Yinuo Zhang
commited on
Commit
·
d65f3a2
1
Parent(s):
d79b4f8
upload data
Browse files- __pycache__/dataset.cpython-310.pyc +0 -0
- __pycache__/main.cpython-310.pyc +0 -0
- __pycache__/main.cpython-313.pyc +0 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/dataset_dict.json +1 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00000-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00001-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00002-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00003-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00004-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00005-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00006-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00007-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00008-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00009-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00010-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00011-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00012-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00013-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00014-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00015-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00016-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00017-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00018-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00019-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00020-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00021-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00022-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00023-of-00024.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/dataset_info.json +35 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/train/state.json +82 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00000-of-00012.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00001-of-00012.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00002-of-00012.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00003-of-00012.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00004-of-00012.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00005-of-00012.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00006-of-00012.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00007-of-00012.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00008-of-00012.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00009-of-00012.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00010-of-00012.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00011-of-00012.arrow +3 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/dataset_info.json +35 -0
- data/smiles/11M_smiles_old_tokenizer_no_limit/val/state.json +46 -0
- dataset.py +1 -1
- main.py +166 -165
- utils/.ipynb_checkpoints/app-checkpoint.py +1255 -0
__pycache__/dataset.cpython-310.pyc
ADDED
|
Binary file (6.26 kB). View file
|
|
|
__pycache__/main.cpython-310.pyc
ADDED
|
Binary file (7.41 kB). View file
|
|
|
__pycache__/main.cpython-313.pyc
ADDED
|
Binary file (13.1 kB). View file
|
|
|
data/smiles/11M_smiles_old_tokenizer_no_limit/dataset_dict.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"splits": ["train", "val"]}
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00000-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b2871015033b5ee02228dbaa80ad9939a7902b062b9b10bdc6bc27f69fe8cd2e
|
| 3 |
+
size 477588328
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00001-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:286ae4a066882217ff95c91ca5315427ce1a9a8e0a11e72a9646beb9d8d286b0
|
| 3 |
+
size 464191456
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00002-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a88f73782ad97f90ea04198cdf1d9f1d685d812026f298edaea9ce9beca00570
|
| 3 |
+
size 479308880
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00003-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd3615d74a0d36c86df8d6056d7203ba8a6caabf5c09a83192c6712bb4bd75d1
|
| 3 |
+
size 492330784
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00004-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7bb43f10e018b88dbbc8148cf8575cc31ec87cd05b7c7c66fc3ffa70d23a298
|
| 3 |
+
size 491461384
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00005-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:473af91a61fdbb15570789c55cb85e3425f505e4895448a1babcd68abfeacacf
|
| 3 |
+
size 490155080
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00006-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be40dce89b1ecd5b5476d491f252e4852c9a9369e48162b4ef7797c13f8508f5
|
| 3 |
+
size 489402848
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00007-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:994f608ee9089d45f43c3e577afc73597855c98e42436621f5b8a9f4d1959fd4
|
| 3 |
+
size 488308088
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00008-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13f1a9ef28679b02cdf49b5fb26401b6a6fd819ce26b2d6ef4c9cc8486b5e5a8
|
| 3 |
+
size 488565816
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00009-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:42fab66a9a83a5b7ab14f4d01949e5591168d3bdc37ab76f3abcda043b63c0b8
|
| 3 |
+
size 487136800
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00010-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:09b5a103a3d305405890db95b82de8624cf57944a12bb7fe3b24644af3ef96bb
|
| 3 |
+
size 487375280
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00011-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95cec0ffca845fb12bcd511f876f98dfd8ef8420a9e0ec030547ed6bde47210a
|
| 3 |
+
size 486001120
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00012-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37149287fd5f4e70df2d00dc54b0db0c5f4e590b449b69b3553ebb00ff8ae208
|
| 3 |
+
size 485408104
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00013-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a16996dc09ccca1e1c3e9063e4dadb3b6329ad4081f35454bd261c0de774a911
|
| 3 |
+
size 485633824
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00014-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:77f4beaefc1a08ae233e2ab5644e103af3f0c11284b0b49553d1c11c884ef69f
|
| 3 |
+
size 485841176
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00015-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:27d38dbf2c523723e5f3e29416ebca7a70b0002124372e2d40796bbaec966456
|
| 3 |
+
size 484020296
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00016-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d0931dd1c981afabcc52e6ace64b986b7683e244be585cf5598c7cbe3165308b
|
| 3 |
+
size 484883888
