PepTune / scoring /scoring_functions.py
Sophia Tang
model upload
e54915d
import sys
sys.path.append('/home/st512/peptune/scripts/peptide-mdlm-mcts')
import io
import subprocess
import warnings
import numpy as np
import pandas as pd
from typing import List
from loguru import logger
from tqdm import tqdm
from rdkit import Chem, rdBase, DataStructs
from rdkit.Chem import AllChem
import torch
from scoring.functions.binding.binding import BindingAffinity
from scoring.functions.permeability.permeability import Permeability
from scoring.functions.solubility.solubility import Solubility
from scoring.functions.hemolysis.hemolysis import Hemolysis
from scoring.functions.nonfouling.nonfouling import Nonfouling
class ScoringFunctions:
def __init__(self, score_func_names=None, prot_seqs=[]):
"""
Class for generating score vectors given generated sequence
Args:
score_func_names: list of scoring function names to be evaluated
score_weights: weights to scale scores (default: 1)
target_protein: sequence of target protein binder
"""
if score_func_names is None:
# just do unmasking based on validity of peptide bonds
self.score_func_names = []
else:
self.score_func_names = score_func_names
# self.weights = np.array([1] * len(self.score_func_names) if score_weights is None else score_weights)
# binding affinities
self.target_protein = prot_seqs
print(len(prot_seqs))
if ('binding_affinity1' in score_func_names) and (len(prot_seqs) == 1):
binding_affinity1 = BindingAffinity(prot_seqs[0])
binding_affinity2 = None
elif ('binding_affinity1' in score_func_names) and ('binding_affinity2' in score_func_names) and (len(prot_seqs) == 2):
binding_affinity1 = BindingAffinity(prot_seqs[0])
binding_affinity2 = BindingAffinity(prot_seqs[1])
else:
print("here")
binding_affinity1 = None
binding_affinity2 = None
permeability = Permeability()
sol = Solubility()
nonfouling = Nonfouling()
hemo = Hemolysis()
self.all_funcs = {'binding_affinity1': binding_affinity1,
'binding_affinity2': binding_affinity2,
'permeability': permeability,
'nonfouling': nonfouling,
'solubility': sol,
'hemolysis': hemo
}
def forward(self, input_seqs):
scores = []
for i, score_func in enumerate(self.score_func_names):
score = self.all_funcs[score_func](input_seqs = input_seqs)
scores.append(score)
# convert to numpy arrays with shape (num_sequences, num_functions)
scores = np.float32(scores).T
