--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013CKPlus-7e-05 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013CKPlus-7e-05 This model is a fine-tuned version of [lixiqi/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05](https://huggingface.co/lixiqi/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0127 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9364 | 0.97 | 27 | 0.1873 | 0.9645 | | 0.3365 | 1.97 | 54 | 0.0951 | 0.9848 | | 0.2482 | 2.97 | 81 | 0.0562 | 0.9949 | | 0.1844 | 3.97 | 108 | 0.0213 | 0.9949 | | 0.1693 | 4.97 | 135 | 0.0127 | 1.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1