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00017-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2e0002265365f32697aa9b970443b6a4b4bdbf245fdafc30f4cececb6a7d40ee
|
| 3 |
+
size 483414096
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00018-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c9ed92e0b1c0b107eb1386dd6c498ee8df15b42a079bb80650b26f2de3b75475
|
| 3 |
+
size 481238056
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00019-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d61618770e6ebad69b32e7d3b0b93a94cf2ea9cbc467cedf1fcccb1dbad6c2c
|
| 3 |
+
size 481634360
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00020-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:996aeae99180d8d4c3e3c1db18bfc12f37707d47d584e68255edb71e9ebc99da
|
| 3 |
+
size 483933744
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00021-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37561a782f79cf1cce57a63cd6a429cf0cebba33f6c4339d2e75f4e63da00217
|
| 3 |
+
size 481501560
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00022-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fc4e8f69b678826007870368b3bd9b4a46f4f055aaeabfecb6dc4ca946a9a0e6
|
| 3 |
+
size 478094088
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/data-00023-of-00024.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e8ce766667969f716e2145501823d3d2ec22e3135297b24d0fa33589acf778d
|
| 3 |
+
size 478855336
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/dataset_info.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"citation": "",
|
| 3 |
+
"description": "",
|
| 4 |
+
"features": {
|
| 5 |
+
"attention_mask": {
|
| 6 |
+
"feature": {
|
| 7 |
+
"feature": {
|
| 8 |
+
"dtype": "int8",
|
| 9 |
+
"_type": "Value"
|
| 10 |
+
},
|
| 11 |
+
"_type": "Sequence"
|
| 12 |
+
},
|
| 13 |
+
"_type": "Sequence"
|
| 14 |
+
},
|
| 15 |
+
"input_ids": {
|
| 16 |
+
"feature": {
|
| 17 |
+
"feature": {
|
| 18 |
+
"dtype": "int32",
|
| 19 |
+
"_type": "Value"
|
| 20 |
+
},
|
| 21 |
+
"_type": "Sequence"
|
| 22 |
+
},
|
| 23 |
+
"_type": "Sequence"
|
| 24 |
+
},
|
| 25 |
+
"labels": {
|
| 26 |
+
"feature": {
|
| 27 |
+
"dtype": "string",
|
| 28 |
+
"_type": "Value"
|
| 29 |
+
},
|
| 30 |
+
"_type": "Sequence"
|
| 31 |
+
}
|
| 32 |
+
},
|
| 33 |
+
"homepage": "",
|
| 34 |
+
"license": ""
|
| 35 |
+
}
|
data/smiles/11M_smiles_old_tokenizer_no_limit/train/state.json
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_data_files": [
|
| 3 |
+
{
|
| 4 |
+
"filename": "data-00000-of-00024.arrow"
|
| 5 |
+
},
|
| 6 |
+
{
|
| 7 |
+
"filename": "data-00001-of-00024.arrow"
|
| 8 |
+
},
|
| 9 |
+
{
|
| 10 |
+
"filename": "data-00002-of-00024.arrow"
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"filename": "data-00003-of-00024.arrow"
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"filename": "data-00004-of-00024.arrow"
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"filename": "data-00005-of-00024.arrow"
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"filename": "data-00006-of-00024.arrow"
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"filename": "data-00007-of-00024.arrow"
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"filename": "data-00008-of-00024.arrow"
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"filename": "data-00009-of-00024.arrow"
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"filename": "data-00010-of-00024.arrow"
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"filename": "data-00011-of-00024.arrow"
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"filename": "data-00012-of-00024.arrow"
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"filename": "data-00013-of-00024.arrow"
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"filename": "data-00014-of-00024.arrow"
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"filename": "data-00015-of-00024.arrow"
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"filename": "data-00016-of-00024.arrow"
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"filename": "data-00017-of-00024.arrow"
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"filename": "data-00018-of-00024.arrow"
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"filename": "data-00019-of-00024.arrow"
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"filename": "data-00020-of-00024.arrow"
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"filename": "data-00021-of-00024.arrow"
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"filename": "data-00022-of-00024.arrow"
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"filename": "data-00023-of-00024.arrow"
|
| 74 |
+
}
|
| 75 |
+
],
|
| 76 |
+
"_fingerprint": "f065af1d67a7eca3",
|
| 77 |
+
"_format_columns": null,
|
| 78 |
+
"_format_kwargs": {},
|
| 79 |
+
"_format_type": null,
|
| 80 |
+
"_output_all_columns": false,
|
| 81 |
+
"_split": null
|
| 82 |
+
}
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00000-of-00012.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b81ab15dbcc73e25ca02140b3c101a3fd2407660a59fbf81ccbc3af96fe38e0f
|
| 3 |
+
size 479009832
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00001-of-00012.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:43ac35ede1a6adf2ca8159a568a8302fad4f6ea04c0a1ecda428b6e1a2e849de
|
| 3 |
+
size 483483872
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00002-of-00012.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c075e124ba0c213d76552b930f7dae7a8823202e3ac2939196b730fe105b7090
|
| 3 |
+
size 481710208
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00003-of-00012.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:576facb6744a5930942432cef811962a92e8f9d3274dfe2fdb40c72273e14ea0
|
| 3 |
+
size 480840896
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00004-of-00012.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d35117920343110ba621ee376db7eccdb96d1f6084ed773142aa1948ef1fe14d
|
| 3 |
+
size 480085056
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00005-of-00012.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65023f39b5a8856a3e85307b7a36b33fa31591a0d0d3ae1fc6cf86775d0e6f57
|
| 3 |
+
size 479035216
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00006-of-00012.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:76246331cfb5db44e2ef1d6e2b42636cc270a5bb8f457ccca09598aa909b2818
|
| 3 |
+
size 478170416
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00007-of-00012.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:60e0c9660f347e5bc71c5065349fbe4026f495321e81975996066b59361d50b3
|
| 3 |
+
size 477289400
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00008-of-00012.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb17deb75bc25626877746d2f39a029a036d6a8ee180a9a6bfa1dd6c99b4b793
|
| 3 |
+