return scores
def __call__(self, input_seqs: list):
return self.forward(input_seqs)
def unittest():
amhr = 'MLGSLGLWALLPTAVEAPPNRRTCVFFEAPGVRGSTKTLGELLDTGTELPRAIRCLYSRCCFGIWNLTQDRAQVEMQGCRDSDEPGCESLHCDPSPRAHPSPGSTLFTCSCGTDFCNANYSHLPPPGSPGTPGSQGPQAAPGESIWMALVLLGLFLLLLLLLGSIILALLQRKNYRVRGEPVPEPRPDSGRDWSVELQELPELCFSQVIREGGHAVVWAGQLQGKLVAIKAFPPRSVAQFQAERALYELPGLQHDHIVRFITASRGGPGRLLSGPLLVLELHPKGSLCHYLTQYTSDWGSSLRMALSLAQGLAFLHEERWQNGQYKPGIAHRDLSSQNVLIREDGSCAIGDLGLALVLPGLTQPPAWTPTQPQGPAAIMEAGTQRYMAPELLDKTLDLQDWGMALRRADIYSLALLLWEILSRCPDLRPDSSPPPFQLAYEAELGNTPTSDELWALAVQERRRPYIPSTWRCFATDPDGLRELLEDCWDADPEARLTAECVQQRLAALAHPQESHPFPESCPRGCPPLCPEDCTSIPAPTILPCRPQRSACHFSVQQGPCSRNPQPACTLSPV'
tfr = 'MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEEENADNNTKANVTKPKRCSGSICYGTIAVIVFFLIGFMIGYLGYCKGVEPKTECERLAGTESPVREEPGEDFPAARRLYWDDLKRKLSEKLDSTDFTGTIKLLNENSYVPREAGSQKDENLALYVENQFREFKLSKVWRDQHFVKIQVKDSAQNSVIIVDKNGRLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFEDLYTPVNGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVNAELSFFGHAHLGTGDPYTPGFPSFNHTQFPPSRSSGLPNIPVQTISRAAAEKLFGNMEGDCPSDWKTDSTCRMVTSESKNVKLTVSNVLKEIKILNIFGVIKGFVEPDHYVVVGAQRDAWGPGAAKSGVGTALLLKLAQMFSDMVLKDGFQPSRSIIFASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLGTSNFKVSASPLLYTLIEKTMQNVKHPVTGQFLYQDSNWASKVEKLTLDNAAFPFLAYSGIPAVSFCFCEDTDYPYLGTTMDTYKELIERIPELNKVARAAAEVAGQFVIKLTHDVELNLDYERYNSQLLSFVRDLNQYRADIKEMGLSLQWLYSARGDFFRATSRLTTDFGNAEKTDRFVMKKLNDRVMRVEYHFLSPYVSPKESPFRHVFWGSGSHTLPALLENLKLRKQNNGAFNETLFRNQLALATWTIQGAANALSGDVWDIDNEF'
gfap = 'MERRRITSAARRSYVSSGEMMVGGLAPGRRLGPGTRLSLARMPPPLPTRVDFSLAGALNAGFKETRASERAEMMELNDRFASYIEKVRFLEQQNKALAAELNQLRAKEPTKLADVYQAELRELRLRLDQLTANSARLEVERDNLAQDLATVRQKLQDETNLRLEAENNLAAYRQEADEATLARLDLERKIESLEEEIRFLRKIHEEEVRELQEQLARQQVHVELDVAKPDLTAALKEIRTQYEAMASSNMHEAEEWYRSKFADLTDAAARNAELLRQAKHEANDYRRQLQSLTCDLESLRGTNESLERQMREQEERHVREAASYQEALARLEEEGQSLKDEMARHLQEYQDLLNVKLALDIEIATYRKLLEGEENRITIPVQTFSNLQIRETSLDTKSVSEGHLKRNIVVKTVEMRDGEVIKESKQEHKDVM'
glp1 = 'MAGAPGPLRLALLLLGMVGRAGPRPQGATVSLWETVQKWREYRRQCQRSLTEDPPPATDLFCNRTFDEYACWPDGEPGSFVNVSCPWYLPWASSVPQGHVYRFCTAEGLWLQKDNSSLPWRDLSECEESKRGERSSPEEQLLFLYIIYTVGYALSFSALVIASAILLGFRHLHCTRNYIHLNLFASFILRALSVFIKDAALKWMYSTAAQQHQWDGLLSYQDSLSCRLVFLLMQYCVAANYYWLLVEGVYLYTLLAFSVLSEQWIFRLYVSIGWGVPLLFVVPWGIVKYLYEDEGCWTRNSNMNYWLIIRLPILFAIGVNFLIFVRVICIVVSKLKANLMCKTDIKCRLAKSTLTLIPLLGTHEVIFAFVMDEHARGTLRFIKLFTELSFTSFQGLMVAILYCFVNNEVQLEFRKSWERWRLEHLHIQRDSSMKPLKCPTSSLSSGATAGSSMYTATCQASCS'
