling": null,
|
19 |
+
"rope_theta": 1000000.0,
|
20 |
+
"sliding_window": 131072,
|
21 |
+
"tie_word_embeddings": true,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.51.3",
|
24 |
+
"use_cache": false,
|
25 |
+
"use_mrope": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
checkpoint-210/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 151643,
|
5 |
+
"max_new_tokens": 2048,
|
6 |
+
"transformers_version": "4.51.3"
|
7 |
+
}
|
checkpoint-210/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step210
|
checkpoint-210/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-210/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:552c4c41554d61deab927a28aaecc9b0db1ed3d80886d821577fc25bf4532339
|
3 |
+
size 3554214752
|
checkpoint-210/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad792af33c7cfa8b15298ecc9d976ebdcdeb444ca0e704c7b0657f41ee6547eb
|
3 |
+
size 14512
|
checkpoint-210/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:722c924fceffd85f8ab1a5445f1ea1e6c502644b6a42e2ff6b5a9a76ea26e1fe
|
3 |
+
size 14512
|
checkpoint-210/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd9619b29ba8eccd0bac55eb76eb51a451347acd8a0824d109fe4121ffbee803
|
3 |
+
size 1064
|
checkpoint-210/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-210/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-210/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-210/trainer_state.json
ADDED
@@ -0,0 +1,1504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 0.40210627094303497,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 210,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0019147917663954045,
|
14 |
+
"grad_norm": 2.9491562843322754,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 0.6229,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.003829583532790809,
|
21 |
+
"grad_norm": 3.0646867752075195,
|
22 |
+
"learning_rate": 3.846153846153847e-07,
|
23 |
+
"loss": 0.6119,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.0057443752991862135,
|
28 |
+
"grad_norm": 3.0737922191619873,
|
29 |
+
"learning_rate": 7.692307692307694e-07,
|
30 |
+
"loss": 0.6582,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.007659167065581618,
|
35 |
+
"grad_norm": 2.9172728061676025,
|
36 |
+
"learning_rate": 1.153846153846154e-06,
|
37 |
+
"loss": 0.6209,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.009573958831977022,
|
42 |
+
"grad_norm": 2.668588161468506,
|
43 |
+
"learning_rate": 1.5384615384615387e-06,
|
44 |
+
"loss": 0.5589,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.011488750598372427,
|
49 |
+
"grad_norm": 3.2810585498809814,
|
50 |
+
"learning_rate": 1.9230769230769234e-06,
|
51 |
+
"loss": 0.5968,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.013403542364767831,
|
56 |
+
"grad_norm": 2.434365749359131,
|
57 |
+
"learning_rate": 2.307692307692308e-06,
|
58 |
+
"loss": 0.5636,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.015318334131163236,
|
63 |
+
"grad_norm": 2.060615301132202,
|
64 |
+
"learning_rate": 2.6923076923076923e-06,
|
65 |
+
"loss": 0.5661,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.01723312589755864,
|
70 |
+
"grad_norm": 1.8817814588546753,
|
71 |
+
"learning_rate": 3.0769230769230774e-06,
|
72 |
+
"loss": 0.5817,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.019147917663954045,
|
77 |
+
"grad_norm": 1.766438603401184,
|
78 |
+
"learning_rate": 3.4615384615384617e-06,
|
79 |
+
"loss": 0.5529,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.02106270943034945,
|
84 |
+
"grad_norm": 1.5240556001663208,
|
85 |
+
"learning_rate": 3.846153846153847e-06,
|
86 |
+
"loss": 0.5207,
|
87 |
+
"step": 11
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.022977501196744854,
|
91 |
+
"grad_norm": 1.5381622314453125,
|
92 |
+
"learning_rate": 4.230769230769231e-06,
|
93 |
+
"loss": 0.5171,
|
94 |
+
"step": 12
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.02489229296314026,
|
98 |
+
"grad_norm": 1.4144328832626343,
|
99 |
+
"learning_rate": 4.615384615384616e-06,
|
100 |
+
"loss": 0.5612,
|
101 |
+
"step": 13
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.026807084729535663,
|
105 |
+
"grad_norm": 1.282257318496704,
|
106 |
+
"learning_rate": 5e-06,
|
107 |
+
"loss": 0.493,
|
108 |
+
"step": 14
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.028721876495931067,
|
112 |
+
"grad_norm": 1.3273121118545532,
|
113 |
+
"learning_rate": 5.384615384615385e-06,
|
114 |
+
"loss": 0.4723,
|
115 |
+
"step": 15
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.030636668262326472,
|
119 |
+
"grad_norm": 1.1829627752304077,
|
120 |
+
"learning_rate": 5.769230769230769e-06,
|
121 |
+
"loss": 0.4675,
|
122 |
+
"step": 16
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.032551460028721876,
|
126 |
+
"grad_norm": 1.0885576009750366,
|
127 |
+
"learning_rate": 6.153846153846155e-06,
|
128 |
+
"loss": 0.4275,
|
129 |
+
"step": 17
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.03446625179511728,
|
133 |
+
"grad_norm": 0.9974104762077332,
|
134 |
+
"learning_rate": 6.538461538461539e-06,
|
135 |
+
"loss": 0.4709,
|
136 |
+
"step": 18
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.036381043561512685,
|
140 |
+
"grad_norm": 1.0769761800765991,
|
141 |
+
"learning_rate": 6.923076923076923e-06,
|
142 |
+
"loss": 0.4916,
|
143 |
+
"step": 19
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.03829583532790809,
|
147 |
+
"grad_norm": 0.967096745967865,
|
148 |
+
"learning_rate": 7.307692307692308e-06,
|
149 |
+
"loss": 0.4785,
|
150 |
+
"step": 20
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.040210627094303494,
|
154 |
+
"grad_norm": 1.0460747480392456,
|
155 |
+
"learning_rate": 7.692307692307694e-06,
|
156 |
+
"loss": 0.4653,
|
157 |
+
"step": 21
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.0421254188606989,
|
161 |
+
"grad_norm": 1.0114920139312744,
|
162 |
+
"learning_rate": 8.076923076923077e-06,
|
163 |
+
"loss": 0.4648,
|
164 |
+
"step": 22
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.0440402106270943,
|
168 |
+
"grad_norm": 1.1619290113449097,
|
169 |
+
"learning_rate": 8.461538461538462e-06,
|
170 |
+
"loss": 0.4833,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.04595500239348971,
|
175 |
+
"grad_norm": 0.9872665405273438,
|
176 |
+
"learning_rate": 8.846153846153847e-06,
|
177 |
+
"loss": 0.4545,
|
178 |
+
"step": 24
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.04786979415988511,
|
182 |
+
"grad_norm": 0.9702840447425842,
|
183 |
+
"learning_rate": 9.230769230769232e-06,
|
184 |
+
"loss": 0.4651,
|
185 |
+
"step": 25
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.04978458592628052,
|
189 |
+
"grad_norm": 0.9493695497512817,
|
190 |
+
"learning_rate": 9.615384615384616e-06,
|
191 |
+
"loss": 0.477,
|
192 |
+
"step": 26
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.05169937769267592,
|
196 |
+
"grad_norm": 0.9152507185935974,
|
197 |
+
"learning_rate": 1e-05,
|
198 |
+
"loss": 0.4499,
|
199 |
+
"step": 27
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.053614169459071326,
|
203 |
+
"grad_norm": 1.0640617609024048,
|
204 |
+
"learning_rate": 9.999899706000774e-06,
|
205 |
+
"loss": 0.4853,
|
206 |
+
"step": 28
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.05552896122546673,
|
210 |
+
"grad_norm": 0.9641034603118896,
|
211 |
+
"learning_rate": 9.999598828026644e-06,
|
212 |
+
"loss": 0.475,
|
213 |
+
"step": 29
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.057443752991862135,
|
217 |
+
"grad_norm": 0.8927161693572998,
|
218 |
+
"learning_rate": 9.999097378148116e-06,
|
219 |
+
"loss": 0.4448,
|
220 |
+
"step": 30
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.05935854475825754,
|
224 |
+
"grad_norm": 0.881844699382782,
|
225 |
+
"learning_rate": 9.998395376482152e-06,
|
226 |
+
"loss": 0.4327,
|
227 |
+
"step": 31
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.061273336524652944,
|
231 |
+
"grad_norm": 0.8794113993644714,
|
232 |
+
"learning_rate": 9.99749285119138e-06,
|
233 |
+
"loss": 0.4294,
|
234 |
+
"step": 32
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.06318812829104835,
|
238 |
+
"grad_norm": 0.9898825287818909,
|
239 |
+
"learning_rate": 9.996389838482942e-06,
|
240 |
+
"loss": 0.5294,
|
241 |
+
"step": 33
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.06510292005744375,
|
245 |
+
"grad_norm": 0.9184749126434326,
|
246 |
+
"learning_rate": 9.995086382607064e-06,
|
247 |
+
"loss": 0.4774,
|
248 |
+
"step": 34
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.06701771182383916,
|
252 |
+
"grad_norm": 0.9067336320877075,
|
253 |
+
"learning_rate": 9.993582535855265e-06,
|
254 |
+
"loss": 0.4569,
|
255 |
+
"step": 35
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.06893250359023456,
|
259 |
+
"grad_norm": 0.8807307481765747,
|
260 |
+
"learning_rate": 9.991878358558267e-06,
|
261 |
+
"loss": 0.478,
|
262 |
+
"step": 36
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.07084729535662997,
|
266 |
+
"grad_norm": 0.9359887838363647,
|
267 |
+
"learning_rate": 9.989973919083576e-06,
|
268 |
+
"loss": 0.4659,
|
269 |
+
"step": 37
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.07276208712302537,
|
273 |
+
"grad_norm": 0.9008484482765198,
|
274 |
+
"learning_rate": 9.987869293832727e-06,
|
275 |
+
"loss": 0.4659,
|
276 |
+
"step": 38
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.07467687888942078,
|
280 |
+
"grad_norm": 0.8065485954284668,
|
281 |
+
"learning_rate": 9.985564567238237e-06,
|
282 |
+
"loss": 0.4441,
|
283 |
+
"step": 39
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.07659167065581618,
|
287 |
+
"grad_norm": 0.9766021966934204,
|
288 |
+
"learning_rate": 9.983059831760205e-06,
|
289 |
+
"loss": 0.4834,
|
290 |
+
"step": 40
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.07850646242221158,
|
294 |
+
"grad_norm": 0.8222993016242981,
|
295 |
+
"learning_rate": 9.980355187882606e-06,
|
296 |
+
"loss": 0.443,
|
297 |
+
"step": 41
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.08042125418860699,
|
301 |
+
"grad_norm": 0.8215630054473877,
|
302 |
+
"learning_rate": 9.977450744109258e-06,
|
303 |
+
"loss": 0.4219,
|
304 |
+
"step": 42
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.0823360459550024,
|
308 |
+
"grad_norm": 0.8324375748634338,
|
309 |
+
"learning_rate": 9.974346616959476e-06,
|
310 |
+
"loss": 0.4362,
|
311 |
+
"step": 43
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.0842508377213978,
|
315 |
+
"grad_norm": 0.9242782592773438,
|
316 |
+
"learning_rate": 9.97104293096339e-06,
|
317 |
+
"loss": 0.4738,
|
318 |
+
"step": 44
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.0861656294877932,
|
322 |
+
"grad_norm": 0.9275208711624146,
|
323 |
+
"learning_rate": 9.967539818656953e-06,
|
324 |
+
"loss": 0.4571,
|
325 |
+
"step": 45
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.0880804212541886,
|
329 |
+
"grad_norm": 0.876868724822998,
|
330 |
+
"learning_rate": 9.96383742057662e-06,
|
331 |
+
"loss": 0.5172,
|
332 |
+
"step": 46
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.08999521302058401,
|
336 |
+
"grad_norm": 0.8446276783943176,
|
337 |
+
"learning_rate": 9.959935885253715e-06,
|
338 |
+
"loss": 0.4457,
|
339 |
+
"step": 47
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.09191000478697942,
|
343 |
+
"grad_norm": 0.8077015280723572,
|
344 |
+
"learning_rate": 9.955835369208475e-06,
|
345 |
+
"loss": 0.4234,
|
346 |
+
"step": 48
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.09382479655337482,
|
350 |
+
"grad_norm": 0.7882896065711975,
|
351 |
+
"learning_rate": 9.951536036943753e-06,
|
352 |
+
"loss": 0.4264,
|
353 |
+
"step": 49
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.09573958831977022,
|
357 |
+
"grad_norm": 0.8539751768112183,
|
358 |
+
"learning_rate": 9.94703806093845e-06,
|
359 |
+
"loss": 0.461,
|
360 |
+
"step": 50
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.09765438008616563,
|
364 |
+
"grad_norm": 0.8285911679267883,
|
365 |
+
"learning_rate": 9.942341621640558e-06,
|
366 |
+
"loss": 0.4379,
|
367 |
+
"step": 51
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.09956917185256103,
|
371 |
+
"grad_norm": 0.8029133081436157,
|
372 |
+
"learning_rate": 9.937446907459954e-06,
|
373 |
+
"loss": 0.4565,
|
374 |
+
"step": 52
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.10148396361895644,
|
378 |
+
"grad_norm": 0.7964851260185242,
|
379 |
+
"learning_rate": 9.932354114760819e-06,
|
380 |
+
"loss": 0.4262,
|
381 |
+
"step": 53
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.10339875538535184,
|
385 |
+
"grad_norm": 0.9846324920654297,
|
386 |
+
"learning_rate": 9.92706344785377e-06,
|
387 |
+
"loss": 0.5302,
|
388 |
+
"step": 54
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.10531354715174725,
|
392 |
+
"grad_norm": 0.7648650407791138,
|
393 |
+
"learning_rate": 9.921575118987672e-06,
|
394 |
+
"loss": 0.4066,
|
395 |
+
"step": 55
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.10722833891814265,
|
399 |
+
"grad_norm": 0.83173668384552,
|
400 |
+
"learning_rate": 9.915889348341098e-06,
|
401 |
+
"loss": 0.4438,
|
402 |
+
"step": 56
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.10914313068453806,
|
406 |
+
"grad_norm": 0.7968882322311401,
|
407 |
+
"learning_rate": 9.910006364013522e-06,
|
408 |
+
"loss": 0.407,
|
409 |
+
"step": 57
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.11105792245093346,
|
413 |
+
"grad_norm": 0.8423118591308594,
|
414 |
+
"learning_rate": 9.903926402016153e-06,
|
415 |
+
"loss": 0.4174,
|
416 |
+
"step": 58
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.11297271421732887,
|
420 |
+
"grad_norm": 0.9054727554321289,
|
421 |
+
"learning_rate": 9.897649706262474e-06,
|
422 |
+
"loss": 0.4764,
|
423 |
+
"step": 59
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.11488750598372427,
|
427 |
+
"grad_norm": 0.8318431973457336,
|
428 |
+
"learning_rate": 9.891176528558451e-06,
|
429 |
+
"loss": 0.4326,
|
430 |
+
"step": 60
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.11680229775011967,
|
434 |
+
"grad_norm": 0.8409565687179565,
|
435 |
+
"learning_rate": 9.884507128592435e-06,
|
436 |
+
"loss": 0.4451,
|
437 |
+
"step": 61
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.11871708951651508,
|
441 |
+
"grad_norm": 0.8471431136131287,
|
442 |
+
"learning_rate": 9.877641773924748e-06,
|
443 |
+
"loss": 0.4217,
|
444 |
+
"step": 62
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.12063188128291048,
|
448 |
+
"grad_norm": 0.8495103120803833,
|
449 |
+
"learning_rate": 9.870580739976936e-06,
|
450 |
+
"loss": 0.421,
|
451 |
+
"step": 63
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.12254667304930589,
|
455 |
+
"grad_norm": 0.8164567947387695,
|
456 |
+
"learning_rate": 9.863324310020735e-06,
|
457 |
+
"loss": 0.4266,
|
458 |
+
"step": 64
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.12446146481570129,
|
462 |
+
"grad_norm": 0.8732247948646545,
|
463 |
+
"learning_rate": 9.855872775166696e-06,
|
464 |
+
"loss": 0.4661,
|
465 |
+
"step": 65
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.1263762565820967,
|
469 |
+
"grad_norm": 0.8157728910446167,
|
470 |
+
"learning_rate": 9.848226434352513e-06,
|
471 |
+
"loss": 0.4401,
|
472 |
+
"step": 66
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.12829104834849211,
|
476 |
+
"grad_norm": 0.8860891461372375,
|
477 |
+
"learning_rate": 9.840385594331022e-06,
|
478 |
+
"loss": 0.4748,
|
479 |
+
"step": 67
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.1302058401148875,
|
483 |
+
"grad_norm": 0.8987312316894531,
|
484 |
+
"learning_rate": 9.83235056965791e-06,
|
485 |
+
"loss": 0.4881,
|
486 |
+
"step": 68
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.13212063188128292,
|
490 |
+
"grad_norm": 0.8786044716835022,
|
491 |
+
"learning_rate": 9.824121682679072e-06,
|
492 |
+
"loss": 0.4417,
|
493 |
+
"step": 69
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.13403542364767831,
|
497 |
+
"grad_norm": 0.8325650691986084,
|
498 |
+
"learning_rate": 9.815699263517712e-06,
|
499 |
+
"loss": 0.4377,
|
500 |
+
"step": 70
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.13595021541407373,
|
504 |
+
"grad_norm": 0.8149142861366272,
|
505 |
+
"learning_rate": 9.807083650061063e-06,
|
506 |
+
"loss": 0.4496,
|
507 |
+
"step": 71
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.13786500718046912,
|
511 |
+
"grad_norm": 0.8394611477851868,
|
512 |
+
"learning_rate": 9.798275187946859e-06,
|
513 |
+
"loss": 0.4394,
|
514 |
+
"step": 72
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.13977979894686454,
|
518 |
+
"grad_norm": 0.7746449112892151,
|
519 |
+
"learning_rate": 9.789274230549456e-06,
|
520 |
+
"loss": 0.4039,
|
521 |
+
"step": 73
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.14169459071325993,
|
525 |
+
"grad_norm": 0.7592336535453796,
|
526 |
+
"learning_rate": 9.780081138965663e-06,
|
527 |
+
"loss": 0.3788,
|
528 |
+
"step": 74
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.14360938247965535,
|
532 |
+
"grad_norm": 0.9066088199615479,
|
533 |
+
"learning_rate": 9.770696282000245e-06,
|
534 |
+
"loss": 0.4541,
|
535 |
+
"step": 75
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.14552417424605074,
|
539 |
+
"grad_norm": 0.8512394428253174,
|
540 |
+
"learning_rate": 9.761120036151138e-06,
|
541 |
+
"loss": 0.4217,
|
542 |
+
"step": 76
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.14743896601244616,
|
546 |
+
"grad_norm": 0.795378565788269,
|
547 |
+
"learning_rate": 9.751352785594337e-06,
|
548 |
+
"loss": 0.4014,
|
549 |
+
"step": 77
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.14935375777884155,
|
553 |
+
"grad_norm": 0.9467825293540955,
|
554 |
+
"learning_rate": 9.741394922168495e-06,
|
555 |
+
"loss": 0.4855,
|
556 |
+
"step": 78
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.15126854954523697,
|
560 |
+
"grad_norm": 0.7824875712394714,
|
561 |
+
"learning_rate": 9.731246845359187e-06,
|
562 |
+
"loss": 0.4088,
|
563 |
+
"step": 79
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.15318334131163236,
|
567 |
+
"grad_norm": 0.7557615637779236,
|
568 |
+
"learning_rate": 9.720908962282893e-06,
|
569 |
+
"loss": 0.4023,
|
570 |
+
"step": 80
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.15509813307802778,
|
574 |
+
"grad_norm": 0.8093947768211365,
|
575 |
+
"learning_rate": 9.710381687670675e-06,
|
576 |
+
"loss": 0.4345,
|
577 |
+
"step": 81
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.15701292484442317,
|
581 |
+
"grad_norm": 0.8901275396347046,
|
582 |
+
"learning_rate": 9.699665443851518e-06,
|
583 |
+
"loss": 0.4444,
|
584 |
+
"step": 82
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.1589277166108186,
|
588 |
+
"grad_norm": 0.7518415451049805,
|
589 |
+
"learning_rate": 9.688760660735403e-06,
|
590 |
+
"loss": 0.4024,
|
591 |
+
"step": 83
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.16084250837721398,
|
595 |
+
"grad_norm": 0.7495772242546082,
|
596 |
+
"learning_rate": 9.677667775796052e-06,
|
597 |
+
"loss": 0.4005,
|
598 |
+
"step": 84
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.1627573001436094,
|
602 |
+
"grad_norm": 0.8903560638427734,
|
603 |
+
"learning_rate": 9.666387234053385e-06,
|
604 |
+
"loss": 0.4495,
|
605 |
+
"step": 85
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.1646720919100048,
|
609 |
+
"grad_norm": 0.8854427933692932,
|
610 |
+
"learning_rate": 9.654919488055656e-06,
|
611 |
+
"loss": 0.4381,
|
612 |
+
"step": 86
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.1665868836764002,
|
616 |
+
"grad_norm": 0.8393151164054871,
|
617 |
+
"learning_rate": 9.643264997861312e-06,
|
618 |
+
"loss": 0.4177,
|
619 |
+
"step": 87
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.1685016754427956,
|
623 |
+
"grad_norm": 0.8448845148086548,
|
624 |
+
"learning_rate": 9.631424231020523e-06,
|
625 |
+
"loss": 0.4437,
|
626 |
+
"step": 88
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.170416467209191,
|
630 |
+
"grad_norm": 0.8987253904342651,
|
631 |
+
"learning_rate": 9.619397662556434e-06,
|
632 |
+
"loss": 0.4479,
|
633 |
+
"step": 89
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.1723312589755864,
|
637 |
+
"grad_norm": 0.9512760639190674,
|
638 |
+
"learning_rate": 9.607185774946106e-06,
|
639 |
+
"loss": 0.5188,
|
640 |
+
"step": 90
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.17424605074198182,
|
644 |
+
"grad_norm": 0.9057194590568542,
|
645 |
+
"learning_rate": 9.594789058101154e-06,
|
646 |
+
"loss": 0.4448,
|
647 |
+
"step": 91
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.1761608425083772,
|
651 |
+
"grad_norm": 0.8147549033164978,
|
652 |
+
"learning_rate": 9.582208009348104e-06,
|
653 |
+
"loss": 0.4106,
|
654 |
+
"step": 92
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.17807563427477263,
|
658 |
+
"grad_norm": 0.8666926622390747,
|
659 |
+
"learning_rate": 9.569443133408434e-06,
|
660 |
+
"loss": 0.4558,
|
661 |
+
"step": 93
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.17999042604116802,
|
665 |
+
"grad_norm": 0.8677969574928284,
|
666 |
+
"learning_rate": 9.556494942378328e-06,
|
667 |
+
"loss": 0.4379,
|
668 |
+
"step": 94
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.18190521780756344,
|
672 |
+
"grad_norm": 0.8896477222442627,
|
673 |
+
"learning_rate": 9.543363955708124e-06,
|
674 |
+
"loss": 0.4498,
|
675 |
+
"step": 95
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.18382000957395883,
|
679 |
+
"grad_norm": 0.7357858419418335,
|
680 |
+
"learning_rate": 9.530050700181499e-06,
|
681 |
+
"loss": 0.3666,
|
682 |
+
"step": 96
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.18573480134035425,
|
686 |
+
"grad_norm": 0.7851715683937073,
|
687 |
+
"learning_rate": 9.5165557098943e-06,
|
688 |
+
"loss": 0.411,
|
689 |
+
"step": 97
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.18764959310674964,
|
693 |
+
"grad_norm": 0.8098123669624329,
|
694 |
+
"learning_rate": 9.502879526233151e-06,
|
695 |
+
"loss": 0.4023,
|
696 |
+
"step": 98
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.18956438487314506,
|
700 |
+
"grad_norm": 0.8245725631713867,
|
701 |
+
"learning_rate": 9.48902269785371e-06,
|
702 |
+
"loss": 0.423,
|
703 |
+
"step": 99
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.19147917663954045,
|
707 |
+
"grad_norm": 0.8497715592384338,
|
708 |
+
"learning_rate": 9.47498578065867e-06,
|
709 |
+
"loss": 0.4125,
|
710 |
+
"step": 100
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.19339396840593587,
|
714 |
+
"grad_norm": 0.8205481171607971,
|
715 |
+
"learning_rate": 9.460769337775461e-06,
|
716 |
+
"loss": 0.4312,
|
717 |
+
"step": 101
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.19530876017233126,
|
721 |
+
"grad_norm": 0.8062931299209595,
|
722 |
+
"learning_rate": 9.446373939533642e-06,
|
723 |
+
"loss": 0.3961,
|
724 |
+
"step": 102
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.19722355193872668,
|
728 |
+
"grad_norm": 0.8209528923034668,
|
729 |
+
"learning_rate": 9.431800163442043e-06,
|
730 |
+
"loss": 0.4121,
|
731 |
+
"step": 103
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.19913834370512207,
|
735 |
+
"grad_norm": 0.8154571652412415,
|
736 |
+
"learning_rate": 9.417048594165572e-06,
|
737 |
+
"loss": 0.4475,
|
738 |
+
"step": 104
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.20105313547151749,
|
742 |
+
"grad_norm": 0.8546404838562012,
|
743 |
+
"learning_rate": 9.402119823501787e-06,
|
744 |
+
"loss": 0.4293,
|
745 |
+
"step": 105
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.20296792723791288,
|
749 |
+
"grad_norm": 0.8470130562782288,
|
750 |
+
"learning_rate": 9.387014450357128e-06,
|
751 |
+
"loss": 0.4139,
|
752 |
+
"step": 106
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.2048827190043083,
|
756 |
+
"grad_norm": 0.9199275970458984,
|
757 |
+
"learning_rate": 9.371733080722911e-06,
|
758 |
+
"loss": 0.4825,
|
759 |
+
"step": 107
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.20679751077070369,
|
763 |
+
"grad_norm": 0.9049551486968994,
|
764 |
+
"learning_rate": 9.356276327651006e-06,
|
765 |
+
"loss": 0.4378,
|
766 |
+
"step": 108
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.2087123025370991,
|
770 |
+
"grad_norm": 0.8089979887008667,
|
771 |
+
"learning_rate": 9.340644811229243e-06,
|
772 |
+
"loss": 0.4027,
|
773 |
+
"step": 109
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.2106270943034945,
|
777 |
+
"grad_norm": 0.7452864050865173,
|
778 |
+
"learning_rate": 9.324839158556542e-06,
|
779 |
+
"loss": 0.3795,
|
780 |
+
"step": 110
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.2125418860698899,
|
784 |
+
"grad_norm": 0.8286869525909424,
|
785 |
+
"learning_rate": 9.308860003717748e-06,
|
786 |
+
"loss": 0.4137,
|
787 |
+
"step": 111
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.2144566778362853,
|
791 |
+
"grad_norm": 0.8634768724441528,
|
792 |
+
"learning_rate": 9.292707987758202e-06,
|
793 |
+
"loss": 0.445,
|
794 |
+
"step": 112
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.21637146960268072,
|
798 |
+
"grad_norm": 0.8329188227653503,
|
799 |
+
"learning_rate": 9.27638375865801e-06,
|
800 |
+
"loss": 0.4307,
|
801 |
+
"step": 113
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.2182862613690761,
|
805 |
+
"grad_norm": 0.8780718445777893,
|
806 |
+
"learning_rate": 9.259887971306064e-06,
|
807 |
+
"loss": 0.4863,
|
808 |
+
"step": 114
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.22020105313547153,
|
812 |
+
"grad_norm": 0.9007835388183594,
|
813 |
+
"learning_rate": 9.243221287473755e-06,
|
814 |
+
"loss": 0.4482,
|
815 |
+
"step": 115
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.22211584490186692,
|
819 |
+
"grad_norm": 0.8163229823112488,
|
820 |
+
"learning_rate": 9.226384375788435e-06,
|
821 |
+
"loss": 0.4168,
|
822 |
+
"step": 116
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.22403063666826234,
|
826 |
+
"grad_norm": 0.8288677334785461,
|
827 |
+
"learning_rate": 9.209377911706585e-06,
|
828 |
+
"loss": 0.4038,
|
829 |
+
"step": 117
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.22594542843465773,
|
833 |
+
"grad_norm": 0.8035851716995239,
|
834 |
+
"learning_rate": 9.192202577486725e-06,
|
835 |
+
"loss": 0.3922,
|
836 |
+
"step": 118