size 478124120
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00009-of-00012.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8a1721819aec27ca4c06b12ee9f3cd4aa5b5ea3ed1ac5d956398ab2790e8c921
|
| 3 |
+
size 474046656
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00010-of-00012.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:59d5ae6b9357e5cc2909b9f9b219a2989cc64ab686eb770eb4b4d3836b9563d8
|
| 3 |
+
size 475710864
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/data-00011-of-00012.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d18bc2c8060542c65d5928816e744ecb8050ca0cac22e6d0ddd0fc9d556d8df9
|
| 3 |
+
size 471405008
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/dataset_info.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"citation": "",
|
| 3 |
+
"description": "",
|
| 4 |
+
"features": {
|
| 5 |
+
"attention_mask": {
|
| 6 |
+
"feature": {
|
| 7 |
+
"feature": {
|
| 8 |
+
"dtype": "int8",
|
| 9 |
+
"_type": "Value"
|
| 10 |
+
},
|
| 11 |
+
"_type": "Sequence"
|
| 12 |
+
},
|
| 13 |
+
"_type": "Sequence"
|
| 14 |
+
},
|
| 15 |
+
"input_ids": {
|
| 16 |
+
"feature": {
|
| 17 |
+
"feature": {
|
| 18 |
+
"dtype": "int32",
|
| 19 |
+
"_type": "Value"
|
| 20 |
+
},
|
| 21 |
+
"_type": "Sequence"
|
| 22 |
+
},
|
| 23 |
+
"_type": "Sequence"
|
| 24 |
+
},
|
| 25 |
+
"labels": {
|
| 26 |
+
"feature": {
|
| 27 |
+
"dtype": "string",
|
| 28 |
+
"_type": "Value"
|
| 29 |
+
},
|
| 30 |
+
"_type": "Sequence"
|
| 31 |
+
}
|
| 32 |
+
},
|
| 33 |
+
"homepage": "",
|
| 34 |
+
"license": ""
|
| 35 |
+
}
|
data/smiles/11M_smiles_old_tokenizer_no_limit/val/state.json
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_data_files": [
|
| 3 |
+
{
|
| 4 |
+
"filename": "data-00000-of-00012.arrow"
|
| 5 |
+
},
|
| 6 |
+
{
|
| 7 |
+
"filename": "data-00001-of-00012.arrow"
|
| 8 |
+
},
|
| 9 |
+
{
|
| 10 |
+
"filename": "data-00002-of-00012.arrow"
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"filename": "data-00003-of-00012.arrow"
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"filename": "data-00004-of-00012.arrow"
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"filename": "data-00005-of-00012.arrow"
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"filename": "data-00006-of-00012.arrow"
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"filename": "data-00007-of-00012.arrow"
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"filename": "data-00008-of-00012.arrow"
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"filename": "data-00009-of-00012.arrow"
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"filename": "data-00010-of-00012.arrow"
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"filename": "data-00011-of-00012.arrow"
|
| 38 |
+
}
|
| 39 |
+
],
|
| 40 |
+
"_fingerprint": "327dd7ee149704f5",
|
| 41 |
+
"_format_columns": null,
|
| 42 |
+
"_format_kwargs": {},
|
| 43 |
+
"_format_type": null,
|
| 44 |
+
"_output_all_columns": false,
|
| 45 |
+
"_split": null
|
| 46 |
+
}
|
dataset.py
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
import re
|
| 3 |
import torch
|
| 4 |
|
| 5 |
-
import utils
|
| 6 |
|
| 7 |
from torch.utils.data import Dataset, DataLoader
|
| 8 |
import lightning.pytorch as pl
|
|
|
|
| 2 |
import re
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
from .utils import utils
|
| 6 |
|
| 7 |
from torch.utils.data import Dataset, DataLoader
|
| 8 |
import lightning.pytorch as pl
|
main.py
CHANGED
|
@@ -17,16 +17,17 @@ import sys
|
|
| 17 |
import torch.distributed as dist
|
| 18 |
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 19 |
|
| 20 |
-
import dataset as dataloader
|
| 21 |
-
import dataloading_for_dynamic_batching as dynamic_dataloader
|
| 22 |
-
from diffusion import Diffusion
|
| 23 |
-
|
| 24 |
-
from new_tokenizer.ape_tokenizer import APETokenizer
|
|
|
|
|
|
|
| 25 |
|
| 26 |
from lightning.pytorch.strategies import DDPStrategy
|
| 27 |
from datasets import load_dataset
|
| 28 |
-
|
| 29 |
-
from helm_tokenizer.helm_tokenizer import HelmTokenizer
|
| 30 |
|
| 31 |
|
| 32 |
omegaconf.OmegaConf.register_new_resolver('cwd', os.getcwd)
|
|
@@ -51,201 +52,201 @@ def _load_from_checkpoint(config, tokenizer):
|
|
| 51 |
|
| 52 |
@L.pytorch.utilities.rank_zero_only
|
| 53 |
def print_config(
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
|
| 87 |
|
| 88 |
@L.pytorch.utilities.rank_zero_only
|
| 89 |
def print_batch(train_ds, valid_ds, tokenizer, k=64):
|
| 90 |
-
|
| 91 |
#('train', train_ds), ('valid', valid_ds)]:
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
|
| 105 |
|
| 106 |
def generate_samples(config, logger, tokenizer):
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
|
| 119 |
-
|
| 120 |
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
|
| 125 |
|
| 126 |
def ppl_eval(config, logger, tokenizer, data_module):
|
| 127 |
-
|
| 128 |
|
| 129 |
-
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
|
| 137 |
-
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
|
| 153 |
|
| 154 |
def _train(config, logger, tokenizer, data_module):
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
state = checkpoint.get("state_dict", checkpoint)
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
|
| 207 |
|
| 208 |
@hydra.main(version_base=None, config_path='configs', config_name='config')
|
| 209 |
def main(config):
|
| 210 |
-
|
| 211 |
-
|
| 212 |
"""
|
| 213 |
-
|
| 214 |
|
| 215 |
-
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
if config.vocab == 'new_smiles':
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
f'{tok_dir}/new_splits.txt')
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
|
| 249 |
|
| 250 |
if __name__ == '__main__':
|
| 251 |
-
|
|
|
|
| 17 |
import torch.distributed as dist
|
| 18 |
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 19 |
|
| 20 |
+
from . import dataset as dataloader
|
| 21 |
+
from . import dataloading_for_dynamic_batching as dynamic_dataloader
|
| 22 |
+
from .diffusion import Diffusion
|
| 23 |
+
from .utils import utils
|
| 24 |
+
from .new_tokenizer.ape_tokenizer import APETokenizer
|
| 25 |
+
from .tokenizer.my_tokenizers import SMILES_SPE_Tokenizer
|
| 26 |
+
from .helm_tokenizer.helm_tokenizer import HelmTokenizer
|
| 27 |
|
| 28 |
from lightning.pytorch.strategies import DDPStrategy
|
| 29 |
from datasets import load_dataset
|
| 30 |
+
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
omegaconf.OmegaConf.register_new_resolver('cwd', os.getcwd)
|
|
|
|
| 52 |
|
| 53 |
@L.pytorch.utilities.rank_zero_only
|
| 54 |
def print_config(
|
| 55 |
+
config: omegaconf.DictConfig,
|
| 56 |
+
resolve: bool = True,
|
| 57 |
+
save_cfg: bool = True) -> None:
|
| 58 |
+
"""
|
| 59 |
+
Prints content of DictConfig using Rich library and its tree structure.