glast = 'MTKSNGEEPKMGGRMERFQQGVRKRTLLAKKKVQNITKEDVKSYLFRNAFVLLTVTAVIVGTILGFTLRPYRMSYREVKYFSFPGELLMRMLQMLVLPLIISSLVTGMAALDSKASGKMGMRAVVYYMTTTIIAVVIGIIIVIIIHPGKGTKENMHREGKIVRVTAADAFLDLIRNMFPPNLVEACFKQFKTNYEKRSFKVPIQANETLVGAVINNVSEAMETLTRITEELVPVPGSVNGVNALGLVVFSMCFGFVIGNMKEQGQALREFFDSLNEAIMRLVAVIMWYAPVGILFLIAGKIVEMEDMGVIGGQLAMYTVTVIVGLLIHAVIVLPLLYFLVTRKNPWVFIGGLLQALITALGTSSSSATLPITFKCLEENNGVDKRVTRFVLPVGATINMDGTALYEALAAIFIAQVNNFELNFGQIITISITATAASIGAAGIPQAGLVTMVIVLTSVGLPTDDITLIIAVDWFLDRLRTTTNVLGDSLGAGIVEHLSRHELKNRDVEMGNSVIEENEMKKPYQLIAQDNETEKPIDSETKM'
ncam = 'LQTKDLIWTLFFLGTAVSLQVDIVPSQGEISVGESKFFLCQVAGDAKDKDISWFSPNGEKLTPNQQRISVVWNDDSSSTLTIYNANIDDAGIYKCVVTGEDGSESEATVNVKIFQKLMFKNAPTPQEFREGEDAVIVCDVVSSLPPTIIWKHKGRDVILKKDVRFIVLSNNYLQIRGIKKTDEGTYRCEGRILARGEINFKDIQVIVNVPPTIQARQNIVNATANLGQSVTLVCDAEGFPEPTMSWTKDGEQIEQEEDDEKYIFSDDSSQLTIKKVDKNDEAEYICIAENKAGEQDATIHLKVFAKPKITYVENQTAMELEEQVTLTCEASGDPIPSITWRTSTRNISSEEKASWTRPEKQETLDGHMVVRSHARVSSLTLKSIQYTDAGEYICTASNTIGQDSQSMYLEVQYAPKLQGPVAVYTWEGNQVNITCEVFAYPSATISWFRDGQLLPSSNYSNIKIYNTPSASYLEVTPDSENDFGNYNCTAVNRIGQESLEFILVQADTPSSPSIDQVEPYSSTAQVQFDEPEATGGVPILKYKAEWRAVGEEVWHSKWYDAKEASMEGIVTIVGLKPETTYAVRLAALNGKGLGEISAASEF'
cereblon = 'MAGEGDQQDAAHNMGNHLPLLPAESEEEDEMEVEDQDSKEAKKPNIINFDTSLPTSHTYLGADMEEFHGRTLHDDDSCQVIPVLPQVMMILIPGQTLPLQLFHPQEVSMVRNLIQKDRTFAVLAYSNVQEREAQFGTTAEIYAYREEQDFGIEIVKVKAIGRQRFKVLELRTQSDGIQQAKVQILPECVLPSTMSAVQLESLNKCQIFPSKPVSREDQCSYKWWQKYQKRKFHCANLTSWPRWLYSLYDAETLMDRIKKQLREWDENLKDDSLPSNPIDFSYRVAACLPIDDVLRIQLLKIGSAIQRLRCELDIMNKCTSLCCKQCQETEITTKNEIFSLSLCGPMAAYVNPHGYVHETLTVYKACNLNLIGRPSTEHSWFPGYAWTVAQCKICASHIGWKFTATKKDMSPQKFWGLTRSALLPTIPDTEDEISPDKVILCL'
num_iter = 0
score_func_times = [0, 1, 2, 3, 4, 5]
scoring = ScoringFunctions(score_func_names=['binding_affinity1', 'solubility', 'hemolysis', 'nonfouling', 'permeability'], prot_seqs=[tfr])
smiles = ['N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](Cc1ccccc1C(F)(F)F)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC1=CN=C-N1)C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCCNC(=N)N)C(=O)N[C@@H](CC(=O)N)C2(=O)']
scores = scoring(input_seqs=smiles)
print(scores)
print(len(scores))
if __name__ == '__main__':
unittest()