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.22786022020105315,
|
840 |
+
"grad_norm": 0.8203516006469727,
|
841 |
+
"learning_rate": 9.174859062162037e-06,
|
842 |
+
"loss": 0.3971,
|
843 |
+
"step": 119
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.22977501196744854,
|
847 |
+
"grad_norm": 0.8246352076530457,
|
848 |
+
"learning_rate": 9.157348061512728e-06,
|
849 |
+
"loss": 0.4433,
|
850 |
+
"step": 120
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.23168980373384396,
|
854 |
+
"grad_norm": 0.8655344247817993,
|
855 |
+
"learning_rate": 9.139670278038109e-06,
|
856 |
+
"loss": 0.4405,
|
857 |
+
"step": 121
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.23360459550023935,
|
861 |
+
"grad_norm": 0.7439157366752625,
|
862 |
+
"learning_rate": 9.121826420928421e-06,
|
863 |
+
"loss": 0.3683,
|
864 |
+
"step": 122
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.23551938726663477,
|
868 |
+
"grad_norm": 0.817434549331665,
|
869 |
+
"learning_rate": 9.103817206036383e-06,
|
870 |
+
"loss": 0.4034,
|
871 |
+
"step": 123
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.23743417903303016,
|
875 |
+
"grad_norm": 0.8455221056938171,
|
876 |
+
"learning_rate": 9.085643355848468e-06,
|
877 |
+
"loss": 0.4418,
|
878 |
+
"step": 124
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.23934897079942558,
|
882 |
+
"grad_norm": 0.8356925845146179,
|
883 |
+
"learning_rate": 9.06730559945592e-06,
|
884 |
+
"loss": 0.4012,
|
885 |
+
"step": 125
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.24126376256582097,
|
889 |
+
"grad_norm": 0.8181227445602417,
|
890 |
+
"learning_rate": 9.048804672525513e-06,
|
891 |
+
"loss": 0.4174,
|
892 |
+
"step": 126
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.24317855433221638,
|
896 |
+
"grad_norm": 0.8010542988777161,
|
897 |
+
"learning_rate": 9.030141317270026e-06,
|
898 |
+
"loss": 0.3952,
|
899 |
+
"step": 127
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.24509334609861178,
|
903 |
+
"grad_norm": 0.8500829935073853,
|
904 |
+
"learning_rate": 9.011316282418474e-06,
|
905 |
+
"loss": 0.4123,
|
906 |
+
"step": 128
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.2470081378650072,
|
910 |
+
"grad_norm": 0.8971666693687439,
|
911 |
+
"learning_rate": 8.992330323186069e-06,
|
912 |
+
"loss": 0.4451,
|
913 |
+
"step": 129
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.24892292963140258,
|
917 |
+
"grad_norm": 0.9065473079681396,
|
918 |
+
"learning_rate": 8.973184201243922e-06,
|
919 |
+
"loss": 0.4821,
|
920 |
+
"step": 130
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.250837721397798,
|
924 |
+
"grad_norm": 0.8722876906394958,
|
925 |
+
"learning_rate": 8.953878684688492e-06,
|
926 |
+
"loss": 0.4204,
|
927 |
+
"step": 131
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.2527525131641934,
|
931 |
+
"grad_norm": 0.8343362808227539,
|
932 |
+
"learning_rate": 8.934414548010764e-06,
|
933 |
+
"loss": 0.408,
|
934 |
+
"step": 132
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.2546673049305888,
|
938 |
+
"grad_norm": 0.8162686824798584,
|
939 |
+
"learning_rate": 8.914792572065178e-06,
|
940 |
+
"loss": 0.416,
|
941 |
+
"step": 133
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.25658209669698423,
|
945 |
+
"grad_norm": 0.9116921424865723,
|
946 |
+
"learning_rate": 8.89501354403831e-06,
|
947 |
+
"loss": 0.4589,
|
948 |
+
"step": 134
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.2584968884633796,
|
952 |
+
"grad_norm": 0.9577599763870239,
|
953 |
+
"learning_rate": 8.875078257417294e-06,
|
954 |
+
"loss": 0.4654,
|
955 |
+
"step": 135
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.260411680229775,
|
959 |
+
"grad_norm": 0.8709072470664978,
|
960 |
+
"learning_rate": 8.854987511957974e-06,
|
961 |
+
"loss": 0.4395,
|
962 |
+
"step": 136
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.26232647199617043,
|
966 |
+
"grad_norm": 0.8386030197143555,
|
967 |
+
"learning_rate": 8.834742113652835e-06,
|
968 |
+
"loss": 0.4281,
|
969 |
+
"step": 137
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.26424126376256585,
|
973 |
+
"grad_norm": 0.7646230459213257,
|
974 |
+
"learning_rate": 8.81434287469866e-06,
|
975 |
+
"loss": 0.3804,
|
976 |
+
"step": 138
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.2661560555289612,
|
980 |
+
"grad_norm": 0.8096075057983398,
|
981 |
+
"learning_rate": 8.793790613463956e-06,
|
982 |
+
"loss": 0.4112,
|
983 |
+
"step": 139
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.26807084729535663,
|
987 |
+
"grad_norm": 0.8051929473876953,
|
988 |
+
"learning_rate": 8.773086154456106e-06,
|
989 |
+
"loss": 0.4172,
|
990 |
+
"step": 140
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.26998563906175205,
|
994 |
+
"grad_norm": 0.9208196401596069,
|
995 |
+
"learning_rate": 8.752230328288314e-06,
|
996 |
+
"loss": 0.4768,
|
997 |
+
"step": 141
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.27190043082814747,
|
1001 |
+
"grad_norm": 0.7890869975090027,
|
1002 |
+
"learning_rate": 8.731223971646261e-06,
|
1003 |
+
"loss": 0.3915,
|
1004 |
+
"step": 142
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.27381522259454283,
|
1008 |
+
"grad_norm": 0.786723792552948,
|
1009 |
+
"learning_rate": 8.710067927254555e-06,
|
1010 |
+
"loss": 0.3844,
|
1011 |
+
"step": 143
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.27573001436093825,
|
1015 |
+
"grad_norm": 0.791117250919342,
|
1016 |
+
"learning_rate": 8.688763043842916e-06,
|
1017 |
+
"loss": 0.4065,
|
1018 |
+
"step": 144
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.27764480612733367,
|
1022 |
+
"grad_norm": 0.8172312378883362,
|
1023 |
+
"learning_rate": 8.66731017611213e-06,
|
1024 |
+
"loss": 0.4337,
|
1025 |
+
"step": 145
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.2795595978937291,
|
1029 |
+
"grad_norm": 0.8335762023925781,
|
1030 |
+
"learning_rate": 8.645710184699756e-06,
|
1031 |
+
"loss": 0.4182,
|
1032 |
+
"step": 146
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.28147438966012445,
|
1036 |
+
"grad_norm": 0.8034957051277161,
|
1037 |
+
"learning_rate": 8.6239639361456e-06,
|
1038 |
+
"loss": 0.4097,
|
1039 |
+
"step": 147
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.28338918142651986,
|
1043 |
+
"grad_norm": 0.8107390403747559,
|
1044 |
+
"learning_rate": 8.602072302856961e-06,
|
1045 |
+
"loss": 0.4055,
|
1046 |
+
"step": 148
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.2853039731929153,
|
1050 |
+
"grad_norm": 0.8442232012748718,
|
1051 |
+
"learning_rate": 8.580036163073615e-06,
|
1052 |
+
"loss": 0.4307,
|
1053 |
+
"step": 149
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.2872187649593107,
|
1057 |
+
"grad_norm": 0.8290265202522278,
|
1058 |
+
"learning_rate": 8.5578564008326e-06,
|
1059 |
+
"loss": 0.3892,
|
1060 |
+
"step": 150
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.28913355672570606,
|
1064 |
+
"grad_norm": 0.8057438731193542,
|
1065 |
+
"learning_rate": 8.535533905932739e-06,
|
1066 |
+
"loss": 0.4042,
|
1067 |
+
"step": 151
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.2910483484921015,
|
1071 |
+
"grad_norm": 0.8582248091697693,
|
1072 |
+
"learning_rate": 8.513069573898944e-06,
|
1073 |
+
"loss": 0.4149,
|
1074 |
+
"step": 152
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.2929631402584969,
|
1078 |
+
"grad_norm": 0.8402311205863953,
|
1079 |
+
"learning_rate": 8.490464305946296e-06,
|
1080 |
+
"loss": 0.4243,
|
1081 |
+
"step": 153
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.2948779320248923,
|
1085 |
+
"grad_norm": 0.812869668006897,
|
1086 |
+
"learning_rate": 8.467719008943886e-06,
|
1087 |
+
"loss": 0.4134,
|
1088 |
+
"step": 154
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.2967927237912877,
|
1092 |
+
"grad_norm": 0.8431028723716736,
|
1093 |
+
"learning_rate": 8.444834595378434e-06,
|
1094 |
+
"loss": 0.4185,
|
1095 |
+
"step": 155
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.2987075155576831,
|
1099 |
+
"grad_norm": 0.802760899066925,
|
1100 |
+
"learning_rate": 8.421811983317682e-06,
|
1101 |
+
"loss": 0.4011,
|
1102 |
+
"step": 156
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.3006223073240785,
|
1106 |
+
"grad_norm": 0.814274251461029,
|
1107 |
+
"learning_rate": 8.398652096373566e-06,
|
1108 |
+
"loss": 0.4194,
|
1109 |
+
"step": 157
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.30253709909047394,
|
1113 |
+
"grad_norm": 0.8286414742469788,
|
1114 |
+
"learning_rate": 8.375355863665155e-06,
|
1115 |
+
"loss": 0.4044,
|
1116 |
+
"step": 158
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.3044518908568693,
|
1120 |
+
"grad_norm": 0.8244617581367493,
|
1121 |
+
"learning_rate": 8.351924219781393e-06,
|
1122 |
+
"loss": 0.4415,
|
1123 |
+
"step": 159
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.3063666826232647,
|
1127 |
+
"grad_norm": 0.8288456201553345,
|
1128 |
+
"learning_rate": 8.328358104743588e-06,
|
1129 |
+
"loss": 0.4143,
|
1130 |
+
"step": 160
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.30828147438966014,
|
1134 |
+
"grad_norm": 0.7895364165306091,
|
1135 |
+
"learning_rate": 8.304658463967705e-06,
|
1136 |
+
"loss": 0.4122,
|
1137 |
+
"step": 161
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.31019626615605556,
|
1141 |
+
"grad_norm": 0.7923944592475891,
|
1142 |
+
"learning_rate": 8.28082624822645e-06,
|
1143 |
+
"loss": 0.3812,
|
1144 |
+
"step": 162
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.3121110579224509,
|
1148 |
+
"grad_norm": 0.7424578666687012,
|
1149 |
+
"learning_rate": 8.256862413611113e-06,
|
1150 |
+
"loss": 0.3883,
|
1151 |
+
"step": 163
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.31402584968884634,
|
1155 |
+
"grad_norm": 0.8261198401451111,
|
1156 |
+
"learning_rate": 8.232767921493216e-06,
|
1157 |
+
"loss": 0.432,
|
1158 |
+
"step": 164
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.31594064145524176,
|
1162 |
+
"grad_norm": 0.8710785508155823,
|
1163 |
+
"learning_rate": 8.20854373848595e-06,
|
1164 |
+
"loss": 0.4508,
|
1165 |
+
"step": 165
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.3178554332216372,
|
1169 |
+
"grad_norm": 0.7583726048469543,
|
1170 |
+
"learning_rate": 8.184190836405394e-06,
|
1171 |
+
"loss": 0.3709,
|
1172 |
+
"step": 166
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.31977022498803254,
|
1176 |
+
"grad_norm": 0.7795834541320801,
|
1177 |
+
"learning_rate": 8.15971019223152e-06,
|
1178 |
+
"loss": 0.4055,
|
1179 |
+
"step": 167
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.32168501675442795,
|
1183 |
+
"grad_norm": 0.7580612897872925,
|
1184 |
+
"learning_rate": 8.135102788069015e-06,
|
1185 |
+
"loss": 0.3605,
|
1186 |
+
"step": 168
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.3235998085208234,
|
1190 |
+
"grad_norm": 0.7536636590957642,
|
1191 |
+
"learning_rate": 8.110369611107869e-06,
|
1192 |
+
"loss": 0.3656,
|
1193 |
+
"step": 169
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.3255146002872188,
|
1197 |
+
"grad_norm": 0.8029680252075195,
|
1198 |
+
"learning_rate": 8.085511653583772e-06,
|
1199 |
+
"loss": 0.3819,
|
1200 |
+
"step": 170
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.32742939205361415,
|
1204 |
+
"grad_norm": 0.8548794388771057,
|
1205 |
+
"learning_rate": 8.060529912738316e-06,
|
1206 |
+
"loss": 0.4449,
|
1207 |
+
"step": 171
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.3293441838200096,
|
1211 |
+
"grad_norm": 0.877955436706543,
|
1212 |
+
"learning_rate": 8.035425390778975e-06,
|
1213 |
+
"loss": 0.4504,
|
1214 |
+
"step": 172
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.331258975586405,
|
1218 |
+
"grad_norm": 0.8173900246620178,
|
1219 |
+
"learning_rate": 8.010199094838915e-06,
|
1220 |
+
"loss": 0.4211,
|
1221 |
+
"step": 173
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.3331737673528004,
|
1225 |
+
"grad_norm": 0.8715358972549438,
|
1226 |
+
"learning_rate": 7.984852036936578e-06,
|
1227 |
+
"loss": 0.3909,
|
1228 |
+
"step": 174
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.3350885591191958,
|
1232 |
+
"grad_norm": 0.8475743532180786,
|
1233 |
+
"learning_rate": 7.959385233935087e-06,
|
1234 |
+
"loss": 0.4416,
|
1235 |
+
"step": 175
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.3370033508855912,
|
1239 |
+
"grad_norm": 0.7483753561973572,
|
1240 |
+
"learning_rate": 7.933799707501448e-06,
|
1241 |
+
"loss": 0.351,
|
1242 |
+
"step": 176
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.3389181426519866,
|
1246 |
+
"grad_norm": 0.8065423965454102,
|
1247 |
+
"learning_rate": 7.908096484065569e-06,
|
1248 |
+
"loss": 0.4085,
|
1249 |
+
"step": 177
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.340832934418382,
|
1253 |
+
"grad_norm": 0.8215972185134888,
|
1254 |
+
"learning_rate": 7.88227659477908e-06,
|
1255 |
+
"loss": 0.4132,
|
1256 |
+
"step": 178
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.3427477261847774,
|
1260 |
+
"grad_norm": 0.7788512706756592,
|
1261 |
+
"learning_rate": 7.856341075473963e-06,
|
1262 |
+
"loss": 0.3828,
|
1263 |
+
"step": 179
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.3446625179511728,
|
1267 |
+
"grad_norm": 0.7943012118339539,
|
1268 |
+
"learning_rate": 7.830290966620997e-06,
|
1269 |
+
"loss": 0.3737,
|
1270 |
+
"step": 180
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 0.3465773097175682,
|
1274 |
+
"grad_norm": 0.8680888414382935,
|
1275 |
+
"learning_rate": 7.804127313288023e-06,
|
1276 |
+
"loss": 0.4019,
|
1277 |
+
"step": 181
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 0.34849210148396365,
|
1281 |
+
"grad_norm": 0.8370754718780518,
|
1282 |
+
"learning_rate": 7.777851165098012e-06,
|
1283 |
+
"loss": 0.4202,
|
1284 |
+
"step": 182
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 0.350406893250359,
|
1288 |
+
"grad_norm": 0.7426475882530212,
|
1289 |
+
"learning_rate": 7.751463576186957e-06,
|
1290 |
+
"loss": 0.378,
|
1291 |
+
"step": 183
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 0.3523216850167544,
|
1295 |
+
"grad_norm": 0.827038586139679,
|
1296 |
+
"learning_rate": 7.72496560516159e-06,
|
1297 |
+
"loss": 0.415,
|
1298 |
+
"step": 184
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.35423647678314985,
|
1302 |
+
"grad_norm": 0.8714759349822998,
|
1303 |
+
"learning_rate": 7.6983583150569e-06,
|
1304 |
+
"loss": 0.4204,
|
1305 |
+
"step": 185
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.35615126854954526,
|
1309 |
+
"grad_norm": 0.8127462863922119,
|
1310 |
+
"learning_rate": 7.671642773293506e-06,
|
1311 |
+
"loss": 0.3904,
|
1312 |
+
"step": 186
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 0.3580660603159406,
|
1316 |
+
"grad_norm": 0.8972522020339966,
|
1317 |
+
"learning_rate": 7.644820051634813e-06,
|
1318 |
+
"loss": 0.4168,
|
1319 |
+
"step": 187
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 0.35998085208233604,
|
1323 |
+
"grad_norm": 0.9051675200462341,
|
1324 |
+
"learning_rate": 7.617891226144034e-06,
|
1325 |
+
"loss": 0.4742,
|
1326 |
+
"step": 188
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 0.36189564384873146,
|
1330 |
+
"grad_norm": 0.8041402101516724,
|
1331 |
+
"learning_rate": 7.59085737714101e-06,
|
1332 |
+
"loss": 0.3916,
|
1333 |
+
"step": 189
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 0.3638104356151269,
|
1337 |
+
"grad_norm": 0.9296969175338745,
|
1338 |
+
"learning_rate": 7.563719589158874e-06,
|
1339 |
+
"loss": 0.4198,
|
1340 |
+
"step": 190
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.36572522738152224,
|
1344 |
+
"grad_norm": 0.8441433310508728,
|
1345 |
+
"learning_rate": 7.536478950900537e-06,
|
1346 |
+
"loss": 0.4094,
|
1347 |
+
"step": 191
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.36764001914791766,
|
1351 |
+
"grad_norm": 0.8146634101867676,
|
1352 |
+
"learning_rate": 7.509136555195025e-06,
|
1353 |
+
"loss": 0.398,
|
1354 |
+
"step": 192
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 0.3695548109143131,
|
1358 |
+
"grad_norm": 0.8095076680183411,
|
1359 |
+
"learning_rate": 7.481693498953621e-06,
|
1360 |
+
"loss": 0.4121,
|
1361 |
+
"step": 193
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 0.3714696026807085,
|
1365 |
+
"grad_norm": 0.8033435344696045,
|
1366 |
+
"learning_rate": 7.4541508831258695e-06,
|
1367 |
+
"loss": 0.3912,
|
1368 |
+
"step": 194
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 0.37338439444710386,
|
1372 |
+
"grad_norm": 0.7945087552070618,
|
1373 |
+
"learning_rate": 7.4265098126554065e-06,
|
1374 |
+
"loss": 0.3784,
|
1375 |
+
"step": 195
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 0.3752991862134993,
|
1379 |
+
"grad_norm": 0.858241081237793,
|
1380 |
+
"learning_rate": 7.3987713964356335e-06,
|
1381 |
+
"loss": 0.451,
|
1382 |
+
"step": 196
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.3772139779798947,
|
1386 |
+
"grad_norm": 0.9208387136459351,
|
1387 |
+
"learning_rate": 7.370936747265226e-06,
|
1388 |
+
"loss": 0.4539,
|
1389 |
+
"step": 197
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.3791287697462901,
|
1393 |
+
"grad_norm": 0.775140643119812,
|
1394 |
+
"learning_rate": 7.3430069818035e-06,
|
1395 |
+
"loss": 0.3956,
|
1396 |
+
"step": 198
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 0.3810435615126855,
|
1400 |
+
"grad_norm": 0.7926008105278015,
|
1401 |
+
"learning_rate": 7.314983220525604e-06,
|
1402 |
+
"loss": 0.4044,
|
1403 |
+
"step": 199
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 0.3829583532790809,
|
1407 |
+
"grad_norm": 0.7891693711280823,
|
1408 |
+
"learning_rate": 7.286866587677576e-06,
|
1409 |
+
"loss": 0.3881,
|
1410 |
+
"step": 200
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 0.3848731450454763,
|
1414 |
+
"grad_norm": 0.8547941446304321,
|
1415 |
+
"learning_rate": 7.2586582112312355e-06,
|
1416 |
+
"loss": 0.4289,
|
1417 |
+
"step": 201
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 0.38678793681187174,
|
1421 |
+
"grad_norm": 0.7894405722618103,
|
1422 |
+
"learning_rate": 7.230359222838939e-06,
|
1423 |
+
"loss": 0.3886,
|
1424 |
+
"step": 202
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.3887027285782671,
|
1428 |
+
"grad_norm": 0.9024775624275208,
|
1429 |
+
"learning_rate": 7.201970757788172e-06,
|
1430 |
+
"loss": 0.4586,
|
1431 |
+
"step": 203
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.3906175203446625,
|
1435 |
+
"grad_norm": 0.7940675616264343,
|
1436 |
+
"learning_rate": 7.173493954956012e-06,
|
1437 |
+
"loss": 0.3905,
|
1438 |
+
"step": 204
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 0.39253231211105793,
|
1442 |
+
"grad_norm": 0.8231476545333862,
|
1443 |
+
"learning_rate": 7.144929956763438e-06,
|
1444 |
+
"loss": 0.4044,
|
1445 |
+
"step": 205
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 0.39444710387745335,
|
1449 |
+
"grad_norm": 0.9094031453132629,
|
1450 |
+
"learning_rate": 7.116279909129492e-06,
|
1451 |
+
"loss": 0.4502,
|
1452 |
+
"step": 206
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 0.3963618956438487,
|
1456 |
+
"grad_norm": 0.843540608882904,
|
1457 |
+
"learning_rate": 7.087544961425317e-06,
|
1458 |
+
"loss": 0.4037,
|
1459 |
+
"step": 207
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 0.39827668741024413,
|
1463 |
+
"grad_norm": 0.8074728846549988,
|
1464 |
+
"learning_rate": 7.058726266428042e-06,
|
1465 |
+
"loss": 0.405,
|
1466 |
+
"step": 208
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.40019147917663955,
|
1470 |
+
"grad_norm": 0.7620254755020142,
|
1471 |
+
"learning_rate": 7.029824980274536e-06,
|
1472 |
+
"loss": 0.3727,
|
1473 |
+
"step": 209
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.40210627094303497,
|
1477 |
+
"grad_norm": 0.8311992883682251,
|
1478 |
+
"learning_rate": 7.0008422624150285e-06,
|
1479 |
+
"loss": 0.4172,
|
1480 |
+
"step": 210
|
1481 |
+
}
|
1482 |
+
],
|
1483 |
+
"logging_steps": 1,
|
1484 |
+
"max_steps": 522,
|
1485 |
+
"num_input_tokens_seen": 0,
|
1486 |
+
"num_train_epochs": 1,
|
1487 |
+
"save_steps": 105,
|
1488 |
+
"stateful_callbacks": {
|
1489 |
+
"TrainerControl": {
|
1490 |
+
"args": {
|
1491 |
+
"should_epoch_stop": false,
|
1492 |
+
"should_evaluate": false,
|
1493 |
+
"should_log": false,
|
1494 |
+
"should_save": true,
|
1495 |
+
"should_training_stop": false
|
1496 |
+
},
|
1497 |
+
"attributes": {}
|
1498 |
+
}
|
1499 |
+
},
|
1500 |
+
"total_flos": 1.1029906388628275e+17,
|
1501 |
+
"train_batch_size": 8,
|
1502 |
+
"trial_name": null,
|
1503 |
+
"trial_params": null
|
1504 |
+
}
|
checkpoint-210/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:103fd3bb469213774a4b43139febd5a468076d3935b2ed67984e8c9a1aaaa004
|
3 |
+
size 10936
|
checkpoint-210/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-210/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-315/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-315/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"eos_token_id": 151643,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 1536,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 8960,
|
11 |
+
"max_position_embeddings": 131072,
|
12 |
+
"max_window_layers": 28,
|
13 |
+
"model_type": "qwen2",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 28,
|
16 |
+
"num_key_value_heads": 2,
|
17 |
+
"rms_norm_eps": 1e-06,
|
18 |
+
"rope_scaling": null,
|
19 |
+
"rope_theta": 1000000.0,
|
20 |
+
"sliding_window": 131072,
|
21 |
+
"tie_word_embeddings": true,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.51.3",
|
24 |
+
"use_cache": false,
|
25 |
+
"use_mrope": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
checkpoint-315/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 151643,
|
5 |
+
"max_new_tokens": 2048,
|
6 |
+
"transformers_version": "4.51.3"
|
7 |
+
}
|
checkpoint-315/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step315
|
checkpoint-315/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-315/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3008dc79742ac1f79aad19617361f946f8a3846f39aefa74b80c0c9cb96823be
|
3 |
+
size 3554214752
|
checkpoint-315/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad792af33c7cfa8b15298ecc9d976ebdcdeb444ca0e704c7b0657f41ee6547eb
|
3 |
+
size 14512
|
checkpoint-315/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:722c924fceffd85f8ab1a5445f1ea1e6c502644b6a42e2ff6b5a9a76ea26e1fe
|
3 |
+
size 14512
|
checkpoint-315/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4ec420f7da6d05dd8e17b1cc8fc882ab1f031dca3a4f53381815b864453c833
|
3 |
+
size 1064
|
checkpoint-315/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-315/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-315/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-315/trainer_state.json
ADDED
@@ -0,0 +1,2239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 0.6031594064145525,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 315,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0019147917663954045,
|
14 |
+
"grad_norm": 2.9491562843322754,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 0.6229,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.003829583532790809,
|
21 |
+
"grad_norm": 3.0646867752075195,
|
22 |
+
"learning_rate": 3.846153846153847e-07,
|
23 |
+
"loss": 0.6119,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.0057443752991862135,
|
28 |
+
"grad_norm": 3.0737922191619873,
|
29 |
+
"learning_rate": 7.692307692307694e-07,
|
30 |
+
"loss": 0.6582,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.007659167065581618,
|
35 |
+
"grad_norm": 2.9172728061676025,
|
36 |
+
"learning_rate": 1.153846153846154e-06,
|
37 |
+
"loss": 0.6209,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.009573958831977022,
|
42 |
+
"grad_norm": 2.668588161468506,
|
43 |
+
"learning_rate": 1.5384615384615387e-06,
|
44 |
+
"loss": 0.5589,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.011488750598372427,
|
49 |
+
"grad_norm": 3.2810585498809814,
|
50 |
+
"learning_rate": 1.9230769230769234e-06,
|
51 |
+
"loss": 0.5968,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.013403542364767831,
|
56 |
+
"grad_norm": 2.434365749359131,
|
57 |
+
"learning_rate": 2.307692307692308e-06,
|
58 |
+
"loss": 0.5636,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.015318334131163236,
|
63 |
+
"grad_norm": 2.060615301132202,
|
64 |
+
"learning_rate": 2.6923076923076923e-06,
|
65 |
+
"loss": 0.5661,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.01723312589755864,
|
70 |
+
"grad_norm": 1.8817814588546753,
|
71 |
+
"learning_rate": 3.0769230769230774e-06,
|
72 |
+
"loss": 0.5817,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.019147917663954045,
|
77 |
+
"grad_norm": 1.766438603401184,
|
78 |
+
"learning_rate": 3.4615384615384617e-06,
|
79 |
+
"loss": 0.5529,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.02106270943034945,
|
84 |
+
"grad_norm": 1.5240556001663208,
|
85 |
+
"learning_rate": 3.846153846153847e-06,
|
86 |
+
"loss": 0.5207,
|
87 |
+
"step": 11
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.022977501196744854,
|
91 |
+
"grad_norm": 1.5381622314453125,
|
92 |
+
"learning_rate": 4.230769230769231e-06,
|
93 |
+
"loss": 0.5171,
|
94 |
+
"step": 12
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.02489229296314026,
|
98 |
+
"grad_norm": 1.4144328832626343,
|
99 |
+
"learning_rate": 4.615384615384616e-06,
|
100 |
+
"loss": 0.5612,
|
101 |
+
"step": 13
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.026807084729535663,
|
105 |
+
"grad_norm": 1.282257318496704,
|
106 |
+
"learning_rate": 5e-06,
|
107 |
+
"loss": 0.493,
|
108 |
+
"step": 14
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.028721876495931067,
|
112 |
+
"grad_norm": 1.3273121118545532,
|
113 |
+
"learning_rate": 5.384615384615385e-06,
|
114 |
+
"loss": 0.4723,
|
115 |
+
"step": 15
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.030636668262326472,
|
119 |
+
"grad_norm": 1.1829627752304077,
|
120 |
+
"learning_rate": 5.769230769230769e-06,
|
121 |
+
"loss": 0.4675,
|
122 |
+
"step": 16
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.032551460028721876,
|
126 |
+
"grad_norm": 1.0885576009750366,
|
127 |
+
"learning_rate": 6.153846153846155e-06,
|
128 |
+
"loss": 0.4275,
|
129 |
+
"step": 17
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.03446625179511728,
|
133 |
+