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
config (DictConfig): Configuration composed by Hydra.
|
| 63 |
+
resolve (bool): Whether to resolve reference fields of DictConfig.
|
| 64 |
+
save_cfg (bool): Whether to save the configuration tree to a file.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
style = 'dim'
|
| 68 |
+
tree = rich.tree.Tree('CONFIG', style=style, guide_style=style)
|
| 69 |
+
|
| 70 |
+
fields = config.keys()
|
| 71 |
+
for field in fields:
|
| 72 |
+
branch = tree.add(field, style=style, guide_style=style)
|
| 73 |
+
|
| 74 |
+
config_section = config.get(field)
|
| 75 |
+
branch_content = str(config_section)
|
| 76 |
+
if isinstance(config_section, omegaconf.DictConfig):
|
| 77 |
+
branch_content = omegaconf.OmegaConf.to_yaml(
|
| 78 |
+
config_section, resolve=resolve)
|
| 79 |
+
|
| 80 |
+
branch.add(rich.syntax.Syntax(branch_content, 'yaml'))
|
| 81 |
+
rich.print(tree)
|
| 82 |
+
if save_cfg:
|
| 83 |
+
with fsspec.open(
|
| 84 |
+
'{}/config_tree.txt'.format(
|
| 85 |
+
config.checkpointing.save_dir), 'w') as fp:
|
| 86 |
+
rich.print(tree, file=fp)
|
| 87 |
|
| 88 |
|
| 89 |
@L.pytorch.utilities.rank_zero_only
|
| 90 |
def print_batch(train_ds, valid_ds, tokenizer, k=64):
|
| 91 |
+
#for dl_type, dl in [
|
| 92 |
#('train', train_ds), ('valid', valid_ds)]:
|
| 93 |
|
| 94 |
+
for dl_type, dl in [
|
| 95 |
+
('train', train_ds)]:
|
| 96 |
+
print(f'Printing {dl_type} dataloader batch.')
|
| 97 |
+
batch = next(iter(dl))
|
| 98 |
+
print('Batch input_ids.shape', batch['input_ids'].shape)
|
| 99 |
+
first = batch['input_ids'][0, :k]
|
| 100 |
+
last = batch['input_ids'][0, -k:]
|
| 101 |
+
print(f'First {k} tokens:', tokenizer.decode(first))
|
| 102 |
+
print('ids:', first)
|
| 103 |
+
print(f'Last {k} tokens:', tokenizer.decode(last))
|
| 104 |
+
print('ids:', last)
|
| 105 |
|
| 106 |
|
| 107 |
def generate_samples(config, logger, tokenizer):
|
| 108 |
+
logger.info('Generating samples.')
|
| 109 |
+
model = _load_from_checkpoint(config=config, tokenizer=tokenizer)
|
| 110 |
+
# model.gen_ppl_metric.reset()
|
| 111 |
+
|
| 112 |
+
#stride_length = config.sampling.stride_length
|
| 113 |
+
#num_strides = config.sampling.num_strides
|
| 114 |
|
| 115 |
+
for _ in range(config.sampling.num_sample_batches):
|
| 116 |
+
samples = model.restore_model_and_sample(num_steps=config.sampling.steps)
|
| 117 |
+
peptide_sequences = model.tokenizer.batch_decode(samples)
|
| 118 |
+
model.compute_generative_perplexity(peptide_sequences)
|
| 119 |
|
| 120 |
+
print('Peptide samples:', peptide_sequences)
|
| 121 |
|
| 122 |
+
print('Generative perplexity:', model.compute_masked_perplexity())
|
| 123 |
|
| 124 |
+
return peptide_sequences
|
| 125 |
|
| 126 |
|
| 127 |
def ppl_eval(config, logger, tokenizer, data_module):
|
| 128 |
+
logger.info('Starting Zero Shot Eval.')
|
| 129 |
|
| 130 |
+
model = _load_from_checkpoint(config=config, tokenizer=tokenizer)
|
| 131 |
|
| 132 |
+
wandb_logger = None
|
| 133 |
+
if config.get('wandb', None) is not None:
|
| 134 |
+
wandb_logger = L.pytorch.loggers.WandbLogger(
|
| 135 |
+
config=omegaconf.OmegaConf.to_object(config),
|
| 136 |
+
** config.wandb)
|
| 137 |
|
| 138 |
+
callbacks = []
|
| 139 |
|
| 140 |
+
if 'callbacks' in config:
|
| 141 |
+
for _, callback in config.callbacks.items():
|
| 142 |
+
callbacks.append(hydra.utils.instantiate(callback))
|
| 143 |
|
| 144 |
+
trainer = hydra.utils.instantiate(
|
| 145 |
+
config.trainer,
|
| 146 |
+
default_root_dir=os.getcwd(),
|
| 147 |
+
callbacks=callbacks,
|
| 148 |
+
strategy=DDPStrategy(find_unused_parameters = True),
|
| 149 |
+
logger=wandb_logger)
|
| 150 |
|
| 151 |
+
#_, valid_ds = dataloader.get_dataloaders(config, tokenizer, skiptrain=True, valid_seed=config.seed)
|
| 152 |
+
trainer.test(model, data_module)
|
| 153 |
|
| 154 |
|
| 155 |
def _train(config, logger, tokenizer, data_module):
|
| 156 |
+
logger.info('Starting Training.')
