Charlie019 commited on
Commit
5b1111a
·
verified ·
1 Parent(s): 4a7a12c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -3
README.md CHANGED
@@ -1,3 +1,56 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ # Learnable SMPLify: A Neural Solution for Optimization-Free Human Pose Inverse Kinematics
5
+
6
+ #### <p align="center">[arXiv Paper](https://arxiv.org/abs/2508.13562)</p>
7
+
8
+ ``TL;DR`` Given X_{t-s} and X_{t} 3D keypoints,
9
+ calculate residual SMPL parameters from t-s to t.
10
+
11
+ ## Preparation
12
+ Refer to [PREPARATION.md](doc/PREPARATION.md) for installation and data preparation details.
13
+
14
+ ## Checkpoints
15
+ The pretrained model checkpoint is available at [Google Drive](https://drive.google.com/drive/folders/1oyG2gbB3EMcc6NgTIT1p1uJ_Em0dJwXz?usp=sharing).
16
+
17
+ ## Usage
18
+ ### Training
19
+ cd to `src` folder and run the following command.
20
+
21
+ ```
22
+ torchrun --nproc-per-node <NUM_GPUS> main.py --config configs/net.yaml (--extra_tag <EXTRA_TAG> --batch_size <BATCH_SIZE> --epochs <EPOCHS>)
23
+ ```
24
+
25
+ You can get logs, tensorboard and checkpoints in the corresponding `logs/<MODEL_NAME>_net_<EXTRA_TAG>` folder.
26
+
27
+ ### Evaluation
28
+ To evaluate the model, run the following command:
29
+
30
+ ```
31
+ torchrun --nproc-per-node <NUM_GPUS> main.py --config configs/net.yaml --eval --checkpoint <PATH_TO_CHECKPOINT>
32
+ ```
33
+
34
+ ### Sequential Inference
35
+ To run sequential inference, you can use the following command:
36
+
37
+ ```
38
+ python inference.py <PATH_TO_CHECKPOINT> (<DATASET_NAME> <SAMPLE_RATIO>)
39
+ ```
40
+
41
+ ## Citation
42
+ If you find this work useful in your research, please consider citing:
43
+
44
+ ```
45
+ @misc{LearnableSMPLify,
46
+ title={Learnable SMPLify: A Neural Solution for Optimization-Free Human Pose Inverse Kinematics},
47
+ author={Yuchen, Yang and Linfeng, Dong and Wei, Wang and Zhihang, Zhong and Xiao, Sun},
48
+ year={2025},
49
+ eprint={2508.13562},
50
+ archivePrefix={arXiv},
51
+ primaryClass={cs.CV}
52
+ }
53
+ ```
54
+
55
+ ## Acknowledgement
56
+ We thank the authors of [ST-GCN](https://github.com/open-mmlab/mmskeleton), [ReFit](https://github.com/yufu-wang/ReFit), [OSX](https://github.com/IDEA-Research/OSX/tree/main) for their great works. We partially refer to their codebases for this project.