"grad_norm": 0.9974104762077332,
|
134 |
+
"learning_rate": 6.538461538461539e-06,
|
135 |
+
"loss": 0.4709,
|
136 |
+
"step": 18
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.036381043561512685,
|
140 |
+
"grad_norm": 1.0769761800765991,
|
141 |
+
"learning_rate": 6.923076923076923e-06,
|
142 |
+
"loss": 0.4916,
|
143 |
+
"step": 19
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.03829583532790809,
|
147 |
+
"grad_norm": 0.967096745967865,
|
148 |
+
"learning_rate": 7.307692307692308e-06,
|
149 |
+
"loss": 0.4785,
|
150 |
+
"step": 20
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.040210627094303494,
|
154 |
+
"grad_norm": 1.0460747480392456,
|
155 |
+
"learning_rate": 7.692307692307694e-06,
|
156 |
+
"loss": 0.4653,
|
157 |
+
"step": 21
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.0421254188606989,
|
161 |
+
"grad_norm": 1.0114920139312744,
|
162 |
+
"learning_rate": 8.076923076923077e-06,
|
163 |
+
"loss": 0.4648,
|
164 |
+
"step": 22
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.0440402106270943,
|
168 |
+
"grad_norm": 1.1619290113449097,
|
169 |
+
"learning_rate": 8.461538461538462e-06,
|
170 |
+
"loss": 0.4833,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.04595500239348971,
|
175 |
+
"grad_norm": 0.9872665405273438,
|
176 |
+
"learning_rate": 8.846153846153847e-06,
|
177 |
+
"loss": 0.4545,
|
178 |
+
"step": 24
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.04786979415988511,
|
182 |
+
"grad_norm": 0.9702840447425842,
|
183 |
+
"learning_rate": 9.230769230769232e-06,
|
184 |
+
"loss": 0.4651,
|
185 |
+
"step": 25
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.04978458592628052,
|
189 |
+
"grad_norm": 0.9493695497512817,
|
190 |
+
"learning_rate": 9.615384615384616e-06,
|
191 |
+
"loss": 0.477,
|
192 |
+
"step": 26
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.05169937769267592,
|
196 |
+
"grad_norm": 0.9152507185935974,
|
197 |
+
"learning_rate": 1e-05,
|
198 |
+
"loss": 0.4499,
|
199 |
+
"step": 27
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.053614169459071326,
|
203 |
+
"grad_norm": 1.0640617609024048,
|
204 |
+
"learning_rate": 9.999899706000774e-06,
|
205 |
+
"loss": 0.4853,
|
206 |
+
"step": 28
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.05552896122546673,
|
210 |
+
"grad_norm": 0.9641034603118896,
|
211 |
+
"learning_rate": 9.999598828026644e-06,
|
212 |
+
"loss": 0.475,
|
213 |
+
"step": 29
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.057443752991862135,
|
217 |
+
"grad_norm": 0.8927161693572998,
|
218 |
+
"learning_rate": 9.999097378148116e-06,
|
219 |
+
"loss": 0.4448,
|
220 |
+
"step": 30
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.05935854475825754,
|
224 |
+
"grad_norm": 0.881844699382782,
|
225 |
+
"learning_rate": 9.998395376482152e-06,
|
226 |
+
"loss": 0.4327,
|
227 |
+
"step": 31
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.061273336524652944,
|
231 |
+
"grad_norm": 0.8794113993644714,
|
232 |
+
"learning_rate": 9.99749285119138e-06,
|
233 |
+
"loss": 0.4294,
|
234 |
+
"step": 32
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.06318812829104835,
|
238 |
+
"grad_norm": 0.9898825287818909,
|
239 |
+
"learning_rate": 9.996389838482942e-06,
|
240 |
+
"loss": 0.5294,
|
241 |
+
"step": 33
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.06510292005744375,
|
245 |
+
"grad_norm": 0.9184749126434326,
|
246 |
+
"learning_rate": 9.995086382607064e-06,
|
247 |
+
"loss": 0.4774,
|
248 |
+
"step": 34
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.06701771182383916,
|
252 |
+
"grad_norm": 0.9067336320877075,
|
253 |
+
"learning_rate": 9.993582535855265e-06,
|
254 |
+
"loss": 0.4569,
|
255 |
+
"step": 35
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.06893250359023456,
|
259 |
+
"grad_norm": 0.8807307481765747,
|
260 |
+
"learning_rate": 9.991878358558267e-06,
|
261 |
+
"loss": 0.478,
|
262 |
+
"step": 36
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.07084729535662997,
|
266 |
+
"grad_norm": 0.9359887838363647,
|
267 |
+
"learning_rate": 9.989973919083576e-06,
|
268 |
+
"loss": 0.4659,
|
269 |
+
"step": 37
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.07276208712302537,
|
273 |
+
"grad_norm": 0.9008484482765198,
|
274 |
+
"learning_rate": 9.987869293832727e-06,
|
275 |
+
"loss": 0.4659,
|
276 |
+
"step": 38
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.07467687888942078,
|
280 |
+
"grad_norm": 0.8065485954284668,
|
281 |
+
"learning_rate": 9.985564567238237e-06,
|
282 |
+
"loss": 0.4441,
|
283 |
+
"step": 39
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.07659167065581618,
|
287 |
+
"grad_norm": 0.9766021966934204,
|
288 |
+
"learning_rate": 9.983059831760205e-06,
|
289 |
+
"loss": 0.4834,
|
290 |
+
"step": 40
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.07850646242221158,
|
294 |
+
"grad_norm": 0.8222993016242981,
|
295 |
+
"learning_rate": 9.980355187882606e-06,
|
296 |
+
"loss": 0.443,
|
297 |
+
"step": 41
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.08042125418860699,
|
301 |
+
"grad_norm": 0.8215630054473877,
|
302 |
+
"learning_rate": 9.977450744109258e-06,
|
303 |
+
"loss": 0.4219,
|
304 |
+
"step": 42
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.0823360459550024,
|
308 |
+
"grad_norm": 0.8324375748634338,
|
309 |
+
"learning_rate": 9.974346616959476e-06,
|
310 |
+
"loss": 0.4362,
|
311 |
+
"step": 43
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.0842508377213978,
|
315 |
+
"grad_norm": 0.9242782592773438,
|
316 |
+
"learning_rate": 9.97104293096339e-06,
|
317 |
+
"loss": 0.4738,
|
318 |
+
"step": 44
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.0861656294877932,
|
322 |
+
"grad_norm": 0.9275208711624146,
|
323 |
+
"learning_rate": 9.967539818656953e-06,
|
324 |
+
"loss": 0.4571,
|
325 |
+
"step": 45
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.0880804212541886,
|
329 |
+
"grad_norm": 0.876868724822998,
|
330 |
+
"learning_rate": 9.96383742057662e-06,
|
331 |
+
"loss": 0.5172,
|
332 |
+
"step": 46
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.08999521302058401,
|
336 |
+
"grad_norm": 0.8446276783943176,
|
337 |
+
"learning_rate": 9.959935885253715e-06,
|
338 |
+
"loss": 0.4457,
|
339 |
+
"step": 47
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.09191000478697942,
|
343 |
+
"grad_norm": 0.8077015280723572,
|
344 |
+
"learning_rate": 9.955835369208475e-06,
|
345 |
+
"loss": 0.4234,
|
346 |
+
"step": 48
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.09382479655337482,
|
350 |
+
"grad_norm": 0.7882896065711975,
|
351 |
+
"learning_rate": 9.951536036943753e-06,
|
352 |
+
"loss": 0.4264,
|
353 |
+
"step": 49
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.09573958831977022,
|
357 |
+
"grad_norm": 0.8539751768112183,
|
358 |
+
"learning_rate": 9.94703806093845e-06,
|
359 |
+
"loss": 0.461,
|
360 |
+
"step": 50
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.09765438008616563,
|
364 |
+
"grad_norm": 0.8285911679267883,
|
365 |
+
"learning_rate": 9.942341621640558e-06,
|
366 |
+
"loss": 0.4379,
|
367 |
+
"step": 51
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.09956917185256103,
|
371 |
+
"grad_norm": 0.8029133081436157,
|
372 |
+
"learning_rate": 9.937446907459954e-06,
|
373 |
+
"loss": 0.4565,
|
374 |
+
"step": 52
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.10148396361895644,
|
378 |
+
"grad_norm": 0.7964851260185242,
|
379 |
+
"learning_rate": 9.932354114760819e-06,
|
380 |
+
"loss": 0.4262,
|
381 |
+
"step": 53
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.10339875538535184,
|
385 |
+
"grad_norm": 0.9846324920654297,
|
386 |
+
"learning_rate": 9.92706344785377e-06,
|
387 |
+
"loss": 0.5302,
|
388 |
+
"step": 54
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.10531354715174725,
|
392 |
+
"grad_norm": 0.7648650407791138,
|
393 |
+
"learning_rate": 9.921575118987672e-06,
|
394 |
+
"loss": 0.4066,
|
395 |
+
"step": 55
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.10722833891814265,
|
399 |
+
"grad_norm": 0.83173668384552,
|
400 |
+
"learning_rate": 9.915889348341098e-06,
|
401 |
+
"loss": 0.4438,
|
402 |
+
"step": 56
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.10914313068453806,
|
406 |
+
"grad_norm": 0.7968882322311401,
|
407 |
+
"learning_rate": 9.910006364013522e-06,
|
408 |
+
"loss": 0.407,
|
409 |
+
"step": 57
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.11105792245093346,
|
413 |
+
"grad_norm": 0.8423118591308594,
|
414 |
+
"learning_rate": 9.903926402016153e-06,
|
415 |
+
"loss": 0.4174,
|
416 |
+
"step": 58
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.11297271421732887,
|
420 |
+
"grad_norm": 0.9054727554321289,
|
421 |
+
"learning_rate": 9.897649706262474e-06,
|
422 |
+
"loss": 0.4764,
|
423 |
+
"step": 59
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.11488750598372427,
|
427 |
+
"grad_norm": 0.8318431973457336,
|
428 |
+
"learning_rate": 9.891176528558451e-06,
|
429 |
+
"loss": 0.4326,
|
430 |
+
"step": 60
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.11680229775011967,
|
434 |
+
"grad_norm": 0.8409565687179565,
|
435 |
+
"learning_rate": 9.884507128592435e-06,
|
436 |
+
"loss": 0.4451,
|
437 |
+
"step": 61
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.11871708951651508,
|
441 |
+
"grad_norm": 0.8471431136131287,
|
442 |
+
"learning_rate": 9.877641773924748e-06,
|
443 |
+
"loss": 0.4217,
|
444 |
+
"step": 62
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.12063188128291048,
|
448 |
+
"grad_norm": 0.8495103120803833,
|
449 |
+
"learning_rate": 9.870580739976936e-06,
|
450 |
+
"loss": 0.421,
|
451 |
+
"step": 63
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.12254667304930589,
|
455 |
+
"grad_norm": 0.8164567947387695,
|
456 |
+
"learning_rate": 9.863324310020735e-06,
|
457 |
+
"loss": 0.4266,
|
458 |
+
"step": 64
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.12446146481570129,
|
462 |
+
"grad_norm": 0.8732247948646545,
|
463 |
+
"learning_rate": 9.855872775166696e-06,
|
464 |
+
"loss": 0.4661,
|
465 |
+
"step": 65
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.1263762565820967,
|
469 |
+
"grad_norm": 0.8157728910446167,
|
470 |
+
"learning_rate": 9.848226434352513e-06,
|
471 |
+
"loss": 0.4401,
|
472 |
+
"step": 66
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.12829104834849211,
|
476 |
+
"grad_norm": 0.8860891461372375,
|
477 |
+
"learning_rate": 9.840385594331022e-06,
|
478 |
+
"loss": 0.4748,
|
479 |
+
"step": 67
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.1302058401148875,
|
483 |
+
"grad_norm": 0.8987312316894531,
|
484 |
+
"learning_rate": 9.83235056965791e-06,
|
485 |
+
"loss": 0.4881,
|
486 |
+
"step": 68
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.13212063188128292,
|
490 |
+
"grad_norm": 0.8786044716835022,
|
491 |
+
"learning_rate": 9.824121682679072e-06,
|
492 |
+
"loss": 0.4417,
|
493 |
+
"step": 69
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.13403542364767831,
|
497 |
+
"grad_norm": 0.8325650691986084,
|
498 |
+
"learning_rate": 9.815699263517712e-06,
|
499 |
+
"loss": 0.4377,
|
500 |
+
"step": 70
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.13595021541407373,
|
504 |
+
"grad_norm": 0.8149142861366272,
|
505 |
+
"learning_rate": 9.807083650061063e-06,
|
506 |
+
"loss": 0.4496,
|
507 |
+
"step": 71
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.13786500718046912,
|
511 |
+
"grad_norm": 0.8394611477851868,
|
512 |
+
"learning_rate": 9.798275187946859e-06,
|
513 |
+
"loss": 0.4394,
|
514 |
+
"step": 72
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.13977979894686454,
|
518 |
+
"grad_norm": 0.7746449112892151,
|
519 |
+
"learning_rate": 9.789274230549456e-06,
|
520 |
+
"loss": 0.4039,
|
521 |
+
"step": 73
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.14169459071325993,
|
525 |
+
"grad_norm": 0.7592336535453796,
|
526 |
+
"learning_rate": 9.780081138965663e-06,
|
527 |
+
"loss": 0.3788,
|
528 |
+
"step": 74
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.14360938247965535,
|
532 |
+
"grad_norm": 0.9066088199615479,
|
533 |
+
"learning_rate": 9.770696282000245e-06,
|
534 |
+
"loss": 0.4541,
|
535 |
+
"step": 75
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.14552417424605074,
|
539 |
+
"grad_norm": 0.8512394428253174,
|
540 |
+
"learning_rate": 9.761120036151138e-06,
|
541 |
+
"loss": 0.4217,
|
542 |
+
"step": 76
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.14743896601244616,
|
546 |
+
"grad_norm": 0.795378565788269,
|
547 |
+
"learning_rate": 9.751352785594337e-06,
|
548 |
+
"loss": 0.4014,
|
549 |
+
"step": 77
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.14935375777884155,
|
553 |
+
"grad_norm": 0.9467825293540955,
|
554 |
+
"learning_rate": 9.741394922168495e-06,
|
555 |
+
"loss": 0.4855,
|
556 |
+
"step": 78
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.15126854954523697,
|
560 |
+
"grad_norm": 0.7824875712394714,
|
561 |
+
"learning_rate": 9.731246845359187e-06,
|
562 |
+
"loss": 0.4088,
|
563 |
+
"step": 79
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.15318334131163236,
|
567 |
+
"grad_norm": 0.7557615637779236,
|
568 |
+
"learning_rate": 9.720908962282893e-06,
|
569 |
+
"loss": 0.4023,
|
570 |
+
"step": 80
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.15509813307802778,
|
574 |
+
"grad_norm": 0.8093947768211365,
|
575 |
+
"learning_rate": 9.710381687670675e-06,
|
576 |
+
"loss": 0.4345,
|
577 |
+
"step": 81
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.15701292484442317,
|
581 |
+
"grad_norm": 0.8901275396347046,
|
582 |
+
"learning_rate": 9.699665443851518e-06,
|
583 |
+
"loss": 0.4444,
|
584 |
+
"step": 82
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.1589277166108186,
|
588 |
+
"grad_norm": 0.7518415451049805,
|
589 |
+
"learning_rate": 9.688760660735403e-06,
|
590 |
+
"loss": 0.4024,
|
591 |
+
"step": 83
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.16084250837721398,
|
595 |
+
"grad_norm": 0.7495772242546082,
|
596 |
+
"learning_rate": 9.677667775796052e-06,
|
597 |
+
"loss": 0.4005,
|
598 |
+
"step": 84
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.1627573001436094,
|
602 |
+
"grad_norm": 0.8903560638427734,
|
603 |
+
"learning_rate": 9.666387234053385e-06,
|
604 |
+
"loss": 0.4495,
|
605 |
+
"step": 85
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.1646720919100048,
|
609 |
+
"grad_norm": 0.8854427933692932,
|
610 |
+
"learning_rate": 9.654919488055656e-06,
|
611 |
+
"loss": 0.4381,
|
612 |
+
"step": 86
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.1665868836764002,
|
616 |
+
"grad_norm": 0.8393151164054871,
|
617 |
+
"learning_rate": 9.643264997861312e-06,
|
618 |
+
"loss": 0.4177,
|
619 |
+
"step": 87
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.1685016754427956,
|
623 |
+
"grad_norm": 0.8448845148086548,
|
624 |
+
"learning_rate": 9.631424231020523e-06,
|
625 |
+
"loss": 0.4437,
|
626 |
+
"step": 88
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.170416467209191,
|
630 |
+
"grad_norm": 0.8987253904342651,
|
631 |
+
"learning_rate": 9.619397662556434e-06,
|
632 |
+
"loss": 0.4479,
|
633 |
+
"step": 89
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.1723312589755864,
|
637 |
+
"grad_norm": 0.9512760639190674,
|
638 |
+
"learning_rate": 9.607185774946106e-06,
|
639 |
+
"loss": 0.5188,
|
640 |
+
"step": 90
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.17424605074198182,
|
644 |
+
"grad_norm": 0.9057194590568542,
|
645 |
+
"learning_rate": 9.594789058101154e-06,
|
646 |
+
"loss": 0.4448,
|
647 |
+
"step": 91
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.1761608425083772,
|
651 |
+
"grad_norm": 0.8147549033164978,
|
652 |
+
"learning_rate": 9.582208009348104e-06,
|
653 |
+
"loss": 0.4106,
|
654 |
+
"step": 92
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.17807563427477263,
|
658 |
+
"grad_norm": 0.8666926622390747,
|
659 |
+
"learning_rate": 9.569443133408434e-06,
|
660 |
+
"loss": 0.4558,
|
661 |
+
"step": 93
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.17999042604116802,
|
665 |
+
"grad_norm": 0.8677969574928284,
|
666 |
+
"learning_rate": 9.556494942378328e-06,
|
667 |
+
"loss": 0.4379,
|
668 |
+
"step": 94
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.18190521780756344,
|
672 |
+
"grad_norm": 0.8896477222442627,
|
673 |
+
"learning_rate": 9.543363955708124e-06,
|
674 |
+
"loss": 0.4498,
|
675 |
+
"step": 95
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.18382000957395883,
|
679 |
+
"grad_norm": 0.7357858419418335,
|
680 |
+
"learning_rate": 9.530050700181499e-06,
|
681 |
+
"loss": 0.3666,
|
682 |
+
"step": 96
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.18573480134035425,
|
686 |
+
"grad_norm": 0.7851715683937073,
|
687 |
+
"learning_rate": 9.5165557098943e-06,
|
688 |
+
"loss": 0.411,
|
689 |
+
"step": 97
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.18764959310674964,
|
693 |
+
"grad_norm": 0.8098123669624329,
|
694 |
+
"learning_rate": 9.502879526233151e-06,
|
695 |
+
"loss": 0.4023,
|
696 |
+
"step": 98
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.18956438487314506,
|
700 |
+
"grad_norm": 0.8245725631713867,
|
701 |
+
"learning_rate": 9.48902269785371e-06,
|
702 |
+
"loss": 0.423,
|
703 |
+
"step": 99
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.19147917663954045,
|
707 |
+
"grad_norm": 0.8497715592384338,
|
708 |
+
"learning_rate": 9.47498578065867e-06,
|
709 |
+
"loss": 0.4125,
|
710 |
+
"step": 100
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.19339396840593587,
|
714 |
+
"grad_norm": 0.8205481171607971,
|
715 |
+
"learning_rate": 9.460769337775461e-06,
|
716 |
+
"loss": 0.4312,
|
717 |
+
"step": 101
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.19530876017233126,
|
721 |
+
"grad_norm": 0.8062931299209595,
|
722 |
+
"learning_rate": 9.446373939533642e-06,
|
723 |
+
"loss": 0.3961,
|
724 |
+
"step": 102
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.19722355193872668,
|
728 |
+
"grad_norm": 0.8209528923034668,
|
729 |
+
"learning_rate": 9.431800163442043e-06,
|
730 |
+
"loss": 0.4121,
|
731 |
+
"step": 103
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.19913834370512207,
|
735 |
+
"grad_norm": 0.8154571652412415,
|
736 |
+
"learning_rate": 9.417048594165572e-06,
|
737 |
+
"loss": 0.4475,
|
738 |
+
"step": 104
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.20105313547151749,
|
742 |
+
"grad_norm": 0.8546404838562012,
|
743 |
+
"learning_rate": 9.402119823501787e-06,
|
744 |
+
"loss": 0.4293,
|
745 |
+
"step": 105
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.20296792723791288,
|
749 |
+
"grad_norm": 0.8470130562782288,
|
750 |
+
"learning_rate": 9.387014450357128e-06,
|
751 |
+
"loss": 0.4139,
|
752 |
+
"step": 106
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.2048827190043083,
|
756 |
+
"grad_norm": 0.9199275970458984,
|
757 |
+
"learning_rate": 9.371733080722911e-06,
|
758 |
+
"loss": 0.4825,
|
759 |
+
"step": 107
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.20679751077070369,
|
763 |
+
"grad_norm": 0.9049551486968994,
|
764 |
+
"learning_rate": 9.356276327651006e-06,
|
765 |
+
"loss": 0.4378,
|
766 |
+
"step": 108
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.2087123025370991,
|
770 |
+
"grad_norm": 0.8089979887008667,
|
771 |
+
"learning_rate": 9.340644811229243e-06,
|
772 |
+
"loss": 0.4027,
|
773 |
+
"step": 109
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.2106270943034945,
|
777 |
+
"grad_norm": 0.7452864050865173,
|
778 |
+
"learning_rate": 9.324839158556542e-06,
|
779 |
+
"loss": 0.3795,
|
780 |
+
"step": 110
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.2125418860698899,
|
784 |
+
"grad_norm": 0.8286869525909424,
|
785 |
+
"learning_rate": 9.308860003717748e-06,
|
786 |
+
"loss": 0.4137,
|
787 |
+
"step": 111
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.2144566778362853,
|
791 |
+
"grad_norm": 0.8634768724441528,
|
792 |
+
"learning_rate": 9.292707987758202e-06,
|
793 |
+
"loss": 0.445,
|
794 |
+
"step": 112
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.21637146960268072,
|
798 |
+
"grad_norm": 0.8329188227653503,
|
799 |
+
"learning_rate": 9.27638375865801e-06,
|
800 |
+
"loss": 0.4307,
|
801 |
+
"step": 113
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.2182862613690761,
|
805 |
+
"grad_norm": 0.8780718445777893,
|
806 |
+
"learning_rate": 9.259887971306064e-06,
|
807 |
+
"loss": 0.4863,
|
808 |
+
"step": 114
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.22020105313547153,
|
812 |
+
"grad_norm": 0.9007835388183594,
|
813 |
+
"learning_rate": 9.243221287473755e-06,
|
814 |
+
"loss": 0.4482,
|
815 |
+
"step": 115
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.22211584490186692,
|
819 |
+
"grad_norm": 0.8163229823112488,
|
820 |
+
"learning_rate": 9.226384375788435e-06,
|
821 |
+
"loss": 0.4168,
|
822 |
+
"step": 116
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.22403063666826234,
|
826 |
+
"grad_norm": 0.8288677334785461,
|
827 |
+
"learning_rate": 9.209377911706585e-06,
|
828 |
+
"loss": 0.4038,
|
829 |
+
"step": 117
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.22594542843465773,
|
833 |
+
"grad_norm": 0.8035851716995239,
|
834 |
+
"learning_rate": 9.192202577486725e-06,
|
835 |
+
"loss": 0.3922,
|
836 |
+
"step": 118
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.22786022020105315,
|
840 |
+
"grad_norm": 0.8203516006469727,
|
841 |
+
"learning_rate": 9.174859062162037e-06,
|
842 |
+
"loss": 0.3971,
|
843 |
+
"step": 119
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.22977501196744854,
|
847 |
+
"grad_norm": 0.8246352076530457,
|
848 |
+
"learning_rate": 9.157348061512728e-06,
|
849 |
+
"loss": 0.4433,
|
850 |
+
"step": 120
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.23168980373384396,
|
854 |
+
"grad_norm": 0.8655344247817993,
|
855 |
+
"learning_rate": 9.139670278038109e-06,
|
856 |
+
"loss": 0.4405,
|
857 |
+
"step": 121
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.23360459550023935,
|
861 |
+
"grad_norm": 0.7439157366752625,
|
862 |
+
"learning_rate": 9.121826420928421e-06,
|
863 |
+
"loss": 0.3683,
|
864 |
+
"step": 122
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.23551938726663477,
|
868 |
+
"grad_norm": 0.817434549331665,
|
869 |
+
"learning_rate": 9.103817206036383e-06,
|
870 |
+
"loss": 0.4034,
|
871 |
+
"step": 123
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.23743417903303016,
|
875 |
+
"grad_norm": 0.8455221056938171,
|
876 |
+
"learning_rate": 9.085643355848468e-06,
|
877 |
+
"loss": 0.4418,
|
878 |
+
"step": 124
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.23934897079942558,
|
882 |
+
"grad_norm": 0.8356925845146179,
|
883 |
+
"learning_rate": 9.06730559945592e-06,
|
884 |
+
"loss": 0.4012,
|
885 |
+
"step": 125
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.24126376256582097,
|
889 |
+
"grad_norm": 0.8181227445602417,
|
890 |
+
"learning_rate": 9.048804672525513e-06,
|
891 |
+
"loss": 0.4174,
|
892 |
+
"step": 126
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.24317855433221638,
|
896 |
+
"grad_norm": 0.8010542988777161,
|
897 |
+
"learning_rate": 9.030141317270026e-06,
|
898 |
+
"loss": 0.3952,
|
899 |
+
"step": 127
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.24509334609861178,
|
903 |
+
"grad_norm": 0.8500829935073853,
|
904 |
+
"learning_rate": 9.011316282418474e-06,
|
905 |
+
"loss": 0.4123,
|
906 |
+
"step": 128
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.2470081378650072,
|
910 |
+
"grad_norm": 0.8971666693687439,
|
911 |
+
"learning_rate": 8.992330323186069e-06,
|
912 |
+
"loss": 0.4451,
|
913 |
+
"step": 129
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.24892292963140258,
|
917 |
+
"grad_norm": 0.9065473079681396,
|
918 |
+
"learning_rate": 8.973184201243922e-06,
|
919 |
+
"loss": 0.4821,
|
920 |
+
"step": 130
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.250837721397798,
|
924 |
+
"grad_norm": 0.8722876906394958,
|
925 |
+
"learning_rate": 8.953878684688492e-06,
|
926 |
+
"loss": 0.4204,
|
927 |
+
"step": 131
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.2527525131641934,
|
931 |
+
"grad_norm": 0.8343362808227539,
|
932 |
+
"learning_rate": 8.934414548010764e-06,
|
933 |
+
"loss": 0.408,
|
934 |
+
"step": 132
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.2546673049305888,
|
938 |
+
"grad_norm": 0.8162686824798584,
|
939 |
+
"learning_rate": 8.914792572065178e-06,
|
940 |
+
"loss": 0.416,
|
941 |
+
"step": 133
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.25658209669698423,
|
945 |
+
"grad_norm": 0.9116921424865723,
|
946 |
+
"learning_rate": 8.89501354403831e-06,
|
947 |
+
"loss": 0.4589,
|
948 |
+
"step": 134
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.2584968884633796,
|
952 |
+
"grad_norm": 0.9577599763870239,
|
953 |
+
"learning_rate": 8.875078257417294e-06,
|
954 |
+
"loss": 0.4654,
|
955 |
+
"step": 135
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.260411680229775,
|
959 |
+
"grad_norm": 0.8709072470664978,
|
960 |
+
"learning_rate": 8.854987511957974e-06,
|
961 |
+
"loss": 0.4395,
|
962 |
+
"step": 136
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.26232647199617043,
|
966 |
+
"grad_norm": 0.8386030197143555,
|
967 |
+
"learning_rate": 8.834742113652835e-06,
|
968 |
+
"loss": 0.4281,
|
969 |
+
"step": 137
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.26424126376256585,
|
973 |
+
"grad_norm": 0.7646230459213257,
|
974 |
+
"learning_rate": 8.81434287469866e-06,
|
975 |
+
"loss": 0.3804,
|
976 |
+
"step": 138
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.2661560555289612,
|
980 |
+
"grad_norm": 0.8096075057983398,
|
981 |
+
"learning_rate": 8.793790613463956e-06,
|
982 |
+
"loss": 0.4112,
|
983 |
+
"step": 139
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.26807084729535663,
|
987 |
+
"grad_norm": 0.8051929473876953,
|
988 |
+
"learning_rate": 8.773086154456106e-06,
|
989 |
+
"loss": 0.4172,
|
990 |
+
"step": 140
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.26998563906175205,
|
994 |
+
"grad_norm": 0.9208196401596069,
|
995 |
+
"learning_rate": 8.752230328288314e-06,
|
996 |
+
"loss": 0.4768,
|
997 |
+
"step": 141
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.27190043082814747,
|
1001 |
+
"grad_norm": 0.7890869975090027,
|
1002 |