|
| 157 |
+
wandb_logger = None
|
| 158 |
+
|
| 159 |
+
if config.get('wandb', None) is not None:
|
| 160 |
+
unique_id = str(uuid.uuid4())
|
| 161 |
+
|
| 162 |
+
config.wandb.id = f"{config.wandb.id}_{unique_id}"
|
| 163 |
+
|
| 164 |
+
wandb_logger = L.pytorch.loggers.WandbLogger(
|
| 165 |
+
config=omegaconf.OmegaConf.to_object(config),
|
| 166 |
+
** config.wandb)
|
| 167 |
+
|
| 168 |
+
if (config.checkpointing.resume_from_ckpt
|
| 169 |
+
and config.checkpointing.resume_ckpt_path is not None
|
| 170 |
+
and utils.fsspec_exists(
|
| 171 |
+
config.checkpointing.resume_ckpt_path)):
|
| 172 |
+
ckpt_path = config.checkpointing.resume_ckpt_path
|
| 173 |
+
else:
|
| 174 |
+
ckpt_path = None
|
| 175 |
+
|
| 176 |
+
# Lightning callbacks
|
| 177 |
+
callbacks = []
|
| 178 |
+
if 'callbacks' in config:
|
| 179 |
+
for callback_name, callback_config in config.callbacks.items():
|
| 180 |
+
if callback_name == 'model_checkpoint':
|
| 181 |
+
model_checkpoint_config = {k: v for k, v in callback_config.items() if k != '_target_'}
|
| 182 |
+
callbacks.append(ModelCheckpoint(**model_checkpoint_config))
|
| 183 |
+
else:
|
| 184 |
+
callbacks.append(hydra.utils.instantiate(callback_config))
|
| 185 |
|
| 186 |
+
if config.training.accumulator:
|
| 187 |
+
accumulator = GradientAccumulationScheduler(scheduling = {1: 5, 2: 4, 3: 3, 4: 1})
|
| 188 |
+
callbacks.append(accumulator)
|
| 189 |
|
| 190 |
+
trainer = hydra.utils.instantiate(
|
| 191 |
+
config.trainer,
|
| 192 |
+
default_root_dir=os.getcwd(),
|
| 193 |
+
callbacks=callbacks,
|
| 194 |
+
accelerator='cuda',
|
| 195 |
+
strategy=DDPStrategy(find_unused_parameters = True),
|
| 196 |
+
devices=[2,3,4,5,6,7],
|
| 197 |
+
logger=wandb_logger)
|
| 198 |
+
|
| 199 |
+
model = Diffusion(config, tokenizer=tokenizer)
|
| 200 |
+
|
| 201 |
+
if config.backbone == "finetune_roformer" and config.eval.checkpoint_path:
|
| 202 |
+
checkpoint = torch.load(config.eval.checkpoint_path, map_location="cpu")
|
| 203 |
state = checkpoint.get("state_dict", checkpoint)
|
| 204 |
+
model.load_state_dict(state, strict=False)
|
| 205 |
+
|
| 206 |
+
trainer.fit(model, datamodule=data_module, ckpt_path=ckpt_path)
|
| 207 |
|
| 208 |
|
| 209 |
@hydra.main(version_base=None, config_path='configs', config_name='config')
|
| 210 |
def main(config):
|
| 211 |
+
"""
|
| 212 |
+
Main entry point for training
|
| 213 |
"""
|
| 214 |
+
L.seed_everything(config.seed)
|
| 215 |
|
| 216 |
+
# print_config(config, resolve=True, save_cfg=True)
|
| 217 |
|
| 218 |
+
logger = utils.get_logger(__name__)
|
| 219 |
+
# load PeptideCLM tokenizer
|
| 220 |
+
tok_dir = config.paths.tokenizers
|
| 221 |
if config.vocab == 'new_smiles':
|
| 222 |
+
tokenizer = APETokenizer()
|
| 223 |
+
tokenizer.load_vocabulary(f'{tok_dir}/peptide_smiles_600_vocab.json')
|
| 224 |
+
elif config.vocab == 'old_smiles':
|
| 225 |
+
tokenizer = SMILES_SPE_Tokenizer(f'{tok_dir}/new_vocab.txt',
|
| 226 |
f'{tok_dir}/new_splits.txt')
|
| 227 |
+
elif config.vocab == 'selfies':
|
| 228 |
+
tokenizer = APETokenizer()
|
| 229 |
+
tokenizer.load_vocabulary(f'{tok_dir}/peptide_selfies_600_vocab.json')
|
| 230 |
+
elif config.vocab == 'helm':
|
| 231 |
+
tokenizer = HelmTokenizer(f'{tok_dir}/monomer_vocab.txt')
|
| 232 |
+
|
| 233 |
+
if config.backbone == 'finetune_roformer':
|
| 234 |
+
train_dataset = load_dataset('csv', data_files=config.data.train)
|
| 235 |
+
val_dataset = load_dataset('csv', data_files=config.data.valid)
|
| 236 |
+
|
| 237 |
+
train_dataset = train_dataset['train']#.select(lst)
|
| 238 |
+
val_dataset = val_dataset['train']#.select(lst)
|
| 239 |
+
data_module = dataloader.CustomDataModule(train_dataset, val_dataset, None, tokenizer, batch_size=config.loader.global_batch_size)
|
| 240 |
+
else:
|
| 241 |
+
data_module = dynamic_dataloader.CustomDataModule(f'{config.paths.data}/smiles/11M_smiles_old_tokenizer_no_limit', tokenizer)
|
| 242 |
+
|
| 243 |
+
if config.mode == 'sample_eval':
