File size: 4,358 Bytes
92f7053 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
noise:
type: loglinear
sigma_min: 1e-4
sigma_max: 20
state_dependent: True
mode: ppl_eval # train / ppl_eval / sample_eval
diffusion: absorbing_state
vocab: old_smiles # old_smiles / new_smiles / selfies / helm
backbone: roformer # peptideclm / helmgpt / dit / roformer / finetune_roformer
parameterization: subs # subs
time_conditioning: False
T: 0 # 0 (continuous time) / 1000
subs_masking: False
seed: 42
mcts:
num_children: 50
num_objectives: 5
topk: 100
mask_token: 4
num_iter: 128
sampling: 0 # 0 is gumbel sampling / > 0 samples children from top k probs
invalid_penalty: 0.5
sample_prob: 1.0
perm: True
dual: False
single: False
time_dependent: True
lr_scheduler:
_target_: transformers.get_constant_schedule_with_warmup
num_warmup_steps: 2500
data:
train: /home/st512/peptune/scripts/peptide-mdlm-mcts/data/finetune2/30K-train.csv
valid: /home/st512/peptune/scripts/peptide-mdlm-mcts/data/finetune2/30K-val.csv
batchinohup ng: wrapping # padding / wrapping
loader:
global_batch_size: 64
eval_global_batch_size: ${.global_batch_size}
# Note: batch_size and eval_batch_size are **per machine**
batch_size: ${div_up:${.global_batch_size}, ${eval:${trainer.devices} * ${trainer.num_nodes}}}
eval_batch_size: ${div_up:${.eval_global_batch_size}, ${eval:${trainer.devices} * ${trainer.num_nodes}}}
num_workers: ${eval:"len(__import__('os').sched_getaffinity(0))"}
pin_memory: True
sampling:
predictor: ddpm_cache # analytic, ddpm, ddpm_cache
num_sequences: 100
sampling_eps: 1e-3
steps: 128
seq_length: 100
noise_removal: True
num_sample_batches: 2 # Total samples: `num_gpus` * `loader.eval_batch_size` * num_sample_batches
num_sample_log: 2
stride_length: 1
num_strides: 1
training:
antithetic_sampling: True
sampling_eps: 1e-3
focus_mask: False
#dynamic_batching: True
accumulator: False
eval:
checkpoint_path: /home/st512/peptune/scripts/peptide-mdlm-mcts/checkpoints/11M-old-tokenizer/epoch=10-step=156276.ckpt
disable_ema: False
compute_generative_perplexity: False
perplexity_batch_size: 8
compute_perplexity_on_sanity: False
gen_ppl_eval_model_name_or_path: gpt2-large # gpt2-large, meta-llama/Llama-2-7b-hf
generate_samples: True
generation_model: /home/st512/peptune/scripts/peptide-mdlm-mcts/checkpoints/11M-old-tokenizer/
optim:
weight_decay: 0.075
lr: 3e-4
beta1: 0.9
beta2: 0.999
eps: 1e-8
pepclm:
hidden_size: 768
cond_dim: 256
n_heads: 20
n_blocks: 4
dropout: 0.5
length: 512
#scale_by_sigma: True
model:
type: ddit
hidden_size: 768
cond_dim: 128
length: 512
n_blocks: 12
n_heads: 12
scale_by_sigma: True
dropout: 0.1
roformer:
hidden_size: 768
n_layers: 8
n_heads: 8
max_position_embeddings: 1035
helmgpt:
hidden_size: 256
embd_pdrop: 0.1
resid_pdrop: 0.1
attn_pdrop: 0.1
ff_dropout: 0.
block_size: 140
n_layer: 8
n_heads: 8
trainer:
_target_: lightning.Trainer
accelerator: cuda
num_nodes: 1
devices: ${device_count:}
accumulate_grad_batches: ${div_up:${loader.global_batch_size}, ${eval:${trainer.devices} * ${loader.batch_size} * ${trainer.num_nodes}}}
gradient_clip_val: 1.0
precision: 64-true
num_sanity_val_steps: 2
max_epochs: 100
max_steps: 1_000_000
log_every_n_steps: 10
limit_train_batches: 1.0 # train on full dataset, can be used to toggle quick run
limit_val_batches: 1.0 # validate on full dataset, can be used to toggle quick run
#val_check_interval: 40 #954
check_val_every_n_epoch: 1
wandb:
project: peptune
notes: null
group: null
job_type: null
name: sophia-tang
id: ${.name}_nov12_set2
hydra:
run:
dir: ./${now:%Y.%m.%d}/
job:
chdir: True
checkpointing:
# Use custom `save_dir` if, e.g., saving to S3 bucket, otherwise leave this parameter as is
save_dir: ${cwd:}
# Note: `checkpoints` path should correspond to `checkpoint_every_n_steps.dirpath`
resume_from_ckpt: True
resume_ckpt_path: /home/st512/peptune/scripts/peptide-mdlm-mcts/checkpoints/11M-old-tokenizer/epoch=7-step=108225.ckpt
callbacks:
model_checkpoint:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
every_n_epochs: 1
monitor: "val/nll"
save_top_k: 10
mode: "min"
dirpath: '/home/st512/peptune/scripts/peptide-mdlm-mcts/checkpoints/11M-old-tokenizer'
|