+
"learning_rate": 8.731223971646261e-06,
|
1003 |
+
"loss": 0.3915,
|
1004 |
+
"step": 142
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.27381522259454283,
|
1008 |
+
"grad_norm": 0.786723792552948,
|
1009 |
+
"learning_rate": 8.710067927254555e-06,
|
1010 |
+
"loss": 0.3844,
|
1011 |
+
"step": 143
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.27573001436093825,
|
1015 |
+
"grad_norm": 0.791117250919342,
|
1016 |
+
"learning_rate": 8.688763043842916e-06,
|
1017 |
+
"loss": 0.4065,
|
1018 |
+
"step": 144
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.27764480612733367,
|
1022 |
+
"grad_norm": 0.8172312378883362,
|
1023 |
+
"learning_rate": 8.66731017611213e-06,
|
1024 |
+
"loss": 0.4337,
|
1025 |
+
"step": 145
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.2795595978937291,
|
1029 |
+
"grad_norm": 0.8335762023925781,
|
1030 |
+
"learning_rate": 8.645710184699756e-06,
|
1031 |
+
"loss": 0.4182,
|
1032 |
+
"step": 146
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.28147438966012445,
|
1036 |
+
"grad_norm": 0.8034957051277161,
|
1037 |
+
"learning_rate": 8.6239639361456e-06,
|
1038 |
+
"loss": 0.4097,
|
1039 |
+
"step": 147
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.28338918142651986,
|
1043 |
+
"grad_norm": 0.8107390403747559,
|
1044 |
+
"learning_rate": 8.602072302856961e-06,
|
1045 |
+
"loss": 0.4055,
|
1046 |
+
"step": 148
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.2853039731929153,
|
1050 |
+
"grad_norm": 0.8442232012748718,
|
1051 |
+
"learning_rate": 8.580036163073615e-06,
|
1052 |
+
"loss": 0.4307,
|
1053 |
+
"step": 149
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.2872187649593107,
|
1057 |
+
"grad_norm": 0.8290265202522278,
|
1058 |
+
"learning_rate": 8.5578564008326e-06,
|
1059 |
+
"loss": 0.3892,
|
1060 |
+
"step": 150
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.28913355672570606,
|
1064 |
+
"grad_norm": 0.8057438731193542,
|
1065 |
+
"learning_rate": 8.535533905932739e-06,
|
1066 |
+
"loss": 0.4042,
|
1067 |
+
"step": 151
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.2910483484921015,
|
1071 |
+
"grad_norm": 0.8582248091697693,
|
1072 |
+
"learning_rate": 8.513069573898944e-06,
|
1073 |
+
"loss": 0.4149,
|
1074 |
+
"step": 152
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.2929631402584969,
|
1078 |
+
"grad_norm": 0.8402311205863953,
|
1079 |
+
"learning_rate": 8.490464305946296e-06,
|
1080 |
+
"loss": 0.4243,
|
1081 |
+
"step": 153
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.2948779320248923,
|
1085 |
+
"grad_norm": 0.812869668006897,
|
1086 |
+
"learning_rate": 8.467719008943886e-06,
|
1087 |
+
"loss": 0.4134,
|
1088 |
+
"step": 154
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.2967927237912877,
|
1092 |
+
"grad_norm": 0.8431028723716736,
|
1093 |
+
"learning_rate": 8.444834595378434e-06,
|
1094 |
+
"loss": 0.4185,
|
1095 |
+
"step": 155
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.2987075155576831,
|
1099 |
+
"grad_norm": 0.802760899066925,
|
1100 |
+
"learning_rate": 8.421811983317682e-06,
|
1101 |
+
"loss": 0.4011,
|
1102 |
+
"step": 156
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.3006223073240785,
|
1106 |
+
"grad_norm": 0.814274251461029,
|
1107 |
+
"learning_rate": 8.398652096373566e-06,
|
1108 |
+
"loss": 0.4194,
|
1109 |
+
"step": 157
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.30253709909047394,
|
1113 |
+
"grad_norm": 0.8286414742469788,
|
1114 |
+
"learning_rate": 8.375355863665155e-06,
|
1115 |
+
"loss": 0.4044,
|
1116 |
+
"step": 158
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.3044518908568693,
|
1120 |
+
"grad_norm": 0.8244617581367493,
|
1121 |
+
"learning_rate": 8.351924219781393e-06,
|
1122 |
+
"loss": 0.4415,
|
1123 |
+
"step": 159
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.3063666826232647,
|
1127 |
+
"grad_norm": 0.8288456201553345,
|
1128 |
+
"learning_rate": 8.328358104743588e-06,
|
1129 |
+
"loss": 0.4143,
|
1130 |
+
"step": 160
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.30828147438966014,
|
1134 |
+
"grad_norm": 0.7895364165306091,
|
1135 |
+
"learning_rate": 8.304658463967705e-06,
|
1136 |
+
"loss": 0.4122,
|
1137 |
+
"step": 161
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.31019626615605556,
|
1141 |
+
"grad_norm": 0.7923944592475891,
|
1142 |
+
"learning_rate": 8.28082624822645e-06,
|
1143 |
+
"loss": 0.3812,
|
1144 |
+
"step": 162
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.3121110579224509,
|
1148 |
+
"grad_norm": 0.7424578666687012,
|
1149 |
+
"learning_rate": 8.256862413611113e-06,
|
1150 |
+
"loss": 0.3883,
|
1151 |
+
"step": 163
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.31402584968884634,
|
1155 |
+
"grad_norm": 0.8261198401451111,
|
1156 |
+
"learning_rate": 8.232767921493216e-06,
|
1157 |
+
"loss": 0.432,
|
1158 |
+
"step": 164
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.31594064145524176,
|
1162 |
+
"grad_norm": 0.8710785508155823,
|
1163 |
+
"learning_rate": 8.20854373848595e-06,
|
1164 |
+
"loss": 0.4508,
|
1165 |
+
"step": 165
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.3178554332216372,
|
1169 |
+
"grad_norm": 0.7583726048469543,
|
1170 |
+
"learning_rate": 8.184190836405394e-06,
|
1171 |
+
"loss": 0.3709,
|
1172 |
+
"step": 166
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.31977022498803254,
|
1176 |
+
"grad_norm": 0.7795834541320801,
|
1177 |
+
"learning_rate": 8.15971019223152e-06,
|
1178 |
+
"loss": 0.4055,
|
1179 |
+
"step": 167
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.32168501675442795,
|
1183 |
+
"grad_norm": 0.7580612897872925,
|
1184 |
+
"learning_rate": 8.135102788069015e-06,
|
1185 |
+
"loss": 0.3605,
|
1186 |
+
"step": 168
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.3235998085208234,
|
1190 |
+
"grad_norm": 0.7536636590957642,
|
1191 |
+
"learning_rate": 8.110369611107869e-06,
|
1192 |
+
"loss": 0.3656,
|
1193 |
+
"step": 169
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.3255146002872188,
|
1197 |
+
"grad_norm": 0.8029680252075195,
|
1198 |
+
"learning_rate": 8.085511653583772e-06,
|
1199 |
+
"loss": 0.3819,
|
1200 |
+
"step": 170
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.32742939205361415,
|
1204 |
+
"grad_norm": 0.8548794388771057,
|
1205 |
+
"learning_rate": 8.060529912738316e-06,
|
1206 |
+
"loss": 0.4449,
|
1207 |
+
"step": 171
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.3293441838200096,
|
1211 |
+
"grad_norm": 0.877955436706543,
|
1212 |
+
"learning_rate": 8.035425390778975e-06,
|
1213 |
+
"loss": 0.4504,
|
1214 |
+
"step": 172
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.331258975586405,
|
1218 |
+
"grad_norm": 0.8173900246620178,
|
1219 |
+
"learning_rate": 8.010199094838915e-06,
|
1220 |
+
"loss": 0.4211,
|
1221 |
+
"step": 173
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.3331737673528004,
|
1225 |
+
"grad_norm": 0.8715358972549438,
|
1226 |
+
"learning_rate": 7.984852036936578e-06,
|
1227 |
+
"loss": 0.3909,
|
1228 |
+
"step": 174
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.3350885591191958,
|
1232 |
+
"grad_norm": 0.8475743532180786,
|
1233 |
+
"learning_rate": 7.959385233935087e-06,
|
1234 |
+
"loss": 0.4416,
|
1235 |
+
"step": 175
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.3370033508855912,
|
1239 |
+
"grad_norm": 0.7483753561973572,
|
1240 |
+
"learning_rate": 7.933799707501448e-06,
|
1241 |
+
"loss": 0.351,
|
1242 |
+
"step": 176
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.3389181426519866,
|
1246 |
+
"grad_norm": 0.8065423965454102,
|
1247 |
+
"learning_rate": 7.908096484065569e-06,
|
1248 |
+
"loss": 0.4085,
|
1249 |
+
"step": 177
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.340832934418382,
|
1253 |
+
"grad_norm": 0.8215972185134888,
|
1254 |
+
"learning_rate": 7.88227659477908e-06,
|
1255 |
+
"loss": 0.4132,
|
1256 |
+
"step": 178
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.3427477261847774,
|
1260 |
+
"grad_norm": 0.7788512706756592,
|
1261 |
+
"learning_rate": 7.856341075473963e-06,
|
1262 |
+
"loss": 0.3828,
|
1263 |
+
"step": 179
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.3446625179511728,
|
1267 |
+
"grad_norm": 0.7943012118339539,
|
1268 |
+
"learning_rate": 7.830290966620997e-06,
|
1269 |
+
"loss": 0.3737,
|
1270 |
+
"step": 180
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 0.3465773097175682,
|
1274 |
+
"grad_norm": 0.8680888414382935,
|
1275 |
+
"learning_rate": 7.804127313288023e-06,
|
1276 |
+
"loss": 0.4019,
|
1277 |
+
"step": 181
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 0.34849210148396365,
|
1281 |
+
"grad_norm": 0.8370754718780518,
|
1282 |
+
"learning_rate": 7.777851165098012e-06,
|
1283 |
+
"loss": 0.4202,
|
1284 |
+
"step": 182
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 0.350406893250359,
|
1288 |
+
"grad_norm": 0.7426475882530212,
|
1289 |
+
"learning_rate": 7.751463576186957e-06,
|
1290 |
+
"loss": 0.378,
|
1291 |
+
"step": 183
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 0.3523216850167544,
|
1295 |
+
"grad_norm": 0.827038586139679,
|
1296 |
+
"learning_rate": 7.72496560516159e-06,
|
1297 |
+
"loss": 0.415,
|
1298 |
+
"step": 184
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.35423647678314985,
|
1302 |
+
"grad_norm": 0.8714759349822998,
|
1303 |
+
"learning_rate": 7.6983583150569e-06,
|
1304 |
+
"loss": 0.4204,
|
1305 |
+
"step": 185
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.35615126854954526,
|
1309 |
+
"grad_norm": 0.8127462863922119,
|
1310 |
+
"learning_rate": 7.671642773293506e-06,
|
1311 |
+
"loss": 0.3904,
|
1312 |
+
"step": 186
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 0.3580660603159406,
|
1316 |
+
"grad_norm": 0.8972522020339966,
|
1317 |
+
"learning_rate": 7.644820051634813e-06,
|
1318 |
+
"loss": 0.4168,
|
1319 |
+
"step": 187
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 0.35998085208233604,
|
1323 |
+
"grad_norm": 0.9051675200462341,
|
1324 |
+
"learning_rate": 7.617891226144034e-06,
|
1325 |
+
"loss": 0.4742,
|
1326 |
+
"step": 188
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 0.36189564384873146,
|
1330 |
+
"grad_norm": 0.8041402101516724,
|
1331 |
+
"learning_rate": 7.59085737714101e-06,
|
1332 |
+
"loss": 0.3916,
|
1333 |
+
"step": 189
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 0.3638104356151269,
|
1337 |
+
"grad_norm": 0.9296969175338745,
|
1338 |
+
"learning_rate": 7.563719589158874e-06,
|
1339 |
+
"loss": 0.4198,
|
1340 |
+
"step": 190
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.36572522738152224,
|
1344 |
+
"grad_norm": 0.8441433310508728,
|
1345 |
+
"learning_rate": 7.536478950900537e-06,
|
1346 |
+
"loss": 0.4094,
|
1347 |
+
"step": 191
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.36764001914791766,
|
1351 |
+
"grad_norm": 0.8146634101867676,
|
1352 |
+
"learning_rate": 7.509136555195025e-06,
|
1353 |
+
"loss": 0.398,
|
1354 |
+
"step": 192
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 0.3695548109143131,
|
1358 |
+
"grad_norm": 0.8095076680183411,
|
1359 |
+
"learning_rate": 7.481693498953621e-06,
|
1360 |
+
"loss": 0.4121,
|
1361 |
+
"step": 193
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 0.3714696026807085,
|
1365 |
+
"grad_norm": 0.8033435344696045,
|
1366 |
+
"learning_rate": 7.4541508831258695e-06,
|
1367 |
+
"loss": 0.3912,
|
1368 |
+
"step": 194
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 0.37338439444710386,
|
1372 |
+
"grad_norm": 0.7945087552070618,
|
1373 |
+
"learning_rate": 7.4265098126554065e-06,
|
1374 |
+
"loss": 0.3784,
|
1375 |
+
"step": 195
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 0.3752991862134993,
|
1379 |
+
"grad_norm": 0.858241081237793,
|
1380 |
+
"learning_rate": 7.3987713964356335e-06,
|
1381 |
+
"loss": 0.451,
|
1382 |
+
"step": 196
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.3772139779798947,
|
1386 |
+
"grad_norm": 0.9208387136459351,
|
1387 |
+
"learning_rate": 7.370936747265226e-06,
|
1388 |
+
"loss": 0.4539,
|
1389 |
+
"step": 197
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.3791287697462901,
|
1393 |
+
"grad_norm": 0.775140643119812,
|
1394 |
+
"learning_rate": 7.3430069818035e-06,
|
1395 |
+
"loss": 0.3956,
|
1396 |
+
"step": 198
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 0.3810435615126855,
|
1400 |
+
"grad_norm": 0.7926008105278015,
|
1401 |
+
"learning_rate": 7.314983220525604e-06,
|
1402 |
+
"loss": 0.4044,
|
1403 |
+
"step": 199
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 0.3829583532790809,
|
1407 |
+
"grad_norm": 0.7891693711280823,
|
1408 |
+
"learning_rate": 7.286866587677576e-06,
|
1409 |
+
"loss": 0.3881,
|
1410 |
+
"step": 200
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 0.3848731450454763,
|
1414 |
+
"grad_norm": 0.8547941446304321,
|
1415 |
+
"learning_rate": 7.2586582112312355e-06,
|
1416 |
+
"loss": 0.4289,
|
1417 |
+
"step": 201
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 0.38678793681187174,
|
1421 |
+
"grad_norm": 0.7894405722618103,
|
1422 |
+
"learning_rate": 7.230359222838939e-06,
|
1423 |
+
"loss": 0.3886,
|
1424 |
+
"step": 202
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.3887027285782671,
|
1428 |
+
"grad_norm": 0.9024775624275208,
|
1429 |
+
"learning_rate": 7.201970757788172e-06,
|
1430 |
+
"loss": 0.4586,
|
1431 |
+
"step": 203
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.3906175203446625,
|
1435 |
+
"grad_norm": 0.7940675616264343,
|
1436 |
+
"learning_rate": 7.173493954956012e-06,
|
1437 |
+
"loss": 0.3905,
|
1438 |
+
"step": 204
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 0.39253231211105793,
|
1442 |
+
"grad_norm": 0.8231476545333862,
|
1443 |
+
"learning_rate": 7.144929956763438e-06,
|
1444 |
+
"loss": 0.4044,
|
1445 |
+
"step": 205
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 0.39444710387745335,
|
1449 |
+
"grad_norm": 0.9094031453132629,
|
1450 |
+
"learning_rate": 7.116279909129492e-06,
|
1451 |
+
"loss": 0.4502,
|
1452 |
+
"step": 206
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 0.3963618956438487,
|
1456 |
+
"grad_norm": 0.843540608882904,
|
1457 |
+
"learning_rate": 7.087544961425317e-06,
|
1458 |
+
"loss": 0.4037,
|
1459 |
+
"step": 207
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 0.39827668741024413,
|
1463 |
+
"grad_norm": 0.8074728846549988,
|
1464 |
+
"learning_rate": 7.058726266428042e-06,
|
1465 |
+
"loss": 0.405,
|
1466 |
+
"step": 208
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.40019147917663955,
|
1470 |
+
"grad_norm": 0.7620254755020142,
|
1471 |
+
"learning_rate": 7.029824980274536e-06,
|
1472 |
+
"loss": 0.3727,
|
1473 |
+
"step": 209
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.40210627094303497,
|
1477 |
+
"grad_norm": 0.8311992883682251,
|
1478 |
+
"learning_rate": 7.0008422624150285e-06,
|
1479 |
+
"loss": 0.4172,
|
1480 |
+
"step": 210
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 0.40402106270943033,
|
1484 |
+
"grad_norm": 0.8231189846992493,
|
1485 |
+
"learning_rate": 6.971779275566593e-06,
|
1486 |
+
"loss": 0.4162,
|
1487 |
+
"step": 211
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 0.40593585447582575,
|
1491 |
+
"grad_norm": 0.8115664720535278,
|
1492 |
+
"learning_rate": 6.9426371856665005e-06,
|
1493 |
+
"loss": 0.4206,
|
1494 |
+
"step": 212
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 0.40785064624222117,
|
1498 |
+
"grad_norm": 0.8393989205360413,
|
1499 |
+
"learning_rate": 6.913417161825449e-06,
|
1500 |
+
"loss": 0.4252,
|
1501 |
+
"step": 213
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 0.4097654380086166,
|
1505 |
+
"grad_norm": 0.8263347148895264,
|
1506 |
+
"learning_rate": 6.884120376280658e-06,
|
1507 |
+
"loss": 0.3983,
|
1508 |
+
"step": 214
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.41168022977501195,
|
1512 |
+
"grad_norm": 0.834690272808075,
|
1513 |
+
"learning_rate": 6.85474800434884e-06,
|
1514 |
+
"loss": 0.4285,
|
1515 |
+
"step": 215
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.41359502154140737,
|
1519 |
+
"grad_norm": 0.7867841124534607,
|
1520 |
+
"learning_rate": 6.8253012243790565e-06,
|
1521 |
+
"loss": 0.4065,
|
1522 |
+
"step": 216
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 0.4155098133078028,
|
1526 |
+
"grad_norm": 0.848772406578064,
|
1527 |
+
"learning_rate": 6.795781217705436e-06,
|
1528 |
+
"loss": 0.4529,
|
1529 |
+
"step": 217
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 0.4174246050741982,
|
1533 |
+
"grad_norm": 0.7745128870010376,
|
1534 |
+
"learning_rate": 6.76618916859979e-06,
|
1535 |
+
"loss": 0.3631,
|
1536 |
+
"step": 218
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 0.41933939684059357,
|
1540 |
+
"grad_norm": 0.7742826342582703,
|
1541 |
+
"learning_rate": 6.736526264224101e-06,
|
1542 |
+
"loss": 0.3886,
|
1543 |
+
"step": 219
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 0.421254188606989,
|
1547 |
+
"grad_norm": 0.8211061358451843,
|
1548 |
+
"learning_rate": 6.706793694582892e-06,
|
1549 |
+
"loss": 0.3824,
|
1550 |
+
"step": 220
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.4231689803733844,
|
1554 |
+
"grad_norm": 0.824216902256012,
|
1555 |
+
"learning_rate": 6.676992652475487e-06,
|
1556 |
+
"loss": 0.4104,
|
1557 |
+
"step": 221
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.4250837721397798,
|
1561 |
+
"grad_norm": 0.7848684191703796,
|
1562 |
+
"learning_rate": 6.647124333448165e-06,
|
1563 |
+
"loss": 0.3711,
|
1564 |
+
"step": 222
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 0.4269985639061752,
|
1568 |
+
"grad_norm": 0.8798813819885254,
|
1569 |
+
"learning_rate": 6.617189935746191e-06,
|
1570 |
+
"loss": 0.4083,
|
1571 |
+
"step": 223
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 0.4289133556725706,
|
1575 |
+
"grad_norm": 0.8364046216011047,
|
1576 |
+
"learning_rate": 6.587190660265752e-06,
|
1577 |
+
"loss": 0.4248,
|
1578 |
+
"step": 224
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 0.430828147438966,
|
1582 |
+
"grad_norm": 0.8487688899040222,
|
1583 |
+
"learning_rate": 6.55712771050577e-06,
|
1584 |
+
"loss": 0.4148,
|
1585 |
+
"step": 225
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 0.43274293920536144,
|
1589 |
+
"grad_norm": 0.7809548377990723,
|
1590 |
+
"learning_rate": 6.52700229251963e-06,
|
1591 |
+
"loss": 0.393,
|
1592 |
+
"step": 226
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.4346577309717568,
|
1596 |
+
"grad_norm": 0.9122399091720581,
|
1597 |
+
"learning_rate": 6.496815614866792e-06,
|
1598 |
+
"loss": 0.4037,
|
1599 |
+
"step": 227
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.4365725227381522,
|
1603 |
+
"grad_norm": 0.8720874786376953,
|
1604 |
+
"learning_rate": 6.466568888564303e-06,
|
1605 |
+
"loss": 0.4581,
|
1606 |
+
"step": 228
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 0.43848731450454764,
|
1610 |
+
"grad_norm": 0.8561883568763733,
|
1611 |
+
"learning_rate": 6.436263327038225e-06,
|
1612 |
+
"loss": 0.4046,
|
1613 |
+
"step": 229
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 0.44040210627094306,
|
1617 |
+
"grad_norm": 0.8326470255851746,
|
1618 |
+
"learning_rate": 6.405900146074941e-06,
|
1619 |
+
"loss": 0.3882,
|
1620 |
+
"step": 230
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 0.4423168980373384,
|
1624 |
+
"grad_norm": 0.8377370238304138,
|
1625 |
+
"learning_rate": 6.375480563772391e-06,
|
1626 |
+
"loss": 0.4368,
|
1627 |
+
"step": 231
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 0.44423168980373384,
|
1631 |
+
"grad_norm": 0.7525307536125183,
|
1632 |
+
"learning_rate": 6.3450058004912004e-06,
|
1633 |
+
"loss": 0.3646,
|
1634 |
+
"step": 232
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.44614648157012926,
|
1638 |
+
"grad_norm": 0.8400733470916748,
|
1639 |
+
"learning_rate": 6.314477078805724e-06,
|
1640 |
+
"loss": 0.4002,
|
1641 |
+
"step": 233
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.4480612733365247,
|
1645 |
+
"grad_norm": 0.7522779107093811,
|
1646 |
+
"learning_rate": 6.283895623454997e-06,
|
1647 |
+
"loss": 0.3865,
|
1648 |
+
"step": 234
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 0.44997606510292004,
|
1652 |
+
"grad_norm": 0.8109682202339172,
|
1653 |
+
"learning_rate": 6.2532626612936035e-06,
|
1654 |
+
"loss": 0.4089,
|
1655 |
+
"step": 235
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 0.45189085686931546,
|
1659 |
+
"grad_norm": 0.8554459810256958,
|
1660 |
+
"learning_rate": 6.2225794212424565e-06,
|
1661 |
+
"loss": 0.4401,
|
1662 |
+
"step": 236
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 0.4538056486357109,
|
1666 |
+
"grad_norm": 0.8335216641426086,
|
1667 |
+
"learning_rate": 6.191847134239496e-06,
|
1668 |
+
"loss": 0.3995,
|
1669 |
+
"step": 237
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 0.4557204404021063,
|
1673 |
+
"grad_norm": 0.8365229964256287,
|
1674 |
+
"learning_rate": 6.161067033190311e-06,
|
1675 |
+
"loss": 0.402,
|
1676 |
+
"step": 238
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.45763523216850166,
|
1680 |
+
"grad_norm": 0.7727139592170715,
|
1681 |
+
"learning_rate": 6.130240352918675e-06,
|
1682 |
+
"loss": 0.3976,
|
1683 |
+
"step": 239
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.4595500239348971,
|
1687 |
+
"grad_norm": 0.8664788603782654,
|
1688 |
+
"learning_rate": 6.0993683301170046e-06,
|
1689 |
+
"loss": 0.4347,
|
1690 |
+
"step": 240
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 0.4614648157012925,
|
1694 |
+
"grad_norm": 0.7788071632385254,
|
1695 |
+
"learning_rate": 6.068452203296754e-06,
|
1696 |
+
"loss": 0.3849,
|
1697 |
+
"step": 241
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 0.4633796074676879,
|
1701 |
+
"grad_norm": 0.7709981203079224,
|
1702 |
+
"learning_rate": 6.0374932127387234e-06,
|
1703 |
+
"loss": 0.394,
|
1704 |
+
"step": 242
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 0.4652943992340833,
|
1708 |
+
"grad_norm": 0.8584897518157959,
|
1709 |
+
"learning_rate": 6.006492600443301e-06,
|
1710 |
+
"loss": 0.4013,
|
1711 |
+
"step": 243
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 0.4672091910004787,
|
1715 |
+
"grad_norm": 0.8466057777404785,
|
1716 |
+
"learning_rate": 5.975451610080643e-06,
|
1717 |
+
"loss": 0.382,
|
1718 |
+
"step": 244
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.4691239827668741,
|
1722 |
+
"grad_norm": 0.8147895336151123,
|
1723 |
+
"learning_rate": 5.944371486940772e-06,
|
1724 |
+
"loss": 0.3925,
|
1725 |
+
"step": 245
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.47103877453326953,
|
1729 |
+
"grad_norm": 0.9486895203590393,
|
1730 |
+
"learning_rate": 5.913253477883629e-06,
|
1731 |
+
"loss": 0.438,
|
1732 |
+
"step": 246
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 0.4729535662996649,
|
1736 |
+
"grad_norm": 0.8018326163291931,
|
1737 |
+
"learning_rate": 5.882098831289044e-06,
|
1738 |
+
"loss": 0.3902,
|
1739 |
+
"step": 247
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 0.4748683580660603,
|
1743 |
+
"grad_norm": 0.7979179620742798,
|
1744 |
+
"learning_rate": 5.850908797006656e-06,
|
1745 |
+
"loss": 0.4001,
|
1746 |
+
"step": 248
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 0.47678314983245573,
|
1750 |
+
"grad_norm": 0.8484137058258057,
|
1751 |
+
"learning_rate": 5.819684626305776e-06,
|
1752 |
+
"loss": 0.4393,
|
1753 |
+
"step": 249
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 0.47869794159885115,
|
1757 |
+
"grad_norm": 0.812910795211792,
|
1758 |
+
"learning_rate": 5.788427571825186e-06,
|
1759 |
+
"loss": 0.3939,
|
1760 |
+
"step": 250
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 0.4806127333652465,
|
1764 |
+
"grad_norm": 0.8852983117103577,
|
1765 |
+
"learning_rate": 5.757138887522884e-06,
|
1766 |
+
"loss": 0.4113,
|
1767 |
+
"step": 251
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.48252752513164193,
|
1771 |
+
"grad_norm": 0.8375086188316345,
|
1772 |
+
"learning_rate": 5.725819828625782e-06,
|
1773 |
+
"loss": 0.4132,
|
1774 |
+
"step": 252
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 0.48444231689803735,
|
1778 |
+
"grad_norm": 0.7939973473548889,
|
1779 |
+
"learning_rate": 5.694471651579346e-06,
|
1780 |
+
"loss": 0.4003,
|
1781 |
+
"step": 253
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 0.48635710866443277,
|
1785 |
+
"grad_norm": 0.7971997857093811,
|
1786 |
+
"learning_rate": 5.663095613997196e-06,
|
1787 |
+
"loss": 0.3868,
|
1788 |
+
"step": 254
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 0.48827190043082813,
|
1792 |
+
"grad_norm": 0.778202474117279,
|
1793 |
+
"learning_rate": 5.631692974610647e-06,
|
1794 |
+
"loss": 0.3761,
|
1795 |
+
"step": 255
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 0.49018669219722355,
|
1799 |
+
"grad_norm": 0.8734095692634583,
|
1800 |
+
"learning_rate": 5.600264993218215e-06,
|
1801 |
+
"loss": 0.4105,
|
1802 |
+
"step": 256
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 0.49210148396361897,
|
1806 |
+
"grad_norm": 0.8606191873550415,
|
1807 |
+
"learning_rate": 5.568812930635076e-06,
|
1808 |
+
"loss": 0.396,
|
1809 |
+
"step": 257
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.4940162757300144,
|
1813 |
+
"grad_norm": 0.8600229024887085,
|
1814 |
+
"learning_rate": 5.537338048642487e-06,
|
1815 |
+
"loss": 0.4379,
|
1816 |
+
"step": 258
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 0.49593106749640975,
|
1820 |
+
"grad_norm": 0.8452302813529968,
|
1821 |
+
"learning_rate": 5.505841609937162e-06,
|
1822 |
+
"loss": 0.3802,
|
1823 |
+
"step": 259
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 0.49784585926280517,
|
1827 |
+
"grad_norm": 0.7426350712776184,
|
1828 |
+
"learning_rate": 5.474324878080623e-06,
|
1829 |
+
"loss": 0.335,
|
1830 |
+
"step": 260
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"epoch": 0.4997606510292006,
|
1834 |
+
"grad_norm": 0.8211168050765991,
|
1835 |
+
"learning_rate": 5.4427891174485014e-06,
|
1836 |
+
"loss": 0.387,
|
1837 |
+
"step": 261
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 0.501675442795596,
|
1841 |
+
"grad_norm": 0.855265200138092,
|
1842 |
+
"learning_rate": 5.41123559317982e-06,
|
1843 |
+
"loss": 0.4148,
|
1844 |
+
"step": 262
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 0.5035902345619914,
|
1848 |
+
"grad_norm": 0.8395704030990601,