|
| 244 |
+
generate_samples(config, logger, tokenizer)
|
| 245 |
+
elif config.mode == 'ppl_eval':
|
| 246 |
+
ppl_eval(config, logger, tokenizer, data_module)
|
| 247 |
+
else:
|
| 248 |
+
_train(config, logger, tokenizer, data_module)
|
| 249 |
|
| 250 |
|
| 251 |
if __name__ == '__main__':
|
| 252 |
+
main()
|
utils/.ipynb_checkpoints/app-checkpoint.py
ADDED
|
@@ -0,0 +1,1255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from io import StringIO
|
| 5 |
+
import rdkit
|
| 6 |
+
from rdkit import Chem
|
| 7 |
+
from rdkit.Chem import AllChem, Draw
|
| 8 |
+
import numpy as np
|
| 9 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import matplotlib.patches as patches
|
| 12 |
+
from io import BytesIO
|
| 13 |
+
import tempfile
|
| 14 |
+
from rdkit import Chem
|
| 15 |
+
|
| 16 |
+
class PeptideAnalyzer:
|
| 17 |
+
def __init__(self):
|
| 18 |
+
self.bond_patterns = [
|
| 19 |
+
(r'OC\(=O\)', 'ester'), # Ester bond
|
| 20 |
+
(r'N\(C\)C\(=O\)', 'n_methyl'), # N-methylated peptide bond
|
| 21 |
+
(r'N[0-9]C\(=O\)', 'proline'), # Proline peptide bond
|
| 22 |
+
(r'NC\(=O\)', 'peptide'), # Standard peptide bond
|
| 23 |
+
(r'C\(=O\)N\(C\)', 'n_methyl_reverse'), # Reverse N-methylated
|
| 24 |
+
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond
|
| 25 |
+
]
|
| 26 |
+
# Three to one letter code mapping
|
| 27 |
+
self.three_to_one = {
|
| 28 |
+
'Ala': 'A', 'Cys': 'C', 'Asp': 'D', 'Glu': 'E',
|
| 29 |
+
'Phe': 'F', 'Gly': 'G', 'His': 'H', 'Ile': 'I',
|
| 30 |
+
'Lys': 'K', 'Leu': 'L', 'Met': 'M', 'Asn': 'N',
|
| 31 |
+
'Pro': 'P', 'Gln': 'Q', 'Arg': 'R', 'Ser': 'S',
|
| 32 |
+
'Thr': 'T', 'Val': 'V', 'Trp': 'W', 'Tyr': 'Y'
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
def is_peptide(self, smiles):
|
| 36 |
+
"""Check if the SMILES represents a peptide structure"""
|
| 37 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 38 |
+
if mol is None:
|
| 39 |
+
return False
|
| 40 |
+
|
| 41 |
+
# Look for peptide bonds: NC(=O) pattern
|
| 42 |
+
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)')
|
| 43 |
+
if mol.HasSubstructMatch(peptide_bond_pattern):
|
| 44 |
+
return True
|
| 45 |
+
|
| 46 |
+
# Look for N-methylated peptide bonds: N(C)C(=O) pattern
|
| 47 |
+
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)')
|
| 48 |
+
if mol.HasSubstructMatch(n_methyl_pattern):
|
| 49 |
+
return True
|
| 50 |
+
|
| 51 |
+
return False
|
| 52 |
+
|
| 53 |
+
def is_cyclic(self, smiles):
|
| 54 |
+
"""Improved cyclic peptide detection"""
|
| 55 |
+
# Check for C-terminal carboxyl
|
| 56 |
+
if smiles.endswith('C(=O)O'):
|
| 57 |
+
return False, [], []
|
| 58 |
+
|
| 59 |
+
# Find all numbers used in ring closures
|
| 60 |
+
ring_numbers = re.findall(r'(?:^|[^c])[0-9](?=[A-Z@\(\)])', smiles)
|
| 61 |
+
|
| 62 |
+
# Find aromatic ring numbers
|
| 63 |
+
aromatic_matches = re.findall(r'c[0-9](?:ccccc|c\[nH\]c)[0-9]', smiles)
|
| 64 |
+
aromatic_cycles = []
|
| 65 |
+
for match in aromatic_matches:
|
| 66 |
+
numbers = re.findall(r'[0-9]', match)
|
| 67 |
+
aromatic_cycles.extend(numbers)
|
| 68 |
+
|
| 69 |
+
# Numbers that aren't part of aromatic rings are peptide cycles
|
| 70 |
+
peptide_cycles = [n for n in ring_numbers if n not in aromatic_cycles]
|
| 71 |
+
|
| 72 |
+
is_cyclic = len(peptide_cycles) > 0 and not smiles.endswith('C(=O)O')
|
| 73 |
+
return is_cyclic, peptide_cycles, aromatic_cycles
|
| 74 |
+
|
| 75 |
+
def split_on_bonds(self, smiles):
|
| 76 |
+
"""Split SMILES into segments with simplified Pro handling"""
|
| 77 |
+
positions = []
|
| 78 |
+
used = set()
|
| 79 |
+
|
| 80 |
+
# Find Gly pattern first
|
| 81 |
+
gly_pattern = r'NCC\(=O\)'
|
| 82 |
+
for match in re.finditer(gly_pattern, smiles):
|
| 83 |
+
if not any(p in range(match.start(), match.end()) for p in used):
|
| 84 |
+
positions.append({
|
| 85 |
+
'start': match.start(),
|
| 86 |
+
'end': match.end(),
|
| 87 |
+
'type': 'gly',
|
| 88 |
+
'pattern': match.group()
|
