|
|
|
|
|
import torch
|
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
from datasets import Dataset,load_from_disk
|
|
|
import sys
|
|
|
import lightning.pytorch as pl
|
|
|
from tokenizer.my_tokenizers import SMILES_SPE_Tokenizer
|
|
|
from functools import partial
|
|
|
import re
|
|
|
|
|
|
|
|
|
class DynamicBatchingDataset(Dataset):
|
|
|
def __init__(self, dataset_dict, tokenizer):
|
|
|
print('Initializing dataset...')
|
|
|
self.dataset_dict = {
|
|
|
'attention_mask': [torch.tensor(item) for item in dataset_dict['attention_mask']],
|
|
|
'input_ids': [torch.tensor(item) for item in dataset_dict['input_ids']],
|
|
|
'labels': dataset_dict['labels']
|
|
|
}
|
|
|
self.tokenizer = tokenizer
|
|
|
|
|
|
def __len__(self):
|
|
|
return len(self.dataset_dict['attention_mask'])
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
if isinstance(idx, int):
|
|
|
return {
|
|
|
'input_ids': self.dataset_dict['input_ids'][idx],
|
|
|
'attention_mask': self.dataset_dict['attention_mask'][idx],
|
|
|
'labels': self.dataset_dict['labels'][idx]
|
|
|
}
|
|
|
elif isinstance(idx, list):
|
|
|
return {
|
|
|
'input_ids': [self.dataset_dict['input_ids'][i] for i in idx],
|
|
|
'attention_mask': [self.dataset_dict['attention_mask'][i] for i in idx],
|
|
|
'labels': [self.dataset_dict['labels'][i] for i in idx]
|
|
|
}
|
|
|
else:
|
|
|
raise ValueError(f"Expected idx to be int or list, but got {type(idx)}")
|
|
|
|
|
|
class CustomDataModule(pl.LightningDataModule):
|
|
|
def __init__(self, dataset_path, tokenizer):
|
|
|
super().__init__()
|
|
|
self.dataset = load_from_disk(dataset_path)
|
|
|
self.tokenizer = tokenizer
|
|
|
|
|
|
def peptide_bond_mask(self, smiles_list):
|
|
|
"""
|
|
|
Returns a mask with shape (batch_size, seq_length) that has 1 at the locations
|
|
|
of recognized bonds in the positions dictionary and 0 elsewhere.
|
|
|
|
|
|
Args:
|
|
|
smiles_list: List of peptide SMILES strings (batch of SMILES strings).
|
|
|
|
|
|
Returns:
|
|
|
np.ndarray: A mask of shape (batch_size, seq_length) with 1s at bond positions.
|
|
|
"""
|
|
|
|
|
|
batch_size = len(smiles_list)
|
|
|
max_seq_length = 1035
|
|
|
mask = torch.zeros((batch_size, max_seq_length), dtype=torch.int)
|
|
|
|
|
|
bond_patterns = [
|
|
|
(r'OC\(=O\)', 'ester'),
|
|
|
(r'N\(C\)C\(=O\)', 'n_methyl'),
|
|
|
(r'N[12]C\(=O\)', 'peptide'),
|
|
|
(r'NC\(=O\)', 'peptide'),
|
|
|
(r'C\(=O\)N\(C\)', 'n_methyl'),
|
|
|
(r'C\(=O\)N[12]?', 'peptide')
|
|
|
]
|
|
|
|
|
|
for batch_idx, smiles in enumerate(smiles_list):
|
|
|
positions = []
|
|
|
used = set()
|
|
|
|
|
|
|
|
|
for pattern, bond_type in bond_patterns:
|
|
|
for match in re.finditer(pattern, smiles):
|
|
|
if not any(p in range(match.start(), match.end()) for p in used):
|
|
|
positions.append({
|
|
|
'start': match.start(),
|
|
|
'end': match.end(),
|
|
|
'type': bond_type,
|
|
|
'pattern': match.group()
|
|
|
})
|
|
|
used.update(range(match.start(), match.end()))
|
|
|
|
|
|
|
|
|
for pos in positions:
|
|
|
mask[batch_idx, pos['start']:pos['end']] = 1
|
|
|
|
|
|
return mask
|
|
|
|
|
|
def peptide_token_mask(self, smiles_list, token_lists):
|
|
|
"""
|
|
|
Returns a mask with shape (batch_size, num_tokens) that has 1 for tokens
|
|
|
where any part of the token overlaps with a peptide bond, and 0 elsewhere.
|
|
|
|
|
|
Args:
|
|
|
smiles_list: List of peptide SMILES strings (batch of SMILES strings).
|
|
|
token_lists: List of tokenized SMILES strings (split into tokens).
|
|
|
|
|
|
Returns:
|
|
|
np.ndarray: A mask of shape (batch_size, num_tokens) with 1s for peptide bond tokens.
|
|
|
"""
|
|
|
|
|
|
batch_size = len(smiles_list)
|
|
|
token_seq_length = max(len(tokens) for tokens in token_lists)
|
|
|
tokenized_masks = torch.zeros((batch_size, token_seq_length), dtype=torch.int)
|
|
|
atomwise_masks = self.peptide_bond_mask(smiles_list)
|
|
|
|
|
|
|
|
|
for batch_idx, atomwise_mask in enumerate(atomwise_masks):
|
|
|
token_seq = token_lists[batch_idx]
|
|
|
atom_idx = 0
|
|
|
|
|
|
for token_idx, token in enumerate(token_seq):
|
|
|
if token_idx != 0 and token_idx != len(token_seq) - 1:
|
|
|
if torch.sum(atomwise_mask[atom_idx:atom_idx+len(token)]) >= 1:
|
|
|
tokenized_masks[batch_idx][token_idx] = 1
|
|
|
atom_idx += len(token)
|
|
|
|
|
|
return tokenized_masks
|
|
|
|
|
|
def collate_fn(self, batch):
|
|
|
item = batch[0]
|
|
|
|
|
|
token_array = self.tokenizer.get_token_split(item['input_ids'])
|
|
|
bond_mask = self.peptide_token_mask(item['labels'], token_array)
|
|
|
|
|
|
return {
|
|
|
'input_ids': item['input_ids'],
|
|
|
'attention_mask': item['attention_mask'],
|
|
|
'bond_mask': bond_mask
|
|
|
}
|
|
|
|
|
|
def train_dataloader(self):
|
|
|
train_dataset = DynamicBatchingDataset(self.dataset['train'], tokenizer=self.tokenizer)
|
|
|
return DataLoader(
|
|
|
train_dataset,
|
|
|
batch_size=1,
|
|
|
collate_fn=self.collate_fn,
|
|
|
shuffle=True,
|
|
|
num_workers=12,
|
|
|
pin_memory=True
|
|
|
)
|
|
|
|
|
|
def val_dataloader(self):
|
|
|
val_dataset = DynamicBatchingDataset(self.dataset['val'], tokenizer=self.tokenizer)
|
|
|
return DataLoader(
|
|
|
val_dataset,
|
|
|
batch_size=1,
|
|
|
collate_fn=self.collate_fn,
|
|
|
num_workers=8,
|
|
|
pin_memory=True
|
|
|
)
|
|
|
|