|
1849 |
+
"learning_rate": 5.379665571126232e-06,
|
1850 |
+
"loss": 0.3774,
|
1851 |
+
"step": 263
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.5055050263283868,
|
1855 |
+
"grad_norm": 0.7473710775375366,
|
1856 |
+
"learning_rate": 5.348080317801244e-06,
|
1857 |
+
"loss": 0.3672,
|
1858 |
+
"step": 264
|
1859 |
+
},
|
1860 |
+
{
|
1861 |
+
"epoch": 0.5074198180947822,
|
1862 |
+
"grad_norm": 0.9001408815383911,
|
1863 |
+
"learning_rate": 5.316481100329408e-06,
|
1864 |
+
"loss": 0.4314,
|
1865 |
+
"step": 265
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 0.5093346098611776,
|
1869 |
+
"grad_norm": 0.8201159834861755,
|
1870 |
+
"learning_rate": 5.284869186395478e-06,
|
1871 |
+
"loss": 0.4166,
|
1872 |
+
"step": 266
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"epoch": 0.511249401627573,
|
1876 |
+
"grad_norm": 0.8213218450546265,
|
1877 |
+
"learning_rate": 5.253245844193564e-06,
|
1878 |
+
"loss": 0.4087,
|
1879 |
+
"step": 267
|
1880 |
+
},
|
1881 |
+
{
|
1882 |
+
"epoch": 0.5131641933939685,
|
1883 |
+
"grad_norm": 0.8229288458824158,
|
1884 |
+
"learning_rate": 5.22161234237625e-06,
|
1885 |
+
"loss": 0.4013,
|
1886 |
+
"step": 268
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 0.5150789851603638,
|
1890 |
+
"grad_norm": 0.8140142560005188,
|
1891 |
+
"learning_rate": 5.189969950003697e-06,
|
1892 |
+
"loss": 0.4021,
|
1893 |
+
"step": 269
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.5169937769267592,
|
1897 |
+
"grad_norm": 0.8901419043540955,
|
1898 |
+
"learning_rate": 5.158319936492736e-06,
|
1899 |
+
"loss": 0.427,
|
1900 |
+
"step": 270
|
1901 |
+
},
|
1902 |
+
{
|
1903 |
+
"epoch": 0.5189085686931546,
|
1904 |
+
"grad_norm": 0.7799863219261169,
|
1905 |
+
"learning_rate": 5.12666357156594e-06,
|
1906 |
+
"loss": 0.3872,
|
1907 |
+
"step": 271
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 0.52082336045955,
|
1911 |
+
"grad_norm": 0.8645293712615967,
|
1912 |
+
"learning_rate": 5.0950021252006845e-06,
|
1913 |
+
"loss": 0.4287,
|
1914 |
+
"step": 272
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 0.5227381522259454,
|
1918 |
+
"grad_norm": 0.8488345146179199,
|
1919 |
+
"learning_rate": 5.063336867578201e-06,
|
1920 |
+
"loss": 0.4402,
|
1921 |
+
"step": 273
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 0.5246529439923409,
|
1925 |
+
"grad_norm": 0.8312931060791016,
|
1926 |
+
"learning_rate": 5.0316690690326175e-06,
|
1927 |
+
"loss": 0.3858,
|
1928 |
+
"step": 274
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 0.5265677357587363,
|
1932 |
+
"grad_norm": 0.8159146308898926,
|
1933 |
+
"learning_rate": 5e-06,
|
1934 |
+
"loss": 0.3707,
|
1935 |
+
"step": 275
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.5284825275251317,
|
1939 |
+
"grad_norm": 0.8223234415054321,
|
1940 |
+
"learning_rate": 4.9683309309673825e-06,
|
1941 |
+
"loss": 0.3836,
|
1942 |
+
"step": 276
|
1943 |
+
},
|
1944 |
+
{
|
1945 |
+
"epoch": 0.530397319291527,
|
1946 |
+
"grad_norm": 0.7489441633224487,
|
1947 |
+
"learning_rate": 4.936663132421801e-06,
|
1948 |
+
"loss": 0.3666,
|
1949 |
+
"step": 277
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 0.5323121110579224,
|
1953 |
+
"grad_norm": 0.7627151012420654,
|
1954 |
+
"learning_rate": 4.904997874799316e-06,
|
1955 |
+
"loss": 0.3829,
|
1956 |
+
"step": 278
|
1957 |
+
},
|
1958 |
+
{
|
1959 |
+
"epoch": 0.5342269028243178,
|
1960 |
+
"grad_norm": 0.8040624856948853,
|
1961 |
+
"learning_rate": 4.873336428434062e-06,
|
1962 |
+
"loss": 0.3864,
|
1963 |
+
"step": 279
|
1964 |
+
},
|
1965 |
+
{
|
1966 |
+
"epoch": 0.5361416945907133,
|
1967 |
+
"grad_norm": 0.8104556798934937,
|
1968 |
+
"learning_rate": 4.841680063507265e-06,
|
1969 |
+
"loss": 0.4226,
|
1970 |
+
"step": 280
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 0.5380564863571087,
|
1974 |
+
"grad_norm": 0.8425339460372925,
|
1975 |
+
"learning_rate": 4.8100300499963045e-06,
|
1976 |
+
"loss": 0.4126,
|
1977 |
+
"step": 281
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 0.5399712781235041,
|
1981 |
+
"grad_norm": 0.7799105644226074,
|
1982 |
+
"learning_rate": 4.778387657623751e-06,
|
1983 |
+
"loss": 0.3768,
|
1984 |
+
"step": 282
|
1985 |
+
},
|
1986 |
+
{
|
1987 |
+
"epoch": 0.5418860698898995,
|
1988 |
+
"grad_norm": 0.8573192954063416,
|
1989 |
+
"learning_rate": 4.746754155806437e-06,
|
1990 |
+
"loss": 0.451,
|
1991 |
+
"step": 283
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 0.5438008616562949,
|
1995 |
+
"grad_norm": 0.8153167366981506,
|
1996 |
+
"learning_rate": 4.715130813604522e-06,
|
1997 |
+
"loss": 0.3968,
|
1998 |
+
"step": 284
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"epoch": 0.5457156534226902,
|
2002 |
+
"grad_norm": 0.8407420516014099,
|
2003 |
+
"learning_rate": 4.683518899670594e-06,
|
2004 |
+
"loss": 0.392,
|
2005 |
+
"step": 285
|
2006 |
+
},
|
2007 |
+
{
|
2008 |
+
"epoch": 0.5476304451890857,
|
2009 |
+
"grad_norm": 0.8508596420288086,
|
2010 |
+
"learning_rate": 4.651919682198756e-06,
|
2011 |
+
"loss": 0.3945,
|
2012 |
+
"step": 286
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 0.5495452369554811,
|
2016 |
+
"grad_norm": 0.8226655721664429,
|
2017 |
+
"learning_rate": 4.62033442887377e-06,
|
2018 |
+
"loss": 0.3993,
|
2019 |
+
"step": 287
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 0.5514600287218765,
|
2023 |
+
"grad_norm": 0.8097487688064575,
|
2024 |
+
"learning_rate": 4.588764406820181e-06,
|
2025 |
+
"loss": 0.4303,
|
2026 |
+
"step": 288
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"epoch": 0.5533748204882719,
|
2030 |
+
"grad_norm": 0.7493626475334167,
|
2031 |
+
"learning_rate": 4.5572108825515e-06,
|
2032 |
+
"loss": 0.362,
|
2033 |
+
"step": 289
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"epoch": 0.5552896122546673,
|
2037 |
+
"grad_norm": 0.7713648676872253,
|
2038 |
+
"learning_rate": 4.5256751219193784e-06,
|
2039 |
+
"loss": 0.3906,
|
2040 |
+
"step": 290
|
2041 |
+
},
|
2042 |
+
{
|
2043 |
+
"epoch": 0.5572044040210627,
|
2044 |
+
"grad_norm": 0.8310909867286682,
|
2045 |
+
"learning_rate": 4.49415839006284e-06,
|
2046 |
+
"loss": 0.4041,
|
2047 |
+
"step": 291
|
2048 |
+
},
|
2049 |
+
{
|
2050 |
+
"epoch": 0.5591191957874582,
|
2051 |
+
"grad_norm": 0.8170990943908691,
|
2052 |
+
"learning_rate": 4.462661951357515e-06,
|
2053 |
+
"loss": 0.4054,
|
2054 |
+
"step": 292
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 0.5610339875538535,
|
2058 |
+
"grad_norm": 0.862368643283844,
|
2059 |
+
"learning_rate": 4.431187069364927e-06,
|
2060 |
+
"loss": 0.4107,
|
2061 |
+
"step": 293
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 0.5629487793202489,
|
2065 |
+
"grad_norm": 0.8069734573364258,
|
2066 |
+
"learning_rate": 4.3997350067817866e-06,
|
2067 |
+
"loss": 0.3939,
|
2068 |
+
"step": 294
|
2069 |
+
},
|
2070 |
+
{
|
2071 |
+
"epoch": 0.5648635710866443,
|
2072 |
+
"grad_norm": 0.8641298413276672,
|
2073 |
+
"learning_rate": 4.368307025389355e-06,
|
2074 |
+
"loss": 0.4182,
|
2075 |
+
"step": 295
|
2076 |
+
},
|
2077 |
+
{
|
2078 |
+
"epoch": 0.5667783628530397,
|
2079 |
+
"grad_norm": 0.8040350079536438,
|
2080 |
+
"learning_rate": 4.336904386002805e-06,
|
2081 |
+
"loss": 0.3863,
|
2082 |
+
"step": 296
|
2083 |
+
},
|
2084 |
+
{
|
2085 |
+
"epoch": 0.5686931546194351,
|
2086 |
+
"grad_norm": 0.8322636485099792,
|
2087 |
+
"learning_rate": 4.3055283484206565e-06,
|
2088 |
+
"loss": 0.4228,
|
2089 |
+
"step": 297
|
2090 |
+
},
|
2091 |
+
{
|
2092 |
+
"epoch": 0.5706079463858306,
|
2093 |
+
"grad_norm": 0.7918723821640015,
|
2094 |
+
"learning_rate": 4.27418017137422e-06,
|
2095 |
+
"loss": 0.3749,
|
2096 |
+
"step": 298
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 0.572522738152226,
|
2100 |
+
"grad_norm": 0.7878877520561218,
|
2101 |
+
"learning_rate": 4.2428611124771184e-06,
|
2102 |
+
"loss": 0.3716,
|
2103 |
+
"step": 299
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 0.5744375299186214,
|
2107 |
+
"grad_norm": 0.7795090675354004,
|
2108 |
+
"learning_rate": 4.211572428174816e-06,
|
2109 |
+
"loss": 0.3614,
|
2110 |
+
"step": 300
|
2111 |
+
},
|
2112 |
+
{
|
2113 |
+
"epoch": 0.5763523216850167,
|
2114 |
+
"grad_norm": 0.8057751655578613,
|
2115 |
+
"learning_rate": 4.180315373694225e-06,
|
2116 |
+
"loss": 0.4015,
|
2117 |
+
"step": 301
|
2118 |
+
},
|
2119 |
+
{
|
2120 |
+
"epoch": 0.5782671134514121,
|
2121 |
+
"grad_norm": 0.8051212430000305,
|
2122 |
+
"learning_rate": 4.149091202993345e-06,
|
2123 |
+
"loss": 0.3588,
|
2124 |
+
"step": 302
|
2125 |
+
},
|
2126 |
+
{
|
2127 |
+
"epoch": 0.5801819052178075,
|
2128 |
+
"grad_norm": 0.8171245455741882,
|
2129 |
+
"learning_rate": 4.11790116871096e-06,
|
2130 |
+
"loss": 0.417,
|
2131 |
+
"step": 303
|
2132 |
+
},
|
2133 |
+
{
|
2134 |
+
"epoch": 0.582096696984203,
|
2135 |
+
"grad_norm": 0.8987613320350647,
|
2136 |
+
"learning_rate": 4.086746522116372e-06,
|
2137 |
+
"loss": 0.4536,
|
2138 |
+
"step": 304
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 0.5840114887505984,
|
2142 |
+
"grad_norm": 0.7471241354942322,
|
2143 |
+
"learning_rate": 4.055628513059231e-06,
|
2144 |
+
"loss": 0.3866,
|
2145 |
+
"step": 305
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.5859262805169938,
|
2149 |
+
"grad_norm": 0.828220009803772,
|
2150 |
+
"learning_rate": 4.02454838991936e-06,
|
2151 |
+
"loss": 0.3778,
|
2152 |
+
"step": 306
|
2153 |
+
},
|
2154 |
+
{
|
2155 |
+
"epoch": 0.5878410722833892,
|
2156 |
+
"grad_norm": 0.8547297120094299,
|
2157 |
+
"learning_rate": 3.993507399556699e-06,
|
2158 |
+
"loss": 0.4308,
|
2159 |
+
"step": 307
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"epoch": 0.5897558640497846,
|
2163 |
+
"grad_norm": 0.8033933043479919,
|
2164 |
+
"learning_rate": 3.962506787261278e-06,
|
2165 |
+
"loss": 0.3993,
|
2166 |
+
"step": 308
|
2167 |
+
},
|
2168 |
+
{
|
2169 |
+
"epoch": 0.59167065581618,
|
2170 |
+
"grad_norm": 0.7902593612670898,
|
2171 |
+
"learning_rate": 3.931547796703245e-06,
|
2172 |
+
"loss": 0.3794,
|
2173 |
+
"step": 309
|
2174 |
+
},
|
2175 |
+
{
|
2176 |
+
"epoch": 0.5935854475825754,
|
2177 |
+
"grad_norm": 0.8059898018836975,
|
2178 |
+
"learning_rate": 3.900631669882996e-06,
|
2179 |
+
"loss": 0.3936,
|
2180 |
+
"step": 310
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 0.5955002393489708,
|
2184 |
+
"grad_norm": 0.8180558681488037,
|
2185 |
+
"learning_rate": 3.869759647081326e-06,
|
2186 |
+
"loss": 0.3695,
|
2187 |
+
"step": 311
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 0.5974150311153662,
|
2191 |
+
"grad_norm": 0.7877086400985718,
|
2192 |
+
"learning_rate": 3.83893296680969e-06,
|
2193 |
+
"loss": 0.3838,
|
2194 |
+
"step": 312
|
2195 |
+
},
|
2196 |
+
{
|
2197 |
+
"epoch": 0.5993298228817616,
|
2198 |
+
"grad_norm": 0.7896502614021301,
|
2199 |
+
"learning_rate": 3.8081528657605045e-06,
|
2200 |
+
"loss": 0.376,
|
2201 |
+
"step": 313
|
2202 |
+
},
|
2203 |
+
{
|
2204 |
+
"epoch": 0.601244614648157,
|
2205 |
+
"grad_norm": 0.7718030214309692,
|
2206 |
+
"learning_rate": 3.7774205787575455e-06,
|
2207 |
+
"loss": 0.388,
|
2208 |
+
"step": 314
|
2209 |
+
},
|
2210 |
+
{
|
2211 |
+
"epoch": 0.6031594064145525,
|
2212 |
+
"grad_norm": 0.8119059205055237,
|
2213 |
+
"learning_rate": 3.7467373387063973e-06,
|
2214 |
+
"loss": 0.4241,
|
2215 |
+
"step": 315
|
2216 |
+
}
|
2217 |
+
],
|
2218 |
+
"logging_steps": 1,
|
2219 |
+
"max_steps": 522,
|
2220 |
+
"num_input_tokens_seen": 0,
|
2221 |
+
"num_train_epochs": 1,
|
2222 |
+
"save_steps": 105,
|
2223 |
+
"stateful_callbacks": {
|
2224 |
+
"TrainerControl": {
|
2225 |
+
"args": {
|
2226 |
+
"should_epoch_stop": false,
|
2227 |
+
"should_evaluate": false,
|
2228 |
+
"should_log": false,
|
2229 |
+
"should_save": true,
|
2230 |
+
"should_training_stop": false
|
2231 |
+
},
|
2232 |
+
"attributes": {}
|
2233 |
+
}
|
2234 |
+
},
|
2235 |
+
"total_flos": 1.6526141583628698e+17,
|
2236 |
+
"train_batch_size": 8,
|
2237 |
+
"trial_name": null,
|
2238 |
+
"trial_params": null
|
2239 |
+
}
|
checkpoint-315/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:103fd3bb469213774a4b43139febd5a468076d3935b2ed67984e8c9a1aaaa004
|
3 |
+
size 10936
|
checkpoint-315/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-315/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-420/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-420/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"eos_token_id": 151643,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 1536,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 8960,
|
11 |
+
"max_position_embeddings": 131072,
|
12 |
+
"max_window_layers": 28,
|
13 |
+
"model_type": "qwen2",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 28,
|
16 |
+
"num_key_value_heads": 2,
|
17 |
+
"rms_norm_eps": 1e-06,
|
18 |
+
"rope_scaling": null,
|
19 |
+
"rope_theta": 1000000.0,
|
20 |
+
"sliding_window": 131072,
|
21 |
+
"tie_word_embeddings": true,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.51.3",
|
24 |
+
"use_cache": false,
|
25 |
+
"use_mrope": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
checkpoint-420/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 151643,
|
5 |
+
"max_new_tokens": 2048,
|
6 |
+
"transformers_version": "4.51.3"
|
7 |
+
}
|
checkpoint-420/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step420
|
checkpoint-420/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-420/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d15203da896dd6dcfb1f37e4458e20c98514f23d1e162280d299eedb7aa4092
|
3 |
+
size 3554214752
|
checkpoint-420/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad792af33c7cfa8b15298ecc9d976ebdcdeb444ca0e704c7b0657f41ee6547eb
|
3 |
+
size 14512
|
checkpoint-420/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:722c924fceffd85f8ab1a5445f1ea1e6c502644b6a42e2ff6b5a9a76ea26e1fe
|
3 |
+
size 14512
|
checkpoint-420/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8053bdf2e6680f6d7e7620f3d7ecd8cf15c34074cc261de25bfc326ba659e816
|
3 |
+
size 1064
|
checkpoint-420/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-420/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-420/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-420/trainer_state.json
ADDED
@@ -0,0 +1,2974 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 0.8042125418860699,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 420,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0019147917663954045,
|
14 |
+
"grad_norm": 2.9491562843322754,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 0.6229,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.003829583532790809,
|
21 |
+
"grad_norm": 3.0646867752075195,
|
22 |
+
"learning_rate": 3.846153846153847e-07,
|
23 |
+
"loss": 0.6119,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.0057443752991862135,
|
28 |
+
"grad_norm": 3.0737922191619873,
|
29 |
+
"learning_rate": 7.692307692307694e-07,
|
30 |
+
"loss": 0.6582,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.007659167065581618,
|
35 |
+
"grad_norm": 2.9172728061676025,
|
36 |
+
"learning_rate": 1.153846153846154e-06,
|
37 |
+
"loss": 0.6209,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.009573958831977022,
|
42 |
+
"grad_norm": 2.668588161468506,
|
43 |
+
"learning_rate": 1.5384615384615387e-06,
|
44 |
+
"loss": 0.5589,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.011488750598372427,
|
49 |
+
"grad_norm": 3.2810585498809814,
|
50 |
+
"learning_rate": 1.9230769230769234e-06,
|
51 |
+
"loss": 0.5968,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.013403542364767831,
|
56 |
+
"grad_norm": 2.434365749359131,
|
57 |
+
"learning_rate": 2.307692307692308e-06,
|
58 |
+
"loss": 0.5636,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.015318334131163236,
|
63 |
+
"grad_norm": 2.060615301132202,
|
64 |
+
"learning_rate": 2.6923076923076923e-06,
|
65 |
+
"loss": 0.5661,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.01723312589755864,
|
70 |
+
"grad_norm": 1.8817814588546753,
|
71 |
+
"learning_rate": 3.0769230769230774e-06,
|
72 |
+
"loss": 0.5817,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.019147917663954045,
|
77 |
+
"grad_norm": 1.766438603401184,
|
78 |
+
"learning_rate": 3.4615384615384617e-06,
|
79 |
+
"loss": 0.5529,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.02106270943034945,
|
84 |
+
"grad_norm": 1.5240556001663208,
|
85 |
+
"learning_rate": 3.846153846153847e-06,
|
86 |
+
"loss": 0.5207,
|
87 |
+
"step": 11
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.022977501196744854,
|
91 |
+
"grad_norm": 1.5381622314453125,
|
92 |
+
"learning_rate": 4.230769230769231e-06,
|
93 |
+
"loss": 0.5171,
|
94 |
+
"step": 12
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.02489229296314026,
|
98 |
+
"grad_norm": 1.4144328832626343,
|
99 |
+
"learning_rate": 4.615384615384616e-06,
|
100 |
+
"loss": 0.5612,
|
101 |
+
"step": 13
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.026807084729535663,
|
105 |
+
"grad_norm": 1.282257318496704,
|
106 |
+
"learning_rate": 5e-06,
|
107 |
+
"loss": 0.493,
|
108 |
+
"step": 14
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.028721876495931067,
|
112 |
+
"grad_norm": 1.3273121118545532,
|
113 |
+
"learning_rate": 5.384615384615385e-06,
|
114 |
+
"loss": 0.4723,
|
115 |
+
"step": 15
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.030636668262326472,
|
119 |
+
"grad_norm": 1.1829627752304077,
|
120 |
+
"learning_rate": 5.769230769230769e-06,
|
121 |
+
"loss": 0.4675,
|
122 |
+
"step": 16
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.032551460028721876,
|
126 |
+
"grad_norm": 1.0885576009750366,
|
127 |
+
"learning_rate": 6.153846153846155e-06,
|
128 |
+
"loss": 0.4275,
|
129 |
+
"step": 17
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.03446625179511728,
|
133 |
+
"grad_norm": 0.9974104762077332,
|
134 |
+
"learning_rate": 6.538461538461539e-06,
|
135 |
+
"loss": 0.4709,
|
136 |
+
"step": 18
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.036381043561512685,
|
140 |
+
"grad_norm": 1.0769761800765991,
|
141 |
+
"learning_rate": 6.923076923076923e-06,
|
142 |
+
"loss": 0.4916,
|
143 |
+
"step": 19
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.03829583532790809,
|
147 |
+
"grad_norm": 0.967096745967865,
|
148 |
+
"learning_rate": 7.307692307692308e-06,
|
149 |
+
"loss": 0.4785,
|
150 |
+
"step": 20
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.040210627094303494,
|
154 |
+
"grad_norm": 1.0460747480392456,
|
155 |
+
"learning_rate": 7.692307692307694e-06,
|
156 |
+
"loss": 0.4653,
|
157 |
+
"step": 21
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.0421254188606989,
|
161 |
+
"grad_norm": 1.0114920139312744,
|
162 |
+
"learning_rate": 8.076923076923077e-06,
|
163 |
+
"loss": 0.4648,
|
164 |
+
"step": 22
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.0440402106270943,
|
168 |
+
"grad_norm": 1.1619290113449097,
|
169 |
+
"learning_rate": 8.461538461538462e-06,
|
170 |
+
"loss": 0.4833,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.04595500239348971,
|
175 |
+
"grad_norm": 0.9872665405273438,
|
176 |
+
"learning_rate": 8.846153846153847e-06,
|
177 |
+
"loss": 0.4545,
|
178 |
+
"step": 24
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.04786979415988511,
|
182 |
+
"grad_norm": 0.9702840447425842,
|
183 |
+
"learning_rate": 9.230769230769232e-06,
|
184 |
+
"loss": 0.4651,
|
185 |
+
"step": 25
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.04978458592628052,
|
189 |
+
"grad_norm": 0.9493695497512817,
|
190 |
+
"learning_rate": 9.615384615384616e-06,
|
191 |
+
"loss": 0.477,
|
192 |
+
"step": 26
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.05169937769267592,
|
196 |
+
"grad_norm": 0.9152507185935974,
|
197 |
+
"learning_rate": 1e-05,
|
198 |
+
"loss": 0.4499,
|
199 |
+
"step": 27
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.053614169459071326,
|
203 |
+
"grad_norm": 1.0640617609024048,
|
204 |
+
"learning_rate": 9.999899706000774e-06,
|
205 |
+
"loss": 0.4853,
|
206 |
+
"step": 28
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.05552896122546673,
|
210 |
+
"grad_norm": 0.9641034603118896,
|
211 |
+
"learning_rate": 9.999598828026644e-06,
|
212 |
+
"loss": 0.475,
|
213 |
+
"step": 29
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.057443752991862135,
|
217 |
+
"grad_norm": 0.8927161693572998,
|
218 |
+
"learning_rate": 9.999097378148116e-06,
|
219 |
+
"loss": 0.4448,
|
220 |
+
"step": 30
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.05935854475825754,
|
224 |
+
"grad_norm": 0.881844699382782,
|
225 |
+
"learning_rate": 9.998395376482152e-06,
|
226 |
+
"loss": 0.4327,
|
227 |
+
"step": 31
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.061273336524652944,
|
231 |
+
"grad_norm": 0.8794113993644714,
|
232 |
+
"learning_rate": 9.99749285119138e-06,
|
233 |
+
"loss": 0.4294,
|
234 |
+
"step": 32
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.06318812829104835,
|
238 |
+
"grad_norm": 0.9898825287818909,
|
239 |
+
"learning_rate": 9.996389838482942e-06,
|
240 |
+
"loss": 0.5294,
|
241 |
+
"step": 33
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.06510292005744375,
|
245 |
+
"grad_norm": 0.9184749126434326,
|
246 |
+
"learning_rate": 9.995086382607064e-06,
|
247 |
+
"loss": 0.4774,
|
248 |
+
"step": 34
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.06701771182383916,
|
252 |
+
"grad_norm": 0.9067336320877075,
|
253 |
+
"learning_rate": 9.993582535855265e-06,
|
254 |
+
"loss": 0.4569,
|
255 |
+
"step": 35
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.06893250359023456,
|
259 |
+
"grad_norm": 0.8807307481765747,
|
260 |
+
"learning_rate": 9.991878358558267e-06,
|
261 |
+
"loss": 0.478,
|
262 |
+
"step": 36
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.07084729535662997,
|
266 |
+
"grad_norm": 0.9359887838363647,
|
267 |
+
"learning_rate": 9.989973919083576e-06,
|
268 |
+
"loss": 0.4659,
|
269 |
+
"step": 37
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.07276208712302537,
|
273 |
+
"grad_norm": 0.9008484482765198,
|
274 |
+
"learning_rate": 9.987869293832727e-06,
|
275 |
+
"loss": 0.4659,
|
276 |
+
"step": 38
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.07467687888942078,
|
280 |
+
"grad_norm": 0.8065485954284668,
|
281 |
+
"learning_rate": 9.985564567238237e-06,
|
282 |
+
"loss": 0.4441,
|
283 |
+
"step": 39
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.07659167065581618,
|
287 |
+
"grad_norm": 0.9766021966934204,
|
288 |
+
"learning_rate": 9.983059831760205e-06,
|
289 |
+
"loss": 0.4834,
|
290 |
+
"step": 40
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.07850646242221158,
|
294 |
+
"grad_norm": 0.8222993016242981,
|
295 |
+
"learning_rate": 9.980355187882606e-06,
|
296 |
+
"loss": 0.443,
|
297 |
+
"step": 41
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.08042125418860699,
|
301 |
+
"grad_norm": 0.8215630054473877,
|
302 |
+
"learning_rate": 9.977450744109258e-06,
|
303 |
+
"loss": 0.4219,
|
304 |
+
"step": 42
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.0823360459550024,
|
308 |
+
"grad_norm": 0.8324375748634338,
|
309 |
+
"learning_rate": 9.974346616959476e-06,
|
310 |
+
"loss": 0.4362,
|
311 |
+
"step": 43
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.0842508377213978,
|
315 |
+
"grad_norm": 0.9242782592773438,
|
316 |
+
"learning_rate": 9.97104293096339e-06,
|
317 |
+
"loss": 0.4738,
|
318 |
+
"step": 44
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.0861656294877932,
|
322 |
+
"grad_norm": 0.9275208711624146,
|
323 |
+
"learning_rate": 9.967539818656953e-06,
|
324 |
+
"loss": 0.4571,
|
325 |
+
"step": 45
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.0880804212541886,
|
329 |
+
"grad_norm": 0.876868724822998,
|
330 |
+
"learning_rate": 9.96383742057662e-06,
|
331 |
+
"loss": 0.5172,
|
332 |
+
"step": 46
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.08999521302058401,
|
336 |
+
"grad_norm": 0.8446276783943176,
|
337 |
+
"learning_rate": 9.959935885253715e-06,
|
338 |
+
"loss": 0.4457,
|
339 |
+
"step": 47
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.09191000478697942,
|
343 |
+
"grad_norm": 0.8077015280723572,
|
344 |
+
"learning_rate": 9.955835369208475e-06,
|
345 |
+
"loss": 0.4234,
|
346 |
+
"step": 48
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.09382479655337482,
|
350 |
+
"grad_norm": 0.7882896065711975,
|
351 |
+
"learning_rate": 9.951536036943753e-06,
|
352 |
+
"loss": 0.4264,
|
353 |
+
"step": 49
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.09573958831977022,
|
357 |
+
"grad_norm": 0.8539751768112183,
|
358 |
+
"learning_rate": 9.94703806093845e-06,
|
359 |
+
"loss": 0.461,
|
360 |
+
"step": 50
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.09765438008616563,
|
364 |
+
"grad_norm": 0.8285911679267883,
|
365 |
+
"learning_rate": 9.942341621640558e-06,
|
366 |
+
"loss": 0.4379,
|
367 |
+
"step": 51
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.09956917185256103,
|
371 |
+
"grad_norm": 0.8029133081436157,
|
372 |
+
"learning_rate": 9.937446907459954e-06,
|
373 |
+
"loss": 0.4565,
|
374 |
+
"step": 52
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.10148396361895644,
|
378 |
+
"grad_norm": 0.7964851260185242,
|
379 |
+
"learning_rate": 9.932354114760819e-06,
|
380 |
+
"loss": 0.4262,
|
381 |
+
"step": 53
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.10339875538535184,
|
385 |
+
"grad_norm": 0.9846324920654297,
|
386 |
+
"learning_rate": 9.92706344785377e-06,
|
387 |
+
"loss": 0.5302,
|
388 |
+
"step": 54
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.10531354715174725,
|
392 |
+
"grad_norm": 0.7648650407791138,
|
393 |
+
"learning_rate": 9.921575118987672e-06,
|
394 |
+
"loss": 0.4066,
|
395 |
+
"step": 55
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.10722833891814265,
|
399 |
+
"grad_norm": 0.83173668384552,
|
400 |
+
"learning_rate": 9.915889348341098e-06,
|
401 |
+
"loss": 0.4438,
|
402 |
+
"step": 56
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.10914313068453806,
|
406 |
+
"grad_norm": 0.7968882322311401,
|
407 |
+
"learning_rate": 9.910006364013522e-06,
|
408 |
+
"loss": 0.407,
|
409 |
+
"step": 57
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.11105792245093346,
|
413 |
+
"grad_norm": 0.8423118591308594,
|
414 |
+
"learning_rate": 9.903926402016153e-06,
|
415 |
+
"loss": 0.4174,
|
416 |
+