| 89 |
+
})
|
| 90 |
+
used.update(range(match.start(), match.end()))
|
| 91 |
+
|
| 92 |
+
for pattern, bond_type in self.bond_patterns:
|
| 93 |
+
for match in re.finditer(pattern, smiles):
|
| 94 |
+
if not any(p in range(match.start(), match.end()) for p in used):
|
| 95 |
+
positions.append({
|
| 96 |
+
'start': match.start(),
|
| 97 |
+
'end': match.end(),
|
| 98 |
+
'type': bond_type,
|
| 99 |
+
'pattern': match.group()
|
| 100 |
+
})
|
| 101 |
+
used.update(range(match.start(), match.end()))
|
| 102 |
+
|
| 103 |
+
# Sort by position
|
| 104 |
+
positions.sort(key=lambda x: x['start'])
|
| 105 |
+
|
| 106 |
+
# Create segments
|
| 107 |
+
segments = []
|
| 108 |
+
|
| 109 |
+
if positions:
|
| 110 |
+
# First segment
|
| 111 |
+
if positions[0]['start'] > 0:
|
| 112 |
+
segments.append({
|
| 113 |
+
'content': smiles[0:positions[0]['start']],
|
| 114 |
+
'bond_after': positions[0]['pattern']
|
| 115 |
+
})
|
| 116 |
+
|
| 117 |
+
# Process segments
|
| 118 |
+
for i in range(len(positions)-1):
|
| 119 |
+
current = positions[i]
|
| 120 |
+
next_pos = positions[i+1]
|
| 121 |
+
|
| 122 |
+
if current['type'] == 'gly':
|
| 123 |
+
segments.append({
|
| 124 |
+
'content': 'NCC(=O)',
|
| 125 |
+
'bond_before': positions[i-1]['pattern'] if i > 0 else None,
|
| 126 |
+
'bond_after': next_pos['pattern']
|
| 127 |
+
})
|
| 128 |
+
else:
|
| 129 |
+
content = smiles[current['end']:next_pos['start']]
|
| 130 |
+
if content:
|
| 131 |
+
segments.append({
|
| 132 |
+
'content': content,
|
| 133 |
+
'bond_before': current['pattern'],
|
| 134 |
+
'bond_after': next_pos['pattern']
|
| 135 |
+
})
|
| 136 |
+
|
| 137 |
+
# Last segment
|
| 138 |
+
if positions[-1]['end'] < len(smiles):
|
| 139 |
+
segments.append({
|
| 140 |
+
'content': smiles[positions[-1]['end']:],
|
| 141 |
+
'bond_before': positions[-1]['pattern']
|
| 142 |
+
})
|
| 143 |
+
|
| 144 |
+
return segments
|
| 145 |
+
|
| 146 |
+
def clean_terminal_carboxyl(self, segment):
|
| 147 |
+
"""Remove C-terminal carboxyl only if it's the true terminus"""
|
| 148 |
+
content = segment['content']
|
| 149 |
+
|
| 150 |
+
# Only clean if:
|
| 151 |
+
# 1. Contains C(=O)O
|
| 152 |
+
# 2. No bond_after exists (meaning it's the last segment)
|
| 153 |
+
# 3. C(=O)O is at the end of the content
|
| 154 |
+
if 'C(=O)O' in content and not segment.get('bond_after'):
|
| 155 |
+
print('recognized?')
|
| 156 |
+
# Remove C(=O)O pattern regardless of position
|
| 157 |
+
cleaned = re.sub(r'\(C\(=O\)O\)', '', content)
|
| 158 |
+
# Remove any leftover empty parentheses
|
| 159 |
+
cleaned = re.sub(r'\(\)', '', cleaned)
|
| 160 |
+
print(cleaned)
|
| 161 |
+
return cleaned
|
| 162 |
+
return content
|
| 163 |
+
|
| 164 |
+
def identify_residue(self, segment):
|
| 165 |
+
"""Identify residue with Pro reconstruction"""
|
| 166 |
+
# Only clean terminal carboxyl if this is the last segment
|
| 167 |
+
content = self.clean_terminal_carboxyl(segment)
|
| 168 |
+
mods = self.get_modifications(segment)
|
| 169 |
+
|
| 170 |
+
# UAA pattern matching section - before regular residues
|
| 171 |
+
# Phenylglycine and derivatives
|
| 172 |
+
if 'c1ccccc1' in content:
|
| 173 |
+
if '[C@@H](c1ccccc1)' in content or '[C@H](c1ccccc1)' in content:
|
| 174 |
+
return '4', mods # Base phenylglycine
|
| 175 |
+
|
| 176 |
+
# 4-substituted phenylalanines
|
| 177 |
+
if 'Cc1ccc' in content:
|
| 178 |
+
if 'OMe' in content or 'OCc1ccc' in content:
|
| 179 |
+
return '0A1', mods # 4-methoxy-Phenylalanine
|
| 180 |
+
elif 'Clc1ccc' in content:
|
| 181 |
+
return '200', mods # 4-chloro-Phenylalanine
|
| 182 |
+
elif 'Brc1ccc' in content:
|
| 183 |
+
return '4BF', mods # 4-Bromo-phenylalanine
|
| 184 |
+
elif 'C#Nc1ccc' in content:
|
| 185 |
+
return '4CF', mods # 4-cyano-phenylalanine
|
| 186 |
+
elif 'Ic1ccc' in content:
|
| 187 |
+
return 'PHI', mods # 4-Iodo-phenylalanine
|
| 188 |
+
elif 'Fc1ccc' in content:
|
| 189 |
+
return 'PFF', mods # 4-Fluoro-phenylalanine