"step": 58
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.11297271421732887,
|
420 |
+
"grad_norm": 0.9054727554321289,
|
421 |
+
"learning_rate": 9.897649706262474e-06,
|
422 |
+
"loss": 0.4764,
|
423 |
+
"step": 59
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.11488750598372427,
|
427 |
+
"grad_norm": 0.8318431973457336,
|
428 |
+
"learning_rate": 9.891176528558451e-06,
|
429 |
+
"loss": 0.4326,
|
430 |
+
"step": 60
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.11680229775011967,
|
434 |
+
"grad_norm": 0.8409565687179565,
|
435 |
+
"learning_rate": 9.884507128592435e-06,
|
436 |
+
"loss": 0.4451,
|
437 |
+
"step": 61
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.11871708951651508,
|
441 |
+
"grad_norm": 0.8471431136131287,
|
442 |
+
"learning_rate": 9.877641773924748e-06,
|
443 |
+
"loss": 0.4217,
|
444 |
+
"step": 62
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.12063188128291048,
|
448 |
+
"grad_norm": 0.8495103120803833,
|
449 |
+
"learning_rate": 9.870580739976936e-06,
|
450 |
+
"loss": 0.421,
|
451 |
+
"step": 63
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.12254667304930589,
|
455 |
+
"grad_norm": 0.8164567947387695,
|
456 |
+
"learning_rate": 9.863324310020735e-06,
|
457 |
+
"loss": 0.4266,
|
458 |
+
"step": 64
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.12446146481570129,
|
462 |
+
"grad_norm": 0.8732247948646545,
|
463 |
+
"learning_rate": 9.855872775166696e-06,
|
464 |
+
"loss": 0.4661,
|
465 |
+
"step": 65
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.1263762565820967,
|
469 |
+
"grad_norm": 0.8157728910446167,
|
470 |
+
"learning_rate": 9.848226434352513e-06,
|
471 |
+
"loss": 0.4401,
|
472 |
+
"step": 66
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.12829104834849211,
|
476 |
+
"grad_norm": 0.8860891461372375,
|
477 |
+
"learning_rate": 9.840385594331022e-06,
|
478 |
+
"loss": 0.4748,
|
479 |
+
"step": 67
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.1302058401148875,
|
483 |
+
"grad_norm": 0.8987312316894531,
|
484 |
+
"learning_rate": 9.83235056965791e-06,
|
485 |
+
"loss": 0.4881,
|
486 |
+
"step": 68
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.13212063188128292,
|
490 |
+
"grad_norm": 0.8786044716835022,
|
491 |
+
"learning_rate": 9.824121682679072e-06,
|
492 |
+
"loss": 0.4417,
|
493 |
+
"step": 69
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.13403542364767831,
|
497 |
+
"grad_norm": 0.8325650691986084,
|
498 |
+
"learning_rate": 9.815699263517712e-06,
|
499 |
+
"loss": 0.4377,
|
500 |
+
"step": 70
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.13595021541407373,
|
504 |
+
"grad_norm": 0.8149142861366272,
|
505 |
+
"learning_rate": 9.807083650061063e-06,
|
506 |
+
"loss": 0.4496,
|
507 |
+
"step": 71
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.13786500718046912,
|
511 |
+
"grad_norm": 0.8394611477851868,
|
512 |
+
"learning_rate": 9.798275187946859e-06,
|
513 |
+
"loss": 0.4394,
|
514 |
+
"step": 72
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.13977979894686454,
|
518 |
+
"grad_norm": 0.7746449112892151,
|
519 |
+
"learning_rate": 9.789274230549456e-06,
|
520 |
+
"loss": 0.4039,
|
521 |
+
"step": 73
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.14169459071325993,
|
525 |
+
"grad_norm": 0.7592336535453796,
|
526 |
+
"learning_rate": 9.780081138965663e-06,
|
527 |
+
"loss": 0.3788,
|
528 |
+
"step": 74
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.14360938247965535,
|
532 |
+
"grad_norm": 0.9066088199615479,
|
533 |
+
"learning_rate": 9.770696282000245e-06,
|
534 |
+
"loss": 0.4541,
|
535 |
+
"step": 75
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.14552417424605074,
|
539 |
+
"grad_norm": 0.8512394428253174,
|
540 |
+
"learning_rate": 9.761120036151138e-06,
|
541 |
+
"loss": 0.4217,
|
542 |
+
"step": 76
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.14743896601244616,
|
546 |
+
"grad_norm": 0.795378565788269,
|
547 |
+
"learning_rate": 9.751352785594337e-06,
|
548 |
+
"loss": 0.4014,
|
549 |
+
"step": 77
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.14935375777884155,
|
553 |
+
"grad_norm": 0.9467825293540955,
|
554 |
+
"learning_rate": 9.741394922168495e-06,
|
555 |
+
"loss": 0.4855,
|
556 |
+
"step": 78
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.15126854954523697,
|
560 |
+
"grad_norm": 0.7824875712394714,
|
561 |
+
"learning_rate": 9.731246845359187e-06,
|
562 |
+
"loss": 0.4088,
|
563 |
+
"step": 79
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.15318334131163236,
|
567 |
+
"grad_norm": 0.7557615637779236,
|
568 |
+
"learning_rate": 9.720908962282893e-06,
|
569 |
+
"loss": 0.4023,
|
570 |
+
"step": 80
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.15509813307802778,
|
574 |
+
"grad_norm": 0.8093947768211365,
|
575 |
+
"learning_rate": 9.710381687670675e-06,
|
576 |
+
"loss": 0.4345,
|
577 |
+
"step": 81
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.15701292484442317,
|
581 |
+
"grad_norm": 0.8901275396347046,
|
582 |
+
"learning_rate": 9.699665443851518e-06,
|
583 |
+
"loss": 0.4444,
|
584 |
+
"step": 82
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.1589277166108186,
|
588 |
+
"grad_norm": 0.7518415451049805,
|
589 |
+
"learning_rate": 9.688760660735403e-06,
|
590 |
+
"loss": 0.4024,
|
591 |
+
"step": 83
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.16084250837721398,
|
595 |
+
"grad_norm": 0.7495772242546082,
|
596 |
+
"learning_rate": 9.677667775796052e-06,
|
597 |
+
"loss": 0.4005,
|
598 |
+
"step": 84
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.1627573001436094,
|
602 |
+
"grad_norm": 0.8903560638427734,
|
603 |
+
"learning_rate": 9.666387234053385e-06,
|
604 |
+
"loss": 0.4495,
|
605 |
+
"step": 85
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.1646720919100048,
|
609 |
+
"grad_norm": 0.8854427933692932,
|
610 |
+
"learning_rate": 9.654919488055656e-06,
|
611 |
+
"loss": 0.4381,
|
612 |
+
"step": 86
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.1665868836764002,
|
616 |
+
"grad_norm": 0.8393151164054871,
|
617 |
+
"learning_rate": 9.643264997861312e-06,
|
618 |
+
"loss": 0.4177,
|
619 |
+
"step": 87
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.1685016754427956,
|
623 |
+
"grad_norm": 0.8448845148086548,
|
624 |
+
"learning_rate": 9.631424231020523e-06,
|
625 |
+
"loss": 0.4437,
|
626 |
+
"step": 88
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.170416467209191,
|
630 |
+
"grad_norm": 0.8987253904342651,
|
631 |
+
"learning_rate": 9.619397662556434e-06,
|
632 |
+
"loss": 0.4479,
|
633 |
+
"step": 89
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.1723312589755864,
|
637 |
+
"grad_norm": 0.9512760639190674,
|
638 |
+
"learning_rate": 9.607185774946106e-06,
|
639 |
+
"loss": 0.5188,
|
640 |
+
"step": 90
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.17424605074198182,
|
644 |
+
"grad_norm": 0.9057194590568542,
|
645 |
+
"learning_rate": 9.594789058101154e-06,
|
646 |
+
"loss": 0.4448,
|
647 |
+
"step": 91
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.1761608425083772,
|
651 |
+
"grad_norm": 0.8147549033164978,
|
652 |
+
"learning_rate": 9.582208009348104e-06,
|
653 |
+
"loss": 0.4106,
|
654 |
+
"step": 92
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.17807563427477263,
|
658 |
+
"grad_norm": 0.8666926622390747,
|
659 |
+
"learning_rate": 9.569443133408434e-06,
|
660 |
+
"loss": 0.4558,
|
661 |
+
"step": 93
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.17999042604116802,
|
665 |
+
"grad_norm": 0.8677969574928284,
|
666 |
+
"learning_rate": 9.556494942378328e-06,
|
667 |
+
"loss": 0.4379,
|
668 |
+
"step": 94
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.18190521780756344,
|
672 |
+
"grad_norm": 0.8896477222442627,
|
673 |
+
"learning_rate": 9.543363955708124e-06,
|
674 |
+
"loss": 0.4498,
|
675 |
+
"step": 95
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.18382000957395883,
|
679 |
+
"grad_norm": 0.7357858419418335,
|
680 |
+
"learning_rate": 9.530050700181499e-06,
|
681 |
+
"loss": 0.3666,
|
682 |
+
"step": 96
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.18573480134035425,
|
686 |
+
"grad_norm": 0.7851715683937073,
|
687 |
+
"learning_rate": 9.5165557098943e-06,
|
688 |
+
"loss": 0.411,
|
689 |
+
"step": 97
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.18764959310674964,
|
693 |
+
"grad_norm": 0.8098123669624329,
|
694 |
+
"learning_rate": 9.502879526233151e-06,
|
695 |
+
"loss": 0.4023,
|
696 |
+
"step": 98
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.18956438487314506,
|
700 |
+
"grad_norm": 0.8245725631713867,
|
701 |
+
"learning_rate": 9.48902269785371e-06,
|
702 |
+
"loss": 0.423,
|
703 |
+
"step": 99
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.19147917663954045,
|
707 |
+
"grad_norm": 0.8497715592384338,
|
708 |
+
"learning_rate": 9.47498578065867e-06,
|
709 |
+
"loss": 0.4125,
|
710 |
+
"step": 100
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.19339396840593587,
|
714 |
+
"grad_norm": 0.8205481171607971,
|
715 |
+
"learning_rate": 9.460769337775461e-06,
|
716 |
+
"loss": 0.4312,
|
717 |
+
"step": 101
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.19530876017233126,
|
721 |
+
"grad_norm": 0.8062931299209595,
|
722 |
+
"learning_rate": 9.446373939533642e-06,
|
723 |
+
"loss": 0.3961,
|
724 |
+
"step": 102
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.19722355193872668,
|
728 |
+
"grad_norm": 0.8209528923034668,
|
729 |
+
"learning_rate": 9.431800163442043e-06,
|
730 |
+
"loss": 0.4121,
|
731 |
+
"step": 103
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.19913834370512207,
|
735 |
+
"grad_norm": 0.8154571652412415,
|
736 |
+
"learning_rate": 9.417048594165572e-06,
|
737 |
+
"loss": 0.4475,
|
738 |
+
"step": 104
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.20105313547151749,
|
742 |
+
"grad_norm": 0.8546404838562012,
|
743 |
+
"learning_rate": 9.402119823501787e-06,
|
744 |
+
"loss": 0.4293,
|
745 |
+
"step": 105
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.20296792723791288,
|
749 |
+
"grad_norm": 0.8470130562782288,
|
750 |
+
"learning_rate": 9.387014450357128e-06,
|
751 |
+
"loss": 0.4139,
|
752 |
+
"step": 106
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.2048827190043083,
|
756 |
+
"grad_norm": 0.9199275970458984,
|
757 |
+
"learning_rate": 9.371733080722911e-06,
|
758 |
+
"loss": 0.4825,
|
759 |
+
"step": 107
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.20679751077070369,
|
763 |
+
"grad_norm": 0.9049551486968994,
|
764 |
+
"learning_rate": 9.356276327651006e-06,
|
765 |
+
"loss": 0.4378,
|
766 |
+
"step": 108
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.2087123025370991,
|
770 |
+
"grad_norm": 0.8089979887008667,
|
771 |
+
"learning_rate": 9.340644811229243e-06,
|
772 |
+
"loss": 0.4027,
|
773 |
+
"step": 109
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.2106270943034945,
|
777 |
+
"grad_norm": 0.7452864050865173,
|
778 |
+
"learning_rate": 9.324839158556542e-06,
|
779 |
+
"loss": 0.3795,
|
780 |
+
"step": 110
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.2125418860698899,
|
784 |
+
"grad_norm": 0.8286869525909424,
|
785 |
+
"learning_rate": 9.308860003717748e-06,
|
786 |
+
"loss": 0.4137,
|
787 |
+
"step": 111
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.2144566778362853,
|
791 |
+
"grad_norm": 0.8634768724441528,
|
792 |
+
"learning_rate": 9.292707987758202e-06,
|
793 |
+
"loss": 0.445,
|
794 |
+
"step": 112
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.21637146960268072,
|
798 |
+
"grad_norm": 0.8329188227653503,
|
799 |
+
"learning_rate": 9.27638375865801e-06,
|
800 |
+
"loss": 0.4307,
|
801 |
+
"step": 113
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.2182862613690761,
|
805 |
+
"grad_norm": 0.8780718445777893,
|
806 |
+
"learning_rate": 9.259887971306064e-06,
|
807 |
+
"loss": 0.4863,
|
808 |
+
"step": 114
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.22020105313547153,
|
812 |
+
"grad_norm": 0.9007835388183594,
|
813 |
+
"learning_rate": 9.243221287473755e-06,
|
814 |
+
"loss": 0.4482,
|
815 |
+
"step": 115
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.22211584490186692,
|
819 |
+
"grad_norm": 0.8163229823112488,
|
820 |
+
"learning_rate": 9.226384375788435e-06,
|
821 |
+
"loss": 0.4168,
|
822 |
+
"step": 116
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.22403063666826234,
|
826 |
+
"grad_norm": 0.8288677334785461,
|
827 |
+
"learning_rate": 9.209377911706585e-06,
|
828 |
+
"loss": 0.4038,
|
829 |
+
"step": 117
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.22594542843465773,
|
833 |
+
"grad_norm": 0.8035851716995239,
|
834 |
+
"learning_rate": 9.192202577486725e-06,
|
835 |
+
"loss": 0.3922,
|
836 |
+
"step": 118
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.22786022020105315,
|
840 |
+
"grad_norm": 0.8203516006469727,
|
841 |
+
"learning_rate": 9.174859062162037e-06,
|
842 |
+
"loss": 0.3971,
|
843 |
+
"step": 119
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.22977501196744854,
|
847 |
+
"grad_norm": 0.8246352076530457,
|
848 |
+
"learning_rate": 9.157348061512728e-06,
|
849 |
+
"loss": 0.4433,
|
850 |
+
"step": 120
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.23168980373384396,
|
854 |
+
"grad_norm": 0.8655344247817993,
|
855 |
+
"learning_rate": 9.139670278038109e-06,
|
856 |
+
"loss": 0.4405,
|
857 |
+
"step": 121
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.23360459550023935,
|
861 |
+
"grad_norm": 0.7439157366752625,
|
862 |
+
"learning_rate": 9.121826420928421e-06,
|
863 |
+
"loss": 0.3683,
|
864 |
+
"step": 122
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.23551938726663477,
|
868 |
+
"grad_norm": 0.817434549331665,
|
869 |
+
"learning_rate": 9.103817206036383e-06,
|
870 |
+
"loss": 0.4034,
|
871 |
+
"step": 123
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.23743417903303016,
|
875 |
+
"grad_norm": 0.8455221056938171,
|
876 |
+
"learning_rate": 9.085643355848468e-06,
|
877 |
+
"loss": 0.4418,
|
878 |
+
"step": 124
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.23934897079942558,
|
882 |
+
"grad_norm": 0.8356925845146179,
|
883 |
+
"learning_rate": 9.06730559945592e-06,
|
884 |
+
"loss": 0.4012,
|
885 |
+
"step": 125
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.24126376256582097,
|
889 |
+
"grad_norm": 0.8181227445602417,
|
890 |
+
"learning_rate": 9.048804672525513e-06,
|
891 |
+
"loss": 0.4174,
|
892 |
+
"step": 126
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.24317855433221638,
|
896 |
+
"grad_norm": 0.8010542988777161,
|
897 |
+
"learning_rate": 9.030141317270026e-06,
|
898 |
+
"loss": 0.3952,
|
899 |
+
"step": 127
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.24509334609861178,
|
903 |
+
"grad_norm": 0.8500829935073853,
|
904 |
+
"learning_rate": 9.011316282418474e-06,
|
905 |
+
"loss": 0.4123,
|
906 |
+
"step": 128
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.2470081378650072,
|
910 |
+
"grad_norm": 0.8971666693687439,
|
911 |
+
"learning_rate": 8.992330323186069e-06,
|
912 |
+
"loss": 0.4451,
|
913 |
+
"step": 129
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.24892292963140258,
|
917 |
+
"grad_norm": 0.9065473079681396,
|
918 |
+
"learning_rate": 8.973184201243922e-06,
|
919 |
+
"loss": 0.4821,
|
920 |
+
"step": 130
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.250837721397798,
|
924 |
+
"grad_norm": 0.8722876906394958,
|
925 |
+
"learning_rate": 8.953878684688492e-06,
|
926 |
+
"loss": 0.4204,
|
927 |
+
"step": 131
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.2527525131641934,
|
931 |
+
"grad_norm": 0.8343362808227539,
|
932 |
+
"learning_rate": 8.934414548010764e-06,
|
933 |
+
"loss": 0.408,
|
934 |
+
"step": 132
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.2546673049305888,
|
938 |
+
"grad_norm": 0.8162686824798584,
|
939 |
+
"learning_rate": 8.914792572065178e-06,
|
940 |
+
"loss": 0.416,
|
941 |
+
"step": 133
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.25658209669698423,
|
945 |
+
"grad_norm": 0.9116921424865723,
|
946 |
+
"learning_rate": 8.89501354403831e-06,
|
947 |
+
"loss": 0.4589,
|
948 |
+
"step": 134
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.2584968884633796,
|
952 |
+
"grad_norm": 0.9577599763870239,
|
953 |
+
"learning_rate": 8.875078257417294e-06,
|
954 |
+
"loss": 0.4654,
|
955 |
+
"step": 135
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.260411680229775,
|
959 |
+
"grad_norm": 0.8709072470664978,
|
960 |
+
"learning_rate": 8.854987511957974e-06,
|
961 |
+
"loss": 0.4395,
|
962 |
+
"step": 136
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.26232647199617043,
|
966 |
+
"grad_norm": 0.8386030197143555,
|
967 |
+
"learning_rate": 8.834742113652835e-06,
|
968 |
+
"loss": 0.4281,
|
969 |
+
"step": 137
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.26424126376256585,
|
973 |
+
"grad_norm": 0.7646230459213257,
|
974 |
+
"learning_rate": 8.81434287469866e-06,
|
975 |
+
"loss": 0.3804,
|
976 |
+
"step": 138
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.2661560555289612,
|
980 |
+
"grad_norm": 0.8096075057983398,
|
981 |
+
"learning_rate": 8.793790613463956e-06,
|
982 |
+
"loss": 0.4112,
|
983 |
+
"step": 139
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.26807084729535663,
|
987 |
+
"grad_norm": 0.8051929473876953,
|
988 |
+
"learning_rate": 8.773086154456106e-06,
|
989 |
+
"loss": 0.4172,
|
990 |
+
"step": 140
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.26998563906175205,
|
994 |
+
"grad_norm": 0.9208196401596069,
|
995 |
+
"learning_rate": 8.752230328288314e-06,
|
996 |
+
"loss": 0.4768,
|
997 |
+
"step": 141
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.27190043082814747,
|
1001 |
+
"grad_norm": 0.7890869975090027,
|
1002 |
+
"learning_rate": 8.731223971646261e-06,
|
1003 |
+
"loss": 0.3915,
|
1004 |
+
"step": 142
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.27381522259454283,
|
1008 |
+
"grad_norm": 0.786723792552948,
|
1009 |
+
"learning_rate": 8.710067927254555e-06,
|
1010 |
+
"loss": 0.3844,
|
1011 |
+
"step": 143
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.27573001436093825,
|
1015 |
+
"grad_norm": 0.791117250919342,
|
1016 |
+
"learning_rate": 8.688763043842916e-06,
|
1017 |
+
"loss": 0.4065,
|
1018 |
+
"step": 144
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.27764480612733367,
|
1022 |
+
"grad_norm": 0.8172312378883362,
|
1023 |
+
"learning_rate": 8.66731017611213e-06,
|
1024 |
+
"loss": 0.4337,
|
1025 |
+
"step": 145
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.2795595978937291,
|
1029 |
+
"grad_norm": 0.8335762023925781,
|
1030 |
+
"learning_rate": 8.645710184699756e-06,
|
1031 |
+
"loss": 0.4182,
|
1032 |
+
"step": 146
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.28147438966012445,
|
1036 |
+
"grad_norm": 0.8034957051277161,
|
1037 |
+
"learning_rate": 8.6239639361456e-06,
|
1038 |
+
"loss": 0.4097,
|
1039 |
+
"step": 147
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.28338918142651986,
|
1043 |
+
"grad_norm": 0.8107390403747559,
|
1044 |
+
"learning_rate": 8.602072302856961e-06,
|
1045 |
+
"loss": 0.4055,
|
1046 |
+
"step": 148
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.2853039731929153,
|
1050 |
+
"grad_norm": 0.8442232012748718,
|
1051 |
+
"learning_rate": 8.580036163073615e-06,
|
1052 |
+
"loss": 0.4307,
|
1053 |
+
"step": 149
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.2872187649593107,
|
1057 |
+
"grad_norm": 0.8290265202522278,
|
1058 |
+
"learning_rate": 8.5578564008326e-06,
|
1059 |
+
"loss": 0.3892,
|
1060 |
+
"step": 150
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.28913355672570606,
|
1064 |
+
"grad_norm": 0.8057438731193542,
|
1065 |
+
"learning_rate": 8.535533905932739e-06,
|
1066 |
+
"loss": 0.4042,
|
1067 |
+
"step": 151
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.2910483484921015,
|
1071 |
+
"grad_norm": 0.8582248091697693,
|
1072 |
+
"learning_rate": 8.513069573898944e-06,
|
1073 |
+
"loss": 0.4149,
|
1074 |
+
"step": 152
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.2929631402584969,
|
1078 |
+
"grad_norm": 0.8402311205863953,
|
1079 |
+
"learning_rate": 8.490464305946296e-06,
|
1080 |
+
"loss": 0.4243,
|
1081 |
+
"step": 153
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.2948779320248923,
|
1085 |
+
"grad_norm": 0.812869668006897,
|
1086 |
+
"learning_rate": 8.467719008943886e-06,
|
1087 |
+
"loss": 0.4134,
|
1088 |
+
"step": 154
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.2967927237912877,
|
1092 |
+
"grad_norm": 0.8431028723716736,
|
1093 |
+
"learning_rate": 8.444834595378434e-06,
|
1094 |
+
"loss": 0.4185,
|
1095 |
+
"step": 155
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.2987075155576831,
|
1099 |
+
"grad_norm": 0.802760899066925,
|
1100 |
+
"learning_rate": 8.421811983317682e-06,
|
1101 |
+
"loss": 0.4011,
|
1102 |
+
"step": 156
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.3006223073240785,
|
1106 |
+
"grad_norm": 0.814274251461029,
|
1107 |
+
"learning_rate": 8.398652096373566e-06,
|
1108 |
+
"loss": 0.4194,
|
1109 |
+
"step": 157
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.30253709909047394,
|
1113 |
+
"grad_norm": 0.8286414742469788,
|
1114 |
+
"learning_rate": 8.375355863665155e-06,
|
1115 |
+
"loss": 0.4044,
|
1116 |
+
"step": 158
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.3044518908568693,
|
1120 |
+
"grad_norm": 0.8244617581367493,
|
1121 |
+
"learning_rate": 8.351924219781393e-06,
|
1122 |
+
"loss": 0.4415,
|
1123 |
+
"step": 159
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.3063666826232647,
|
1127 |
+
"grad_norm": 0.8288456201553345,
|
1128 |
+
"learning_rate": 8.328358104743588e-06,
|
1129 |
+
"loss": 0.4143,
|
1130 |
+
"step": 160
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.30828147438966014,
|
1134 |
+
"grad_norm": 0.7895364165306091,
|
1135 |
+
"learning_rate": 8.304658463967705e-06,
|
1136 |
+
"loss": 0.4122,
|
1137 |
+
"step": 161
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.31019626615605556,
|
1141 |
+
"grad_norm": 0.7923944592475891,
|
1142 |
+
"learning_rate": 8.28082624822645e-06,
|
1143 |
+
"loss": 0.3812,
|
1144 |
+
"step": 162
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.3121110579224509,
|
1148 |
+
"grad_norm": 0.7424578666687012,
|
1149 |
+
"learning_rate": 8.256862413611113e-06,
|
1150 |
+
"loss": 0.3883,
|
1151 |
+
"step": 163
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.31402584968884634,
|
1155 |
+
"grad_norm": 0.8261198401451111,
|
1156 |
+
"learning_rate": 8.232767921493216e-06,
|
1157 |
+
"loss": 0.432,
|
1158 |
+
"step": 164
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.31594064145524176,
|
1162 |
+
"grad_norm": 0.8710785508155823,
|
1163 |
+
"learning_rate": 8.20854373848595e-06,
|
1164 |
+
"loss": 0.4508,
|
1165 |
+
"step": 165
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.3178554332216372,
|
1169 |
+
"grad_norm": 0.7583726048469543,
|
1170 |
+
"learning_rate": 8.184190836405394e-06,
|
1171 |
+
"loss": 0.3709,
|
1172 |
+
"step": 166
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.31977022498803254,
|
1176 |
+
"grad_norm": 0.7795834541320801,
|
1177 |
+
"learning_rate": 8.15971019223152e-06,
|
1178 |
+
"loss": 0.4055,
|
1179 |
+
"step": 167
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.32168501675442795,
|
1183 |
+
"grad_norm": 0.7580612897872925,
|
1184 |
+
"learning_rate": 8.135102788069015e-06,
|
1185 |
+
"loss": 0.3605,
|
1186 |
+
"step": 168
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.3235998085208234,
|
1190 |
+
"grad_norm": 0.7536636590957642,
|
1191 |
+
"learning_rate": 8.110369611107869e-06,
|
1192 |
+
"loss": 0.3656,
|
1193 |
+
"step": 169
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.3255146002872188,
|
1197 |
+
"grad_norm": 0.8029680252075195,
|
1198 |
+
"learning_rate": 8.085511653583772e-06,
|
1199 |
+
"loss": 0.3819,
|
1200 |
+
"step": 170
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.32742939205361415,
|
1204 |
+
"grad_norm": 0.8548794388771057,
|
1205 |
+
"learning_rate": 8.060529912738316e-06,
|
1206 |
+
"loss": 0.4449,
|
1207 |
+
"step": 171
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.3293441838200096,
|
1211 |
+
"grad_norm": 0.877955436706543,
|
1212 |
+
"learning_rate": 8.035425390778975e-06,
|
1213 |
+
"loss": 0.4504,
|
1214 |
+
"step": 172
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.331258975586405,
|
1218 |
+
"grad_norm": 0.8173900246620178,
|
1219 |
+
"learning_rate": 8.010199094838915e-06,
|
1220 |
+
"loss": 0.4211,
|
1221 |
+
"step": 173
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.3331737673528004,
|
1225 |
+
"grad_norm": 0.8715358972549438,
|
1226 |
+
"learning_rate": 7.984852036936578e-06,
|
1227 |
+
"loss": 0.3909,
|
1228 |
+
"step": 174
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.3350885591191958,
|
1232 |
+
"grad_norm": 0.8475743532180786,
|
1233 |
+
"learning_rate": 7.959385233935087e-06,
|
1234 |
+
"loss": 0.4416,
|
1235 |
+
"step": 175
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.3370033508855912,
|
1239 |
+
"grad_norm": 0.7483753561973572,
|
1240 |
+
"learning_rate": 7.933799707501448e-06,
|
1241 |
+
"loss": 0.351,
|
1242 |
+
"step": 176
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.3389181426519866,
|
1246 |
+
"grad_norm": 0.8065423965454102,
|
1247 |
+
"learning_rate": 7.908096484065569e-06,
|
1248 |
+
"loss": 0.4085,
|
1249 |
+
"step": 177
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.340832934418382,
|
1253 |
+
"grad_norm": 0.8215972185134888,
|
1254 |
+
"learning_rate": 7.88227659477908e-06,
|
1255 |
+
"loss": 0.4132,
|
1256 |
+
"step": 178
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.3427477261847774,
|
1260 |
+
"grad_norm": 0.7788512706756592,
|
1261 |
+
"learning_rate": 7.856341075473963e-06,
|
1262 |
+
"loss": 0.3828,
|
1263 |
+
"step": 179
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.3446625179511728,
|
1267 |
+
"grad_norm": 0.7943012118339539,
|
1268 |
+
"learning_rate": 7.830290966620997e-06,
|
1269 |
+
"loss": 0.3737,
|
1270 |
+
"step": 180
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 0.3465773097175682,
|
1274 |
+
"grad_norm": 0.8680888414382935,
|
1275 |
+
"learning_rate": 7.804127313288023e-06,
|
1276 |
+
"loss": 0.4019,
|
1277 |
+
"step": 181
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 0.34849210148396365,
|
1281 |
+
"grad_norm": 0.8370754718780518,
|
1282 |
+
"learning_rate": 7.777851165098012e-06,
|
1283 |
+
"loss": 0.4202,
|
1284 |
+
"step": 182
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 0.350406893250359,
|
1288 |
+
"grad_norm": 0.7426475882530212,
|
1289 |
+
"learning_rate": 7.751463576186957e-06,
|
1290 |
+
"loss": 0.378,
|
1291 |
+
"step": 183
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 0.3523216850167544,
|
1295 |
+
"grad_norm": 0.827038586139679,
|
1296 |
+
"learning_rate": 7.72496560516159e-06,
|
1297 |
+
"loss": 0.415,
|
1298 |
+
"step": 184
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.35423647678314985,
|
1302 |
+
"grad_norm": 0.8714759349822998,
|
1303 |
+
"learning_rate": 7.6983583150569e-06,
|
1304 |
+
"loss": 0.4204,
|
1305 |
+
"step": 185
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.35615126854954526,
|
1309 |
+
"grad_norm": 0.8127462863922119,
|
1310 |
+
"learning_rate": 7.671642773293506e-06,
|
1311 |
+
"loss": 0.3904,
|
1312 |
+
"step": 186
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 0.3580660603159406,
|
1316 |
+
"grad_norm": 0.8972522020339966,
|
1317 |
+
"learning_rate": 7.644820051634813e-06,
|
1318 |
+
"loss": 0.4168,
|
1319 |
+
"step": 187
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 0.35998085208233604,
|
1323 |
+
"grad_norm": 0.9051675200462341,
|
1324 |
+
"learning_rate": 7.617891226144034e-06,
|
1325 |
+
"loss": 0.4742,
|
1326 |
+
"step": 188
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 0.36189564384873146,
|
1330 |
+
"grad_norm": 0.8041402101516724,
|
1331 |
+
"learning_rate": 7.59085737714101e-06,
|
1332 |
+
"loss": 0.3916,
|
1333 |
+
"step": 189
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 0.3638104356151269,
|
1337 |
+
"grad_norm": 0.9296969175338745,
|
1338 |
+
"learning_rate": 7.563719589158874e-06,
|
1339 |
+
"loss": 0.4198,
|
1340 |
+
"step": 190
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.36572522738152224,
|
1344 |
+
"grad_norm": 0.8441433310508728,
|
1345 |
+
"learning_rate": 7.536478950900537e-06,
|
1346 |
+
"loss": 0.4094,
|
1347 |
+
"step": 191
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.36764001914791766,
|
1351 |
+
"grad_norm": 0.8146634101867676,
|
1352 |
+
"learning_rate": 7.509136555195025e-06,
|
1353 |
+
"loss": 0.398,
|
1354 |
+
"step": 192
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 0.3695548109143131,
|
1358 |
+
"grad_norm": 0.8095076680183411,
|
1359 |
+
"learning_rate": 7.481693498953621e-06,
|
1360 |
+
"loss": 0.4121,
|
1361 |
+
"step": 193
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 0.3714696026807085,
|
1365 |
+
"grad_norm": 0.8033435344696045,
|
1366 |
+
"learning_rate": 7.4541508831258695e-06,
|
1367 |
+
"loss": 0.3912,
|
1368 |
+
"step": 194
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 0.37338439444710386,
|
1372 |
+
"grad_norm": 0.7945087552070618,
|
1373 |
+
"learning_rate": 7.4265098126554065e-06,
|
1374 |
+
"loss": 0.3784,
|
1375 |
+
"step": 195
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 0.3752991862134993,
|
1379 |
+
"grad_norm": 0.858241081237793,
|
1380 |
+
"learning_rate": 7.3987713964356335e-06,
|
1381 |
+
"loss": 0.451,
|
1382 |
+
"step": 196
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.3772139779798947,
|
1386 |
+
"grad_norm": 0.9208387136459351,
|
1387 |
+
"learning_rate": 7.370936747265226e-06,
|
1388 |
+
"loss": 0.4539,
|
1389 |
+
"step": 197
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.3791287697462901,
|
1393 |
+
"grad_norm": 0.775140643119812,
|
1394 |
+
"learning_rate": 7.3430069818035e-06,
|
1395 |
+
"loss": 0.3956,
|
1396 |
+
"step": 198
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 0.3810435615126855,
|
1400 |
+
"grad_norm": 0.7926008105278015,
|
1401 |
+
"learning_rate": 7.314983220525604e-06,
|
1402 |
+
"loss": 0.4044,
|
1403 |
+
"step": 199
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 0.3829583532790809,
|
1407 |
+
"grad_norm": 0.7891693711280823,
|
1408 |
+
"learning_rate": 7.286866587677576e-06,
|
1409 |
+
"loss": 0.3881,
|
1410 |
+
"step": 200
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 0.3848731450454763,
|
1414 |
+
"grad_norm": 0.8547941446304321,
|
1415 |
+
"learning_rate": 7.2586582112312355e-06,
|
1416 |
+
"loss": 0.4289,
|
1417 |
+
"step": 201
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 0.38678793681187174,
|
1421 |
+
"grad_norm": 0.7894405722618103,
|
1422 |
+
"learning_rate": 7.230359222838939e-06,
|
1423 |
+
"loss": 0.3886,
|
1424 |
+
"step": 202
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.3887027285782671,
|
1428 |
+
"grad_norm": 0.9024775624275208,
|
1429 |
+
"learning_rate": 7.201970757788172e-06,
|
1430 |
+
"loss": 0.4586,
|
1431 |
+
"step": 203
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.3906175203446625,
|
1435 |
+
"grad_norm": 0.7940675616264343,
|
1436 |
+
"learning_rate": 7.173493954956012e-06,
|
1437 |
+
"loss": 0.3905,
|
1438 |
+
"step": 204
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 0.39253231211105793,
|
1442 |
+
"grad_norm": 0.8231476545333862,
|
1443 |
+
"learning_rate": 7.144929956763438e-06,
|
1444 |
+
"loss": 0.4044,
|
1445 |
+
"step": 205
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 0.39444710387745335,
|
1449 |
+
"grad_norm": 0.9094031453132629,
|
1450 |
+
"learning_rate": 7.116279909129492e-06,
|
1451 |
+
"loss": 0.4502,
|
1452 |
+
"step": 206
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 0.3963618956438487,
|
1456 |
+
"grad_norm": 0.843540608882904,
|
1457 |
+
"learning_rate": 7.087544961425317e-06,
|
1458 |
+
"loss": 0.4037,
|
1459 |
+
"step": 207
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 0.39827668741024413,
|
1463 |
+
"grad_norm": 0.8074728846549988,
|
1464 |
+
"learning_rate": 7.058726266428042e-06,
|
1465 |
+
"loss": 0.405,
|
1466 |
+
"step": 208
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.40019147917663955,
|
1470 |
+
"grad_norm": 0.7620254755020142,
|
1471 |
+
"learning_rate": 7.029824980274536e-06,
|
1472 |
+
"loss": 0.3727,
|
1473 |
+
"step": 209
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.40210627094303497,
|
1477 |
+
"grad_norm": 0.8311992883682251,
|
1478 |
+
"learning_rate": 7.0008422624150285e-06,
|
1479 |
+
"loss": 0.4172,
|
1480 |
+
"step": 210
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 0.40402106270943033,
|
1484 |
+
"grad_norm": 0.8231189846992493,
|
1485 |
+
"learning_rate": 6.971779275566593e-06,
|
1486 |
+
"loss": 0.4162,
|
1487 |
+
"step": 211
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 0.40593585447582575,
|
1491 |
+
"grad_norm": 0.8115664720535278,
|
1492 |
+
"learning_rate": 6.9426371856665005e-06,
|
1493 |
+
"loss": 0.4206,
|
1494 |
+
"step": 212
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 0.40785064624222117,
|
1498 |
+
"grad_norm": 0.8393989205360413,
|
1499 |
+
"learning_rate": 6.913417161825449e-06,
|
1500 |
+
"loss": 0.4252,
|
1501 |
+
"step": 213
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 0.4097654380086166,
|
1505 |
+
"grad_norm": 0.8263347148895264,
|
1506 |
+
"learning_rate": 6.884120376280658e-06,
|
1507 |
+
"loss": 0.3983,
|
1508 |
+
"step": 214
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.41168022977501195,
|
1512 |
+
"grad_norm": 0.834690272808075,
|
1513 |
+
"learning_rate": 6.85474800434884e-06,
|
1514 |
+
"loss": 0.4285,
|
1515 |
+
"step": 215
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.41359502154140737,
|
1519 |
+
"grad_norm": 0.7867841124534607,
|
1520 |
+
"learning_rate": 6.8253012243790565e-06,
|
1521 |
+
"loss": 0.4065,
|
1522 |
+
"step": 216
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 0.4155098133078028,
|
1526 |
+
"grad_norm": 0.848772406578064,
|
1527 |
+
"learning_rate": 6.795781217705436e-06,
|
1528 |
+
"loss": 0.4529,
|
1529 |
+
"step": 217
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 0.4174246050741982,
|
1533 |
+
"grad_norm": 0.7745128870010376,
|
1534 |
+
"learning_rate": 6.76618916859979e-06,
|
1535 |
+
"loss": 0.3631,
|
1536 |
+
"step": 218
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 0.41933939684059357,
|
1540 |
+
"grad_norm": 0.7742826342582703,
|
1541 |
+
"learning_rate": 6.736526264224101e-06,
|
1542 |
+
"loss": 0.3886,
|
1543 |
+
"step": 219
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 0.421254188606989,
|
1547 |
+
"grad_norm": 0.8211061358451843,
|
1548 |
+
"learning_rate": 6.706793694582892e-06,
|
1549 |
+
"loss": 0.3824,
|
1550 |
+
"step": 220
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.4231689803733844,
|
1554 |
+
"grad_norm": 0.824216902256012,
|
1555 |
+
"learning_rate": 6.676992652475487e-06,
|
1556 |
+
"loss": 0.4104,
|
1557 |
+
"step": 221
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.4250837721397798,
|
1561 |
+
"grad_norm": 0.7848684191703796,
|
1562 |
+
"learning_rate": 6.647124333448165e-06,
|
1563 |
+
"loss": 0.3711,
|
1564 |
+
"step": 222
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 0.4269985639061752,
|
1568 |
+
"grad_norm": 0.8798813819885254,
|
1569 |
+
"learning_rate": 6.617189935746191e-06,
|
1570 |
+
"loss": 0.4083,
|
1571 |
+
"step": 223
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 0.4289133556725706,
|
1575 |
+
"grad_norm": 0.8364046216011047,
|
1576 |
+
"learning_rate": 6.587190660265752e-06,
|
1577 |
+
"loss": 0.4248,
|
1578 |
+
"step": 224
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 0.430828147438966,
|
1582 |
+
"grad_norm": 0.8487688899040222,
|
1583 |
+
"learning_rate": 6.55712771050577e-06,
|
1584 |
+
"loss": 0.4148,
|
1585 |
+
"step": 225
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 0.43274293920536144,
|
1589 |
+
"grad_norm": 0.7809548377990723,
|
1590 |
+
"learning_rate": 6.52700229251963e-06,
|
1591 |
+
"loss": 0.393,
|
1592 |
+
"step": 226
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.4346577309717568,
|
1596 |
+
"grad_norm": 0.9122399091720581,
|
1597 |
+
"learning_rate": 6.496815614866792e-06,
|
1598 |
+
"loss": 0.4037,
|
1599 |
+
"step": 227
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.4365725227381522,
|
1603 |
+
"grad_norm": 0.8720874786376953,
|
1604 |
+
"learning_rate": 6.466568888564303e-06,
|
1605 |
+
"loss": 0.4581,
|
1606 |
+
"step": 228
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 0.43848731450454764,
|
1610 |
+
"grad_norm": 0.8561883568763733,
|
1611 |
+
"learning_rate": 6.436263327038225e-06,
|
1612 |
+
"loss": 0.4046,
|
1613 |
+
"step": 229
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 0.44040210627094306,
|
1617 |
+
"grad_norm": 0.8326470255851746,
|
1618 |
+
"learning_rate": 6.405900146074941e-06,
|
1619 |
+
"loss": 0.3882,
|
1620 |
+
"step": 230
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 0.4423168980373384,
|
1624 |
+
"grad_norm": 0.8377370238304138,
|
1625 |
+
"learning_rate": 6.375480563772391e-06,
|
1626 |
+
"loss": 0.4368,
|
1627 |
+
"step": 231
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 0.44423168980373384,
|
1631 |
+
"grad_norm": 0.7525307536125183,
|
1632 |
+
"learning_rate": 6.3450058004912004e-06,
|
1633 |
+
"loss": 0.3646,
|
1634 |
+
"step": 232
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.44614648157012926,
|
1638 |
+
"grad_norm": 0.8400733470916748,
|
1639 |
+
"learning_rate": 6.314477078805724e-06,
|
1640 |
+
"loss": 0.4002,
|
1641 |
+
"step": 233
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.4480612733365247,
|
1645 |
+
"grad_norm": 0.7522779107093811,
|
1646 |
+
"learning_rate": 6.283895623454997e-06,
|
1647 |
+
"loss": 0.3865,
|
1648 |
+
"step": 234
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 0.44997606510292004,
|
1652 |
+
"grad_norm": 0.8109682202339172,
|
1653 |
+
"learning_rate": 6.2532626612936035e-06,
|
1654 |
+
"loss": 0.4089,
|
1655 |
+
"step": 235
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 0.45189085686931546,
|
1659 |
+
"grad_norm": 0.8554459810256958,
|
1660 |
+
"learning_rate": 6.2225794212424565e-06,
|
1661 |
+
"loss": 0.4401,
|
1662 |
+
"step": 236
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 0.4538056486357109,
|
1666 |
+
"grad_norm": 0.8335216641426086,
|
1667 |
+
"learning_rate": 6.191847134239496e-06,
|
1668 |
+
"loss": 0.3995,
|
1669 |
+
"step": 237
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 0.4557204404021063,
|
1673 |
+
"grad_norm": 0.8365229964256287,
|
1674 |
+
"learning_rate": 6.161067033190311e-06,
|
1675 |
+
"loss": 0.402,
|
1676 |
+
"step": 238
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.45763523216850166,
|
1680 |
+
"grad_norm": 0.7727139592170715,
|
1681 |
+
"learning_rate": 6.130240352918675e-06,
|
1682 |
+
"loss": 0.3976,
|
1683 |
+
"step": 239
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.4595500239348971,
|
1687 |
+
"grad_norm": 0.8664788603782654,
|
1688 |
+
"learning_rate": 6.0993683301170046e-06,
|
1689 |
+
"loss": 0.4347,
|
1690 |
+
"step": 240
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 0.4614648157012925,
|
1694 |
+
"grad_norm": 0.7788071632385254,
|
1695 |
+
"learning_rate": 6.068452203296754e-06,
|
1696 |
+
"loss": 0.3849,
|
1697 |
+
"step": 241
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 0.4633796074676879,
|
1701 |
+
"grad_norm": 0.7709981203079224,
|
1702 |
+
"learning_rate": 6.0374932127387234e-06,
|
1703 |
+
"loss": 0.394,
|
1704 |
+
"step": 242
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 0.4652943992340833,
|
1708 |
+
"grad_norm": 0.8584897518157959,
|
1709 |
+
"learning_rate": 6.006492600443301e-06,
|
1710 |
+
"loss": 0.4013,
|
1711 |
+
"step": 243
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 0.4672091910004787,
|
1715 |
+
"grad_norm": 0.8466057777404785,
|
1716 |
+
"learning_rate": 5.975451610080643e-06,
|
1717 |
+
"loss": 0.382,
|
1718 |
+
"step": 244
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.4691239827668741,
|
1722 |
+
"grad_norm": 0.8147895336151123,
|
1723 |
+
"learning_rate": 5.944371486940772e-06,
|
1724 |
+
"loss": 0.3925,
|
1725 |
+
"step": 245
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.47103877453326953,
|
1729 |
+
"grad_norm": 0.9486895203590393,
|
1730 |
+
"learning_rate": 5.913253477883629e-06,
|
1731 |
+
"loss": 0.438,
|
1732 |
+
"step": 246
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 0.4729535662996649,
|
1736 |
+
"grad_norm": 0.8018326163291931,
|
1737 |
+
"learning_rate": 5.882098831289044e-06,
|
1738 |
+
"loss": 0.3902,
|
1739 |
+
"step": 247
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 0.4748683580660603,
|
1743 |
+
"grad_norm": 0.7979179620742798,
|
1744 |
+
"learning_rate": 5.850908797006656e-06,
|
1745 |
+
"loss": 0.4001,
|
1746 |
+
"step": 248
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 0.47678314983245573,
|
1750 |
+
"grad_norm": 0.8484137058258057,
|
1751 |
+
"learning_rate": 5.819684626305776e-06,
|
1752 |
+
"loss": 0.4393,
|
1753 |
+
"step": 249
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 0.47869794159885115,
|
1757 |
+
"grad_norm": 0.812910795211792,
|
1758 |
+
"learning_rate": 5.788427571825186e-06,
|
1759 |
+
"loss": 0.3939,
|
1760 |
+
"step": 250
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 0.4806127333652465,
|
1764 |
+
"grad_norm": 0.8852983117103577,
|
1765 |
+
"learning_rate": 5.757138887522884e-06,
|
1766 |
+
"loss": 0.4113,
|
1767 |
+
"step": 251
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.48252752513164193,
|
1771 |
+
"grad_norm": 0.8375086188316345,
|
1772 |
+
"learning_rate": 5.725819828625782e-06,
|
1773 |
+
"loss": 0.4132,
|
1774 |
+
"step": 252
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 0.48444231689803735,
|
1778 |
+
"grad_norm": 0.7939973473548889,
|
1779 |
+
"learning_rate": 5.694471651579346e-06,
|
1780 |
+
"loss": 0.4003,
|
1781 |
+
"step": 253
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 0.48635710866443277,
|
1785 |
+
"grad_norm": 0.7971997857093811,
|
1786 |
+
"learning_rate": 5.663095613997196e-06,
|
1787 |
+
"loss": 0.3868,
|
1788 |
+
"step": 254
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 0.48827190043082813,
|
1792 |
+
"grad_norm": 0.778202474117279,
|
1793 |
+
"learning_rate": 5.631692974610647e-06,
|
1794 |
+
"loss": 0.3761,
|
1795 |
+
"step": 255
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 0.49018669219722355,
|
1799 |
+
"grad_norm": 0.8734095692634583,
|
1800 |
+
"learning_rate": 5.600264993218215e-06,
|
1801 |
+
"loss": 0.4105,
|
1802 |
+
"step": 256
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 0.49210148396361897,
|
1806 |
+
"grad_norm": 0.8606191873550415,
|
1807 |
+
"learning_rate": 5.568812930635076e-06,
|
1808 |
+
"loss": 0.396,
|
1809 |
+
"step": 257
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.4940162757300144,
|
1813 |
+
"grad_norm": 0.8600229024887085,
|
1814 |
+
"learning_rate": 5.537338048642487e-06,
|
1815 |
+
"loss": 0.4379,
|
1816 |
+
"step": 258
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 0.49593106749640975,
|
1820 |
+
"grad_norm": 0.8452302813529968,
|
1821 |
+
"learning_rate": 5.505841609937162e-06,
|
1822 |
+
"loss": 0.3802,
|
1823 |
+
"step": 259
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 0.49784585926280517,
|
1827 |
+
"grad_norm": 0.7426350712776184,
|
1828 |
+
"learning_rate": 5.474324878080623e-06,
|
1829 |
+
"loss": 0.335,
|
1830 |
+
"step": 260
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"epoch": 0.4997606510292006,
|
1834 |
+
"grad_norm": 0.8211168050765991,
|
1835 |
+
"learning_rate": 5.4427891174485014e-06,
|
1836 |
+
"loss": 0.387,
|
1837 |
+
"step": 261
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 0.501675442795596,
|
1841 |
+
"grad_norm": 0.855265200138092,
|
1842 |
+
"learning_rate": 5.41123559317982e-06,
|
1843 |
+
"loss": 0.4148,
|
1844 |
+
"step": 262
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 0.5035902345619914,
|
1848 |
+
"grad_norm": 0.8395704030990601,
|
1849 |
+
"learning_rate": 5.379665571126232e-06,
|
1850 |
+
"loss": 0.3774,
|
1851 |
+
"step": 263
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.5055050263283868,
|
1855 |
+
"grad_norm": 0.7473710775375366,
|
1856 |
+
"learning_rate": 5.348080317801244e-06,
|
1857 |
+
"loss": 0.3672,
|
1858 |
+
"step": 264
|
1859 |
+
},
|
1860 |
+
{
|
1861 |
+
"epoch": 0.5074198180947822,
|
1862 |
+
"grad_norm": 0.9001408815383911,
|
1863 |
+
"learning_rate": 5.316481100329408e-06,
|
1864 |
+
"loss": 0.4314,
|
1865 |
+
"step": 265
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 0.5093346098611776,
|
1869 |
+
"grad_norm": 0.8201159834861755,
|
1870 |
+
"learning_rate": 5.284869186395478e-06,
|
1871 |
+
"loss": 0.4166,
|
1872 |
+
"step": 266
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"epoch": 0.511249401627573,
|
1876 |
+
"grad_norm": 0.8213218450546265,
|
1877 |
+
"learning_rate": 5.253245844193564e-06,
|
1878 |
+
"loss": 0.4087,
|
1879 |
+
"step": 267
|
1880 |
+
},
|
1881 |
+
{
|
1882 |
+
"epoch": 0.5131641933939685,
|
1883 |
+
"grad_norm": 0.8229288458824158,
|
1884 |
+
"learning_rate": 5.22161234237625e-06,
|
1885 |
+
"loss": 0.4013,
|
1886 |
+
"step": 268
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 0.5150789851603638,
|
1890 |
+
"grad_norm": 0.8140142560005188,
|
1891 |
+
"learning_rate": 5.189969950003697e-06,
|
1892 |
+
"loss": 0.4021,
|
1893 |
+
"step": 269
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.5169937769267592,
|
1897 |
+
"grad_norm": 0.8901419043540955,
|
1898 |
+
"learning_rate": 5.158319936492736e-06,
|
1899 |
+
"loss": 0.427,
|
1900 |
+
"step": 270
|
1901 |
+
},
|
1902 |
+
{
|
1903 |
+
"epoch": 0.5189085686931546,
|
1904 |
+
"grad_norm": 0.7799863219261169,
|
1905 |
+
"learning_rate": 5.12666357156594e-06,
|
1906 |
+
"loss": 0.3872,
|
1907 |
+
"step": 271
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 0.52082336045955,
|
1911 |
+
"grad_norm": 0.8645293712615967,
|
1912 |
+
"learning_rate": 5.0950021252006845e-06,
|
1913 |
+
"loss": 0.4287,
|
1914 |
+
"step": 272
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 0.5227381522259454,
|
1918 |
+
"grad_norm": 0.8488345146179199,
|
1919 |
+
"learning_rate": 5.063336867578201e-06,
|
1920 |
+
"loss": 0.4402,
|
1921 |
+
"step": 273
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 0.5246529439923409,
|
1925 |
+
"grad_norm": 0.8312931060791016,
|
1926 |
+
"learning_rate": 5.0316690690326175e-06,
|
1927 |
+
"loss": 0.3858,
|
1928 |
+
"step": 274
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 0.5265677357587363,
|
1932 |
+
"grad_norm": 0.8159146308898926,
|
1933 |
+
"learning_rate": 5e-06,
|
1934 |
+
"loss": 0.3707,
|
1935 |
+
"step": 275
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.5284825275251317,
|
1939 |
+
"grad_norm": 0.8223234415054321,
|
1940 |
+
"learning_rate": 4.9683309309673825e-06,
|
1941 |
+
"loss": 0.3836,
|
1942 |
+
"step": 276
|
1943 |
+
},
|
1944 |
+
{
|
1945 |
+
"epoch": 0.530397319291527,
|
1946 |
+
"grad_norm": 0.7489441633224487,
|
1947 |
+
"learning_rate": 4.936663132421801e-06,
|
1948 |
+
"loss": 0.3666,
|
1949 |
+
"step": 277
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 0.5323121110579224,
|
1953 |
+
"grad_norm": 0.7627151012420654,
|
1954 |
+
"learning_rate": 4.904997874799316e-06,
|
1955 |
+
"loss": 0.3829,
|
1956 |
+
"step": 278
|
1957 |
+
},
|
1958 |
+
{
|
1959 |
+
"epoch": 0.5342269028243178,
|
1960 |
+
"grad_norm": 0.8040624856948853,
|
1961 |
+
"learning_rate": 4.873336428434062e-06,
|
1962 |
+
"loss": 0.3864,
|
1963 |
+
"step": 279
|
1964 |
+
},
|
1965 |
+
{
|
1966 |
+
"epoch": 0.5361416945907133,
|
1967 |
+
"grad_norm": 0.8104556798934937,
|
1968 |
+
"learning_rate": 4.841680063507265e-06,
|
1969 |
+
"loss": 0.4226,
|
1970 |
+
"step": 280
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 0.5380564863571087,
|
1974 |
+
"grad_norm": 0.8425339460372925,
|
1975 |
+
"learning_rate": 4.8100300499963045e-06,
|
1976 |
+
"loss": 0.4126,
|
1977 |
+
"step": 281
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 0.5399712781235041,
|
1981 |
+
"grad_norm": 0.7799105644226074,
|
1982 |
+
"learning_rate": 4.778387657623751e-06,
|
1983 |
+
"loss": 0.3768,
|
1984 |
+
"step": 282
|
1985 |
+
},
|
1986 |
+
{
|
1987 |
+
"epoch": 0.5418860698898995,
|
1988 |
+
"grad_norm": 0.8573192954063416,
|
1989 |
+
"learning_rate": 4.746754155806437e-06,
|
1990 |
+
"loss": 0.451,
|
1991 |
+
"step": 283
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 0.5438008616562949,
|
1995 |
+
"grad_norm": 0.8153167366981506,
|
1996 |
+
"learning_rate": 4.715130813604522e-06,
|
1997 |
+
"loss": 0.3968,
|
1998 |
+
"step": 284
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"epoch": 0.5457156534226902,
|
2002 |
+
"grad_norm": 0.8407420516014099,
|
2003 |
+
"learning_rate": 4.683518899670594e-06,
|
2004 |
+
"loss": 0.392,
|
2005 |
+
"step": 285
|
2006 |
+
},
|
2007 |
+
{
|
2008 |
+
"epoch": 0.5476304451890857,
|
2009 |
+
"grad_norm": 0.8508596420288086,
|
2010 |
+
"learning_rate": 4.651919682198756e-06,
|
2011 |
+
"loss": 0.3945,
|
2012 |
+
"step": 286
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 0.5495452369554811,
|
2016 |
+
"grad_norm": 0.8226655721664429,
|
2017 |
+
"learning_rate": 4.62033442887377e-06,
|
2018 |
+
"loss": 0.3993,
|
2019 |
+
"step": 287
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 0.5514600287218765,
|
2023 |
+
"grad_norm": 0.8097487688064575,
|
2024 |
+
"learning_rate": 4.588764406820181e-06,
|
2025 |
+
"loss": 0.4303,
|
2026 |
+
"step": 288
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"epoch": 0.5533748204882719,
|
2030 |
+
"grad_norm": 0.7493626475334167,
|
2031 |
+
"learning_rate": 4.5572108825515e-06,
|
2032 |
+
"loss": 0.362,
|
2033 |
+
"step": 289
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"epoch": 0.5552896122546673,
|
2037 |
+
"grad_norm": 0.7713648676872253,
|
2038 |
+
"learning_rate": 4.5256751219193784e-06,
|
2039 |
+
"loss": 0.3906,
|
2040 |
+
"step": 290
|
2041 |
+
},
|
2042 |
+
{
|
2043 |
+
"epoch": 0.5572044040210627,
|
2044 |
+
"grad_norm": 0.8310909867286682,
|
2045 |
+
"learning_rate": 4.49415839006284e-06,
|
2046 |
+
"loss": 0.4041,
|
2047 |
+
"step": 291
|
2048 |
+
},
|
2049 |
+
{
|
2050 |
+
"epoch": 0.5591191957874582,
|
2051 |
+
"grad_norm": 0.8170990943908691,
|
2052 |
+
"learning_rate": 4.462661951357515e-06,
|
2053 |
+
"loss": 0.4054,
|
2054 |
+
"step": 292
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 0.5610339875538535,
|
2058 |
+
"grad_norm": 0.862368643283844,
|
2059 |
+
"learning_rate": 4.431187069364927e-06,
|
2060 |
+
"loss": 0.4107,
|
2061 |
+
"step": 293
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 0.5629487793202489,
|
2065 |
+
"grad_norm": 0.8069734573364258,
|
2066 |
+
"learning_rate": 4.3997350067817866e-06,
|
2067 |
+
"loss": 0.3939,
|
2068 |
+
"step": 294
|
2069 |
+
},
|
2070 |
+
{
|
2071 |
+
"epoch": 0.5648635710866443,
|
2072 |
+
"grad_norm": 0.8641298413276672,
|
2073 |
+
"learning_rate": 4.368307025389355e-06,
|
2074 |
+
"loss": 0.4182,
|
2075 |
+
"step": 295
|
2076 |
+
},
|
2077 |
+
{
|
2078 |
+
"epoch": 0.5667783628530397,
|
2079 |
+
"grad_norm": 0.8040350079536438,
|
2080 |
+
"learning_rate": 4.336904386002805e-06,
|
2081 |
+
"loss": 0.3863,
|
2082 |
+
"step": 296
|
2083 |
+
},
|
2084 |
+
{
|
2085 |
+
"epoch": 0.5686931546194351,
|
2086 |
+
"grad_norm": 0.8322636485099792,
|
2087 |
+
"learning_rate": 4.3055283484206565e-06,
|
2088 |
+
"loss": 0.4228,
|
2089 |
+
"step": 297
|
2090 |
+
},
|
2091 |
+
{
|
2092 |
+
"epoch": 0.5706079463858306,
|
2093 |
+
"grad_norm": 0.7918723821640015,
|
2094 |
+
"learning_rate": 4.27418017137422e-06,
|
2095 |
+
"loss": 0.3749,
|
2096 |
+
"step": 298
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 0.572522738152226,
|
2100 |
+
"grad_norm": 0.7878877520561218,
|
2101 |
+
"learning_rate": 4.2428611124771184e-06,
|
2102 |
+
"loss": 0.3716,
|
2103 |
+
"step": 299
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 0.5744375299186214,
|
2107 |
+
"grad_norm": 0.7795090675354004,
|
2108 |
+
"learning_rate": 4.211572428174816e-06,
|
2109 |
+
"loss": 0.3614,
|
2110 |
+
"step": 300
|
2111 |
+
},
|
2112 |
+
{
|
2113 |
+
"epoch": 0.5763523216850167,
|
2114 |
+
"grad_norm": 0.8057751655578613,
|
2115 |
+
"learning_rate": 4.180315373694225e-06,
|
2116 |
+
"loss": 0.4015,
|
2117 |
+
"step": 301
|
2118 |
+
},
|
2119 |
+
{
|
2120 |
+
"epoch": 0.5782671134514121,
|
2121 |
+
"grad_norm": 0.8051212430000305,
|
2122 |
+
"learning_rate": 4.149091202993345e-06,
|
2123 |
+
"loss": 0.3588,
|
2124 |
+
"step": 302
|
2125 |
+
},
|
2126 |
+
{
|
2127 |
+
"epoch": 0.5801819052178075,
|
2128 |
+
"grad_norm": 0.8171245455741882,
|
2129 |
+
"learning_rate": 4.11790116871096e-06,
|
2130 |
+
"loss": 0.417,
|
2131 |
+
"step": 303
|
2132 |
+
},
|
2133 |
+
{
|
2134 |
+
"epoch": 0.582096696984203,
|
2135 |
+
"grad_norm": 0.8987613320350647,
|
2136 |
+
"learning_rate": 4.086746522116372e-06,
|
2137 |
+
"loss": 0.4536,
|
2138 |
+
"step": 304
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 0.5840114887505984,
|
2142 |
+
"grad_norm": 0.7471241354942322,
|
2143 |
+
"learning_rate": 4.055628513059231e-06,
|
2144 |
+
"loss": 0.3866,
|
2145 |
+
"step": 305
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.5859262805169938,
|
2149 |
+
"grad_norm": 0.828220009803772,
|
2150 |
+
"learning_rate": 4.02454838991936e-06,
|
2151 |
+
"loss": 0.3778,
|
2152 |
+
"step": 306
|
2153 |
+
},
|
2154 |
+
{
|
2155 |
+
"epoch": 0.5878410722833892,
|
2156 |
+
"grad_norm": 0.8547297120094299,
|
2157 |
+
"learning_rate": 3.993507399556699e-06,
|
2158 |
+
"loss": 0.4308,
|
2159 |
+
"step": 307
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"epoch": 0.5897558640497846,
|
2163 |
+
"grad_norm": 0.8033933043479919,
|
2164 |
+
"learning_rate": 3.962506787261278e-06,
|
2165 |
+
"loss": 0.3993,
|
2166 |
+
"step": 308
|
2167 |
+
},
|
2168 |
+
{
|
2169 |
+
"epoch": 0.59167065581618,
|
2170 |
+
"grad_norm": 0.7902593612670898,
|
2171 |
+
"learning_rate": 3.931547796703245e-06,
|
2172 |
+
"loss": 0.3794,
|
2173 |
+
"step": 309
|
2174 |
+
},
|
2175 |
+
{
|
2176 |
+
"epoch": 0.5935854475825754,
|
2177 |
+
"grad_norm": 0.8059898018836975,
|
2178 |
+
"learning_rate": 3.900631669882996e-06,
|
2179 |
+
"loss": 0.3936,
|
2180 |
+
"step": 310
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 0.5955002393489708,
|
2184 |
+
"grad_norm": 0.8180558681488037,
|
2185 |
+
"learning_rate": 3.869759647081326e-06,
|
2186 |
+
"loss": 0.3695,
|
2187 |
+
"step": 311
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 0.5974150311153662,
|
2191 |
+
"grad_norm": 0.7877086400985718,
|
2192 |
+
"learning_rate": 3.83893296680969e-06,
|
2193 |
+
"loss": 0.3838,
|
2194 |
+
"step": 312
|
2195 |
+
},
|
2196 |
+
{
|
2197 |
+
"epoch": 0.5993298228817616,
|
2198 |
+
"grad_norm": 0.7896502614021301,
|
2199 |
+
"learning_rate": 3.8081528657605045e-06,
|
2200 |
+
"loss": 0.376,
|
2201 |
+
"step": 313
|
2202 |
+
},
|
2203 |
+
{
|
2204 |
+
"epoch": 0.601244614648157,
|
2205 |
+
"grad_norm": 0.7718030214309692,
|
2206 |
+
"learning_rate": 3.7774205787575455e-06,
|
2207 |
+
"loss": 0.388,
|
2208 |
+
"step": 314
|
2209 |
+
},
|
2210 |
+
{
|
2211 |
+
"epoch": 0.6031594064145525,
|
2212 |
+
"grad_norm": 0.8119059205055237,
|
2213 |
+
"learning_rate": 3.7467373387063973e-06,
|
2214 |
+
"loss": 0.4241,
|
2215 |
+
"step": 315
|
2216 |
+
},
|
2217 |
+
{
|
2218 |
+
"epoch": 0.6050741981809479,
|
2219 |
+
"grad_norm": 0.8423107862472534,
|
2220 |
+
"learning_rate": 3.7161043765450044e-06,
|
2221 |
+
"loss": 0.4101,
|
2222 |
+
"step": 316
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 0.6069889899473432,
|
2226 |
+
"grad_norm": 0.8189786076545715,
|
2227 |
+
"learning_rate": 3.685522921194276e-06,
|
2228 |
+
"loss": 0.3777,
|
2229 |
+
"step": 317
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 0.6089037817137386,
|
2233 |
+
"grad_norm": 0.8153043389320374,
|
2234 |
+
"learning_rate": 3.6549941995088012e-06,
|
2235 |
+
"loss": 0.3983,
|
2236 |
+
"step": 318
|
2237 |
+
},
|
2238 |
+
{
|
2239 |
+
"epoch": 0.610818573480134,
|
2240 |
+
"grad_norm": 0.827060341835022,
|
2241 |
+
"learning_rate": 3.62451943622761e-06,
|
2242 |
+
"loss": 0.4257,
|
2243 |
+
"step": 319
|
2244 |
+
},
|
2245 |
+
{
|
2246 |
+
"epoch": 0.6127333652465294,
|
2247 |
+
"grad_norm": 0.7198632955551147,
|
2248 |
+
"learning_rate": 3.5940998539250614e-06,
|
2249 |
+
"loss": 0.3542,
|
2250 |
+
"step": 320
|
2251 |
+
},
|
2252 |
+
{
|
2253 |
+
"epoch": 0.6146481570129249,
|
2254 |
+
"grad_norm": 0.7778761386871338,
|
2255 |
+
"learning_rate": 3.5637366729617766e-06,
|
2256 |
+
"loss": 0.3735,
|
2257 |
+
"step": 321
|
2258 |
+
},
|
2259 |
+
{
|
2260 |
+
"epoch": 0.6165629487793203,
|
2261 |
+
"grad_norm": 0.8497153520584106,
|
2262 |
+
"learning_rate": 3.5334311114356983e-06,
|
2263 |
+
"loss": 0.4195,
|
2264 |
+
"step": 322
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 0.6184777405457157,
|
2268 |
+
"grad_norm": 0.8232434988021851,
|
2269 |
+
"learning_rate": 3.5031843851332105e-06,
|
2270 |
+
"loss": 0.4169,
|
2271 |
+
"step": 323
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 0.6203925323121111,
|
2275 |
+
"grad_norm": 0.8235202431678772,
|
2276 |
+
"learning_rate": 3.472997707480372e-06,
|
2277 |
+
"loss": 0.3956,
|
2278 |
+
"step": 324
|
2279 |
+
},
|
2280 |
+
{
|
2281 |
+
"epoch": 0.6223073240785064,
|
2282 |
+
"grad_norm": 0.8811324834823608,
|
2283 |
+
"learning_rate": 3.4428722894942313e-06,
|
2284 |
+
"loss": 0.4206,
|
2285 |
+
"step": 325
|
2286 |
+
},
|
2287 |
+
{
|
2288 |
+
"epoch": 0.6242221158449018,
|
2289 |
+
"grad_norm": 0.8529208898544312,
|
2290 |
+
"learning_rate": 3.4128093397342508e-06,
|
2291 |
+
"loss": 0.4403,
|
2292 |
+
"step": 326
|
2293 |
+
},
|
2294 |
+
{
|
2295 |
+
"epoch": 0.6261369076112973,
|
2296 |
+
"grad_norm": 0.7988664507865906,
|
2297 |
+
"learning_rate": 3.3828100642538097e-06,
|
2298 |
+
"loss": 0.3809,
|
2299 |
+
"step": 327
|
2300 |
+
},
|
2301 |
+
{
|
2302 |
+
"epoch": 0.6280516993776927,
|
2303 |
+
"grad_norm": 0.7760090231895447,
|
2304 |
+
"learning_rate": 3.352875666551838e-06,
|
2305 |
+
"loss": 0.3685,
|
2306 |
+
"step": 328
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 0.6299664911440881,
|
2310 |
+
"grad_norm": 0.7803361415863037,
|
2311 |
+
"learning_rate": 3.323007347524515e-06,
|
2312 |
+
"loss": 0.4008,
|
2313 |
+
"step": 329
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 0.6318812829104835,
|
2317 |
+
"grad_norm": 0.7256073951721191,
|
2318 |
+
"learning_rate": 3.2932063054171108e-06,
|
2319 |
+
"loss": 0.3853,
|
2320 |
+
"step": 330
|
2321 |
+
},
|
2322 |
+
{
|
2323 |
+
"epoch": 0.6337960746768789,
|
2324 |
+
"grad_norm": 0.7642714381217957,
|
2325 |
+
"learning_rate": 3.2634737357758994e-06,
|
2326 |
+
"loss": 0.3815,
|
2327 |
+
"step": 331
|
2328 |
+
},
|
2329 |
+
{
|
2330 |
+
"epoch": 0.6357108664432743,
|
2331 |
+
"grad_norm": 0.7734025716781616,
|
2332 |
+
"learning_rate": 3.2338108314002102e-06,
|
2333 |
+
"loss": 0.3819,
|
2334 |
+
"step": 332
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 0.6376256582096697,
|
2338 |
+
"grad_norm": 0.7310645580291748,
|
2339 |
+
"learning_rate": 3.204218782294565e-06,
|
2340 |
+
"loss": 0.3691,
|
2341 |
+
"step": 333
|
2342 |
+
},
|
2343 |
+
{
|
2344 |
+
"epoch": 0.6395404499760651,
|
2345 |
+
"grad_norm": 0.7916032671928406,
|
2346 |
+
"learning_rate": 3.174698775620947e-06,
|
2347 |
+
"loss": 0.396,
|
2348 |
+
"step": 334
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 0.6414552417424605,
|
2352 |
+
"grad_norm": 0.8144755363464355,
|
2353 |
+
"learning_rate": 3.145251995651162e-06,
|
2354 |
+
"loss": 0.4015,
|
2355 |
+
"step": 335
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 0.6433700335088559,
|
2359 |
+
"grad_norm": 0.7826823592185974,
|
2360 |
+
"learning_rate": 3.1158796237193444e-06,
|
2361 |
+
"loss": 0.3788,
|
2362 |
+
"step": 336
|
2363 |
+
},
|
2364 |
+
{
|
2365 |
+
"epoch": 0.6452848252752513,
|
2366 |
+
"grad_norm": 0.7715396285057068,
|
2367 |
+
"learning_rate": 3.0865828381745515e-06,
|
2368 |
+
"loss": 0.3816,
|
2369 |
+
"step": 337
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 0.6471996170416467,
|
2373 |
+
"grad_norm": 0.769504189491272,
|
2374 |
+
"learning_rate": 3.0573628143334986e-06,
|
2375 |
+
"loss": 0.362,
|
2376 |
+
"step": 338
|
2377 |
+
},
|
2378 |
+
{
|
2379 |
+
"epoch": 0.6491144088080422,
|
2380 |
+
"grad_norm": 0.7912290692329407,
|
2381 |
+
"learning_rate": 3.0282207244334084e-06,
|
2382 |
+
"loss": 0.3713,
|
2383 |
+
"step": 339
|
2384 |
+
},
|
2385 |
+
{
|
2386 |
+
"epoch": 0.6510292005744376,
|
2387 |
+
"grad_norm": 0.783423662185669,
|
2388 |
+
"learning_rate": 2.999157737584971e-06,
|
2389 |
+
"loss": 0.3767,
|
2390 |
+
"step": 340
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 0.6529439923408329,
|
2394 |
+
"grad_norm": 0.8199610114097595,
|
2395 |
+
"learning_rate": 2.970175019725465e-06,
|
2396 |
+
"loss": 0.419,
|
2397 |
+
"step": 341
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 0.6548587841072283,
|
2401 |
+
"grad_norm": 0.910210907459259,
|
2402 |
+
"learning_rate": 2.94127373357196e-06,
|
2403 |
+
"loss": 0.4371,
|
2404 |
+
"step": 342
|
2405 |
+
},
|
2406 |
+
{
|
2407 |
+
"epoch": 0.6567735758736237,
|
2408 |
+
"grad_norm": 0.8403528928756714,
|
2409 |
+
"learning_rate": 2.912455038574686e-06,
|
2410 |
+
"loss": 0.3981,
|
2411 |
+
"step": 343
|
2412 |
+
},
|
2413 |
+
{
|
2414 |
+
"epoch": 0.6586883676400191,
|
2415 |
+
"grad_norm": 0.8000572323799133,
|
2416 |
+
"learning_rate": 2.88372009087051e-06,
|
2417 |
+
"loss": 0.4073,
|
2418 |
+
"step": 344
|
2419 |
+
},
|
2420 |
+
{
|
2421 |
+
"epoch": 0.6606031594064146,
|
2422 |
+
"grad_norm": 0.7659777998924255,
|
2423 |
+
"learning_rate": 2.8550700432365647e-06,
|
2424 |
+
"loss": 0.3618,
|
2425 |
+
"step": 345
|
2426 |
+
},
|
2427 |
+
{
|
2428 |
+
"epoch": 0.66251795117281,
|
2429 |
+
"grad_norm": 0.9061356782913208,
|
2430 |
+
"learning_rate": 2.8265060450439887e-06,
|
2431 |
+
"loss": 0.4449,
|
2432 |
+
"step": 346
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 0.6644327429392054,
|
2436 |
+
"grad_norm": 0.8041026592254639,
|
2437 |
+
"learning_rate": 2.7980292422118282e-06,
|
2438 |
+
"loss": 0.3792,
|
2439 |
+
"step": 347
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 0.6663475347056008,
|
2443 |
+
"grad_norm": 0.8198460340499878,
|
2444 |
+
"learning_rate": 2.769640777161063e-06,
|
2445 |
+
"loss": 0.3927,
|
2446 |
+
"step": 348
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"epoch": 0.6682623264719961,
|
2450 |
+
"grad_norm": 0.8170595765113831,
|
2451 |
+
"learning_rate": 2.7413417887687644e-06,
|
2452 |
+
"loss": 0.4239,
|
2453 |
+
"step": 349
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"epoch": 0.6701771182383915,
|
2457 |
+
"grad_norm": 0.8629317283630371,
|
2458 |
+
"learning_rate": 2.713133412322424e-06,
|
2459 |
+
"loss": 0.3968,
|
2460 |
+
"step": 350
|
2461 |
+
},
|
2462 |
+
{
|
2463 |
+
"epoch": 0.672091910004787,
|
2464 |
+
"grad_norm": 0.8548991680145264,
|
2465 |
+
"learning_rate": 2.6850167794743966e-06,
|
2466 |
+
"loss": 0.4241,
|
2467 |
+
"step": 351
|
2468 |
+
},
|
2469 |
+
{
|
2470 |
+
"epoch": 0.6740067017711824,
|
2471 |
+
"grad_norm": 0.8036125302314758,
|
2472 |
+
"learning_rate": 2.6569930181965e-06,
|
2473 |
+
"loss": 0.3855,
|
2474 |
+
"step": 352
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 0.6759214935375778,
|
2478 |
+
"grad_norm": 0.7843232750892639,
|
2479 |
+
"learning_rate": 2.629063252734775e-06,
|
2480 |
+
"loss": 0.3948,
|
2481 |
+
"step": 353
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 0.6778362853039732,
|
2485 |
+
"grad_norm": 0.8223265409469604,
|
2486 |
+
"learning_rate": 2.601228603564368e-06,
|
2487 |
+
"loss": 0.4085,
|
2488 |
+
"step": 354
|
2489 |
+
},
|
2490 |
+
{
|
2491 |
+
"epoch": 0.6797510770703686,
|
2492 |
+
"grad_norm": 0.8083503246307373,
|
2493 |
+
"learning_rate": 2.573490187344596e-06,
|
2494 |
+
"loss": 0.3892,
|
2495 |
+
"step": 355
|
2496 |
+
},
|
2497 |
+
{
|
2498 |
+
"epoch": 0.681665868836764,
|
2499 |
+
"grad_norm": 0.7658042907714844,
|
2500 |
+
"learning_rate": 2.545849116874132e-06,
|
2501 |
+
"loss": 0.3449,
|
2502 |
+
"step": 356
|
2503 |
+
},
|
2504 |
+
{
|
2505 |
+
"epoch": 0.6835806606031594,
|
2506 |
+
"grad_norm": 0.7292419672012329,
|
2507 |
+
"learning_rate": 2.5183065010463813e-06,
|
2508 |
+
"loss": 0.3653,
|
2509 |
+
"step": 357
|
2510 |
+
},
|
2511 |
+
{
|
2512 |
+
"epoch": 0.6854954523695548,
|
2513 |
+
"grad_norm": 0.7850830554962158,
|
2514 |
+
"learning_rate": 2.490863444804976e-06,
|
2515 |
+
"loss": 0.36,
|
2516 |
+
"step": 358
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 0.6874102441359502,
|
2520 |
+
"grad_norm": 0.8714895844459534,
|
2521 |
+
"learning_rate": 2.4635210490994648e-06,
|
2522 |
+
"loss": 0.4132,
|
2523 |
+
"step": 359
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 0.6893250359023456,
|
2527 |
+
"grad_norm": 0.7666326761245728,
|
2528 |
+
"learning_rate": 2.436280410841128e-06,
|
2529 |
+
"loss": 0.3703,
|
2530 |
+
"step": 360
|
2531 |
+
},
|
2532 |
+
{
|
2533 |
+
"epoch": 0.691239827668741,
|
2534 |
+
"grad_norm": 0.8180323839187622,
|
2535 |
+
"learning_rate": 2.409142622858992e-06,
|
2536 |
+
"loss": 0.3778,
|
2537 |
+
"step": 361
|
2538 |
+
},
|
2539 |
+
{
|
2540 |
+
"epoch": 0.6931546194351365,
|
2541 |
+
"grad_norm": 0.7984980344772339,
|
2542 |
+
"learning_rate": 2.3821087738559674e-06,
|
2543 |
+
"loss": 0.3743,
|
2544 |
+
"step": 362
|
2545 |
+
},
|
2546 |
+
{
|
2547 |
+
"epoch": 0.6950694112015319,
|
2548 |
+
"grad_norm": 0.7796124815940857,
|
2549 |
+
"learning_rate": 2.3551799483651894e-06,
|
2550 |
+
"loss": 0.3762,
|
2551 |
+
"step": 363
|
2552 |
+
},
|
2553 |
+
{
|
2554 |
+
"epoch": 0.6969842029679273,
|
2555 |
+
"grad_norm": 0.8916181921958923,
|
2556 |
+
"learning_rate": 2.3283572267064963e-06,
|
2557 |
+
"loss": 0.4548,
|
2558 |
+
"step": 364
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 0.6988989947343226,
|
2562 |
+
"grad_norm": 0.7768247723579407,
|
2563 |
+
"learning_rate": 2.3016416849431023e-06,
|
2564 |
+
"loss": 0.4066,
|
2565 |
+
"step": 365
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 0.700813786500718,
|
2569 |
+
"grad_norm": 0.8254181742668152,
|
2570 |
+
"learning_rate": 2.275034394838413e-06,
|
2571 |
+
"loss": 0.4073,
|
2572 |
+
"step": 366
|
2573 |
+
},
|
2574 |
+
{
|
2575 |
+
"epoch": 0.7027285782671134,
|
2576 |
+
"grad_norm": 0.8029199838638306,
|
2577 |
+
"learning_rate": 2.2485364238130435e-06,
|
2578 |
+
"loss": 0.4037,
|
2579 |
+
"step": 367
|
2580 |
+
},
|
2581 |
+
{
|
2582 |
+
"epoch": 0.7046433700335089,
|
2583 |
+
"grad_norm": 0.7425951361656189,
|
2584 |
+
"learning_rate": 2.2221488349019903e-06,
|
2585 |
+
"loss": 0.3586,
|
2586 |
+
"step": 368
|
2587 |
+
},
|
2588 |
+
{
|
2589 |
+
"epoch": 0.7065581617999043,
|
2590 |
+
"grad_norm": 0.815488338470459,
|
2591 |
+
"learning_rate": 2.1958726867119785e-06,
|
2592 |
+
"loss": 0.4258,
|
2593 |
+
"step": 369
|
2594 |
+
},
|
2595 |
+
{
|
2596 |
+
"epoch": 0.7084729535662997,
|
2597 |
+
"grad_norm": 0.7922877669334412,
|
2598 |
+
"learning_rate": 2.169709033379004e-06,
|
2599 |
+
"loss": 0.3949,
|
2600 |
+
"step": 370
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 0.7103877453326951,
|
2604 |
+
"grad_norm": 0.8111118674278259,
|
2605 |
+
"learning_rate": 2.1436589245260375e-06,
|
2606 |
+
"loss": 0.4117,
|
2607 |
+
"step": 371
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 0.7123025370990905,
|
2611 |
+
"grad_norm": 0.8979730606079102,
|
2612 |
+
"learning_rate": 2.1177234052209208e-06,
|
2613 |
+
"loss": 0.44,
|
2614 |
+
"step": 372
|
2615 |
+
},
|
2616 |
+
{
|
2617 |
+
"epoch": 0.7142173288654858,
|
2618 |
+
"grad_norm": 0.8757999539375305,
|
2619 |
+
"learning_rate": 2.09190351593443e-06,
|
2620 |
+
"loss": 0.4257,
|
2621 |
+
"step": 373
|
2622 |
+
},
|
2623 |
+
{
|
2624 |
+
"epoch": 0.7161321206318813,
|
2625 |
+
"grad_norm": 0.786949634552002,
|
2626 |
+
"learning_rate": 2.066200292498553e-06,
|
2627 |
+
"loss": 0.3887,
|
2628 |
+
"step": 374
|
2629 |
+
},
|
2630 |
+
{
|
2631 |
+
"epoch": 0.7180469123982767,
|
2632 |
+
"grad_norm": 0.7935692071914673,
|
2633 |
+
"learning_rate": 2.040614766064913e-06,
|
2634 |
+
"loss": 0.3853,
|
2635 |
+
"step": 375
|
2636 |
+
},
|
2637 |
+
{
|
2638 |
+
"epoch": 0.7199617041646721,
|
2639 |
+
"grad_norm": 0.8078945875167847,
|
2640 |
+
"learning_rate": 2.0151479630634225e-06,
|
2641 |
+
"loss": 0.4147,
|
2642 |
+
"step": 376
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 0.7218764959310675,
|
2646 |
+
"grad_norm": 0.7771415114402771,
|
2647 |
+
"learning_rate": 1.9898009051610847e-06,
|
2648 |
+
"loss": 0.3728,
|
2649 |
+
"step": 377
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 0.7237912876974629,
|
2653 |
+
"grad_norm": 0.7808002233505249,
|
2654 |
+
"learning_rate": 1.964574609221026e-06,
|
2655 |
+
"loss": 0.3938,
|
2656 |
+
"step": 378
|
2657 |
+
},
|
2658 |
+
{
|
2659 |
+
"epoch": 0.7257060794638583,
|
2660 |
+
"grad_norm": 0.7837493419647217,
|
2661 |
+
"learning_rate": 1.9394700872616856e-06,
|
2662 |
+
"loss": 0.3605,
|
2663 |
+
"step": 379
|
2664 |
+
},
|
2665 |
+
{
|
2666 |
+
"epoch": 0.7276208712302538,
|
2667 |
+
"grad_norm": 0.8075767755508423,
|
2668 |
+
"learning_rate": 1.914488346416229e-06,
|
2669 |
+
"loss": 0.3999,
|
2670 |
+
"step": 380
|
2671 |
+
},
|
2672 |
+
{
|
2673 |
+
"epoch": 0.7295356629966491,
|
2674 |
+
"grad_norm": 0.8456177115440369,
|
2675 |
+
"learning_rate": 1.8896303888921313e-06,
|
2676 |
+
"loss": 0.4231,
|
2677 |
+
"step": 381
|
2678 |
+
},
|
2679 |
+
{
|
2680 |
+
"epoch": 0.7314504547630445,
|
2681 |
+
"grad_norm": 0.732417643070221,
|
2682 |
+
"learning_rate": 1.8648972119309854e-06,
|
2683 |
+
"loss": 0.364,
|
2684 |
+
"step": 382
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 0.7333652465294399,
|
2688 |
+
"grad_norm": 0.846979558467865,
|
2689 |
+
"learning_rate": 1.8402898077684806e-06,
|
2690 |
+
"loss": 0.4151,
|
2691 |
+
"step": 383
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 0.7352800382958353,
|
2695 |
+
"grad_norm": 0.8251591324806213,
|
2696 |
+
"learning_rate": 1.815809163594609e-06,
|
2697 |
+
"loss": 0.4102,
|
2698 |
+
"step": 384
|
2699 |
+
},
|
2700 |
+
{
|
2701 |
+
"epoch": 0.7371948300622307,
|
2702 |
+
"grad_norm": 0.8559386134147644,
|
2703 |
+
"learning_rate": 1.7914562615140507e-06,
|
2704 |
+
"loss": 0.4293,
|
2705 |
+
"step": 385
|
2706 |
+
},
|
2707 |
+
{
|
2708 |
+
"epoch": 0.7391096218286262,
|
2709 |
+
"grad_norm": 0.7774277925491333,
|
2710 |
+
"learning_rate": 1.7672320785067871e-06,
|
2711 |
+
"loss": 0.3994,
|
2712 |
+
"step": 386
|
2713 |
+
},
|
2714 |
+
{
|
2715 |
+
"epoch": 0.7410244135950216,
|
2716 |
+
"grad_norm": 0.8519320487976074,
|
2717 |
+
"learning_rate": 1.74313758638889e-06,
|
2718 |
+
"loss": 0.3664,
|
2719 |
+
"step": 387
|
2720 |
+
},
|
2721 |
+
{
|
2722 |
+
"epoch": 0.742939205361417,
|
2723 |
+
"grad_norm": 0.8206210732460022,
|
2724 |
+
"learning_rate": 1.7191737517735513e-06,
|
2725 |
+
"loss": 0.3776,
|
2726 |
+
"step": 388
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 0.7448539971278123,
|
2730 |
+
"grad_norm": 0.7929854393005371,
|
2731 |
+
"learning_rate": 1.6953415360322972e-06,
|
2732 |
+
"loss": 0.3823,
|
2733 |
+
"step": 389
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 0.7467687888942077,
|
2737 |
+
"grad_norm": 0.7920369505882263,
|
2738 |
+
"learning_rate": 1.6716418952564145e-06,
|
2739 |
+
"loss": 0.3663,
|
2740 |
+
"step": 390
|
2741 |
+
},
|
2742 |
+
{
|
2743 |
+
"epoch": 0.7486835806606031,
|
2744 |
+
"grad_norm": 0.7508079409599304,
|
2745 |
+
"learning_rate": 1.648075780218607e-06,
|
2746 |
+
"loss": 0.3504,
|
2747 |
+
"step": 391
|
2748 |
+
},
|
2749 |
+
{
|
2750 |
+
"epoch": 0.7505983724269986,
|
2751 |
+
"grad_norm": 0.8192916512489319,
|
2752 |
+
"learning_rate": 1.6246441363348453e-06,
|
2753 |
+
"loss": 0.3909,
|
2754 |
+
"step": 392
|
2755 |
+
},
|
2756 |
+
{
|
2757 |
+
"epoch": 0.752513164193394,
|
2758 |
+
"grad_norm": 0.7516458630561829,
|
2759 |
+
"learning_rate": 1.6013479036264358e-06,
|
2760 |
+
"loss": 0.3731,
|
2761 |
+
"step": 393
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 0.7544279559597894,
|
2765 |
+
"grad_norm": 0.7460734248161316,
|
2766 |
+
"learning_rate": 1.57818801668232e-06,
|
2767 |
+
"loss": 0.3379,
|
2768 |
+
"step": 394
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 0.7563427477261848,
|
2772 |
+
"grad_norm": 0.8151918053627014,
|
2773 |
+
"learning_rate": 1.555165404621567e-06,
|
2774 |
+
"loss": 0.4025,
|
2775 |
+
"step": 395
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 0.7582575394925802,
|
2779 |
+
"grad_norm": 0.9436088800430298,
|
2780 |
+
"learning_rate": 1.532280991056116e-06,
|
2781 |
+
"loss": 0.4521,
|
2782 |
+
"step": 396
|
2783 |
+
},
|
2784 |
+
{
|
2785 |
+
"epoch": 0.7601723312589755,
|
2786 |
+
"grad_norm": 0.7796757817268372,
|
2787 |
+
"learning_rate": 1.5095356940537053e-06,
|
2788 |
+
"loss": 0.3882,
|
2789 |
+
"step": 397
|
2790 |
+
},
|
2791 |
+
{
|
2792 |
+
"epoch": 0.762087123025371,
|
2793 |
+
"grad_norm": 0.8452361226081848,
|
2794 |
+
"learning_rate": 1.4869304261010586e-06,
|
2795 |
+
"loss": 0.4011,
|
2796 |
+
"step": 398
|
2797 |
+
},
|
2798 |
+
{
|
2799 |
+
"epoch": 0.7640019147917664,
|
2800 |
+
"grad_norm": 0.8742430806159973,
|
2801 |
+
"learning_rate": 1.4644660940672628e-06,
|
2802 |
+
"loss": 0.4432,
|
2803 |
+
"step": 399
|
2804 |
+
},
|
2805 |
+
{
|
2806 |
+
"epoch": 0.7659167065581618,
|
2807 |
+
"grad_norm": 0.7761980891227722,
|
2808 |
+
"learning_rate": 1.4421435991674e-06,
|
2809 |
+
"loss": 0.3758,
|
2810 |
+
"step": 400
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 0.7678314983245572,
|
2814 |
+
"grad_norm": 0.7524036765098572,
|
2815 |
+
"learning_rate": 1.4199638369263858e-06,
|
2816 |
+
"loss": 0.3245,
|
2817 |
+
"step": 401
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 0.7697462900909526,
|
2821 |
+
"grad_norm": 0.7230050563812256,
|
2822 |
+
"learning_rate": 1.3979276971430406e-06,
|
2823 |
+
"loss": 0.3425,
|
2824 |
+
"step": 402
|
2825 |
+
},
|
2826 |
+
{
|
2827 |
+
"epoch": 0.771661081857348,
|
2828 |
+
"grad_norm": 0.7610206604003906,
|
2829 |
+
"learning_rate": 1.3760360638544012e-06,
|
2830 |
+
"loss": 0.3937,
|
2831 |
+
"step": 403
|
2832 |
+
},
|
2833 |
+
{
|
2834 |
+
"epoch": 0.7735758736237435,
|
2835 |
+
"grad_norm": 0.7698909044265747,
|
2836 |
+
"learning_rate": 1.3542898153002453e-06,
|
2837 |
+
"loss": 0.3779,
|
2838 |
+
"step": 404
|
2839 |
+
},
|
2840 |
+
{
|
2841 |
+
"epoch": 0.7754906653901388,
|
2842 |
+
"grad_norm": 0.8300687074661255,
|
2843 |
+
"learning_rate": 1.3326898238878716e-06,
|
2844 |
+
"loss": 0.3935,
|
2845 |
+
"step": 405
|
2846 |
+
},
|
2847 |
+
{
|
2848 |
+
"epoch": 0.7774054571565342,
|
2849 |
+
"grad_norm": 0.8494259119033813,
|
2850 |
+
"learning_rate": 1.3112369561570842e-06,
|
2851 |
+
"loss": 0.3942,
|
2852 |
+
"step": 406
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 0.7793202489229296,
|
2856 |
+
"grad_norm": 0.799608051776886,
|
2857 |
+
"learning_rate": 1.2899320727454472e-06,
|
2858 |
+
"loss": 0.3656,
|
2859 |
+
"step": 407
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 0.781235040689325,
|
2863 |
+
"grad_norm": 0.7479242086410522,
|
2864 |
+
"learning_rate": 1.2687760283537414e-06,
|
2865 |
+
"loss": 0.3872,
|
2866 |
+
"step": 408
|
2867 |
+
},
|
2868 |
+
{
|
2869 |
+
"epoch": 0.7831498324557205,
|
2870 |
+
"grad_norm": 0.819091260433197,
|
2871 |
+
"learning_rate": 1.2477696717116878e-06,
|
2872 |
+
"loss": 0.435,
|
2873 |
+
"step": 409
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 0.7850646242221159,
|
2877 |
+
"grad_norm": 0.7904211282730103,
|
2878 |
+
"learning_rate": 1.226913845543895e-06,
|
2879 |
+
"loss": 0.3816,
|
2880 |
+
"step": 410
|
2881 |
+
},
|
2882 |
+
{
|
2883 |
+
"epoch": 0.7869794159885113,
|
2884 |
+
"grad_norm": 0.8518757224082947,
|
2885 |
+
"learning_rate": 1.2062093865360458e-06,
|
2886 |
+
"loss": 0.4488,
|
2887 |
+
"step": 411
|
2888 |
+
},
|
2889 |
+
{
|
2890 |
+
"epoch": 0.7888942077549067,
|
2891 |
+
"grad_norm": 0.7703585624694824,
|
2892 |
+
"learning_rate": 1.1856571253013393e-06,
|
2893 |
+
"loss": 0.3682,
|
2894 |
+
"step": 412
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 0.790808999521302,
|
2898 |
+
"grad_norm": 0.8257085084915161,
|
2899 |
+
"learning_rate": 1.1652578863471664e-06,
|
2900 |
+
"loss": 0.4066,
|
2901 |
+
"step": 413
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 0.7927237912876974,
|
2905 |
+
"grad_norm": 0.7721326947212219,
|
2906 |
+
"learning_rate": 1.145012488042026e-06,
|
2907 |
+
"loss": 0.3646,
|
2908 |
+
"step": 414
|
2909 |
+
},
|
2910 |
+
{
|
2911 |
+
"epoch": 0.7946385830540929,
|
2912 |
+
"grad_norm": 0.9803063869476318,
|
2913 |
+
"learning_rate": 1.1249217425827063e-06,
|
2914 |
+
"loss": 0.4747,
|
2915 |
+
"step": 415
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 0.7965533748204883,
|
2919 |
+
"grad_norm": 0.8374215364456177,
|
2920 |
+
"learning_rate": 1.1049864559616885e-06,
|
2921 |
+
"loss": 0.4058,
|
2922 |
+
"step": 416
|
2923 |
+
},
|
2924 |
+
{
|
2925 |
+
"epoch": 0.7984681665868837,
|
2926 |
+
"grad_norm": 0.7948795557022095,
|
2927 |
+
"learning_rate": 1.0852074279348234e-06,
|
2928 |
+
"loss": 0.3775,
|
2929 |
+
"step": 417
|
2930 |
+
},
|
2931 |
+
{
|
2932 |
+
"epoch": 0.8003829583532791,
|
2933 |
+
"grad_norm": 0.7910585403442383,
|
2934 |
+
"learning_rate": 1.0655854519892367e-06,
|
2935 |
+
"loss": 0.3807,
|
2936 |
+
"step": 418
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 0.8022977501196745,
|
2940 |
+
"grad_norm": 0.793566107749939,
|
2941 |
+
"learning_rate": 1.046121315311508e-06,
|
2942 |
+
"loss": 0.3939,
|
2943 |
+
"step": 419
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 0.8042125418860699,
|
2947 |
+
"grad_norm": 0.7918801307678223,
|
2948 |
+
"learning_rate": 1.0268157987560773e-06,
|
2949 |
+
"loss": 0.4003,
|
2950 |
+
"step": 420
|
2951 |
+
}
|
2952 |
+
],
|
2953 |
+
"logging_steps": 1,
|
2954 |
+
"max_steps": 522,
|
2955 |
+
"num_input_tokens_seen": 0,
|
2956 |
+
"num_train_epochs": 1,
|
2957 |
+
"save_steps": 105,
|
2958 |
+
"stateful_callbacks": {
|
2959 |
+
"TrainerControl": {
|
2960 |
+
"args": {
|
2961 |
+
"should_epoch_stop": false,
|
2962 |
+
"should_evaluate": false,
|
2963 |
+
"should_log": false,
|
2964 |
+
"should_save": true,
|
2965 |
+
"should_training_stop": false
|
2966 |
+
},
|
2967 |
+
"attributes": {}
|
2968 |
+
}
|
2969 |
+
},
|
2970 |
+
"total_flos": 2.2094028312097587e+17,
|
2971 |
+
"train_batch_size": 8,
|
2972 |
+
"trial_name": null,
|
2973 |
+
"trial_params": null
|
2974 |
+
}
|
checkpoint-420/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:103fd3bb469213774a4b43139febd5a468076d3935b2ed67984e8c9a1aaaa004
|
3 |
+
size 10936
|
checkpoint-420/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-420/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-522/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|