|
| 190 |
+
|
| 191 |
+
# Modified tryptophans
|
| 192 |
+
if 'c[nH]c2' in content:
|
| 193 |
+
if 'Oc2cccc2' in content:
|
| 194 |
+
return '0AF', mods # 7-hydroxy-tryptophan
|
| 195 |
+
elif 'Fc2cccc2' in content:
|
| 196 |
+
return '4FW', mods # 4-fluoro-tryptophan
|
| 197 |
+
elif 'Clc2cccc2' in content:
|
| 198 |
+
return '6CW', mods # 6-chloro-tryptophan
|
| 199 |
+
elif 'Brc2cccc2' in content:
|
| 200 |
+
return 'BTR', mods # 6-bromo-tryptophan
|
| 201 |
+
elif 'COc2cccc2' in content:
|
| 202 |
+
return 'MOT5', mods # 5-Methoxy-tryptophan
|
| 203 |
+
elif 'Cc2cccc2' in content:
|
| 204 |
+
return 'MTR5', mods # 5-Methyl-tryptophan
|
| 205 |
+
|
| 206 |
+
# Special amino acids
|
| 207 |
+
if 'CC(C)(C)[C@@H]' in content or 'CC(C)(C)[C@H]' in content:
|
| 208 |
+
return 'BUG', mods # Tertleucine
|
| 209 |
+
|
| 210 |
+
if 'CCCNC(=N)N' in content:
|
| 211 |
+
return 'CIR', mods # Citrulline
|
| 212 |
+
|
| 213 |
+
if '[SeH]' in content:
|
| 214 |
+
return 'CSE', mods # Selenocysteine
|
| 215 |
+
|
| 216 |
+
if '[NH3]CC[C@@H]' in content or '[NH3]CC[C@H]' in content:
|
| 217 |
+
return 'DAB', mods # Diaminobutyric acid
|
| 218 |
+
|
| 219 |
+
if 'C1CCCCC1' in content:
|
| 220 |
+
if 'C1CCCCC1[C@@H]' in content or 'C1CCCCC1[C@H]' in content:
|
| 221 |
+
return 'CHG', mods # Cyclohexylglycine
|
| 222 |
+
elif 'C1CCCCC1C[C@@H]' in content or 'C1CCCCC1C[C@H]' in content:
|
| 223 |
+
return 'ALC', mods # 3-cyclohexyl-alanine
|
| 224 |
+
|
| 225 |
+
# Naphthalene derivatives
|
| 226 |
+
if 'c1cccc2c1cccc2' in content:
|
| 227 |
+
if 'c1cccc2c1cccc2[C@@H]' in content or 'c1cccc2c1cccc2[C@H]' in content:
|
| 228 |
+
return 'NAL', mods # 2-Naphthyl-alanine
|
| 229 |
+
|
| 230 |
+
# Heteroaromatic derivatives
|
| 231 |
+
if 'c1cncc' in content:
|
| 232 |
+
return 'PYR4', mods # 3-(4-Pyridyl)-alanine
|
| 233 |
+
if 'c1cscc' in content:
|
| 234 |
+
return 'THA3', mods # 3-(3-thienyl)-alanine
|
| 235 |
+
if 'c1nnc' in content:
|
| 236 |
+
return 'TRZ4', mods # 3-(1,2,4-Triazol-1-yl)-alanine
|
| 237 |
+
|
| 238 |
+
# Modified serines and threonines
|
| 239 |
+
if 'OP(O)(O)O' in content:
|
| 240 |
+
if '[C@@H](COP' in content or '[C@H](COP' in content:
|
| 241 |
+
return 'SEP', mods # phosphoserine
|
| 242 |
+
elif '[C@@H](OP' in content or '[C@H](OP' in content:
|
| 243 |
+
return 'TPO', mods # phosphothreonine
|
| 244 |
+
|
| 245 |
+
# Specialized ring systems
|
| 246 |
+
if 'c1c2ccccc2cc2c1cccc2' in content:
|
| 247 |
+
return 'ANTH', mods # 3-(9-anthryl)-alanine
|
| 248 |
+
if 'c1csc2c1cccc2' in content:
|
| 249 |
+
return 'BTH3', mods # 3-(3-benzothienyl)-alanine
|
| 250 |
+
if '[C@]12C[C@H]3C[C@@H](C2)C[C@@H](C1)C3' in content:
|
| 251 |
+
return 'ADAM', mods # Adamanthane
|
| 252 |
+
|
| 253 |
+
# Fluorinated derivatives
|
| 254 |
+
if 'FC(F)(F)' in content:
|
| 255 |
+
if 'CC(F)(F)F' in content:
|
| 256 |
+
return 'FLA', mods # Trifluoro-alanine
|
| 257 |
+
if 'C(F)(F)F)c1' in content:
|
| 258 |
+
if 'c1ccccc1C(F)(F)F' in content:
|
| 259 |
+
return 'TFG2', mods # 2-(Trifluoromethyl)-phenylglycine
|
| 260 |
+
if 'c1cccc(c1)C(F)(F)F' in content:
|
| 261 |
+
return 'TFG3', mods # 3-(Trifluoromethyl)-phenylglycine
|
| 262 |
+
if 'c1ccc(cc1)C(F)(F)F' in content:
|
| 263 |
+
return 'TFG4', mods # 4-(Trifluoromethyl)-phenylglycine
|
| 264 |
+
|
| 265 |
+
# Multiple halogen patterns
|
| 266 |
+
if 'F' in content and 'c1' in content:
|
| 267 |
+
if 'c1ccc(c(c1)F)F' in content:
|
| 268 |
+
return 'F2F', mods # 3,4-Difluoro-phenylalanine
|
| 269 |
+
if 'cc(F)cc(c1)F' in content:
|
| 270 |
+
return 'WFP', mods # 3,5-Difluoro-phenylalanine
|
| 271 |
+
if 'Cl' in content and 'c1' in content:
|
| 272 |
+
if 'c1ccc(cc1Cl)Cl' in content:
|
| 273 |
+
return 'CP24', mods # 2,4-dichloro-phenylalanine
|
| 274 |
+
if 'c1ccc(c(c1)Cl)Cl' in content:
|
| 275 |
+
return 'CP34', mods # 3,4-dichloro-phenylalanine
|
| 276 |
+
|
| 277 |
+
# Hydroxy and amino derivatives
|
| 278 |
+
if 'O' in content and 'c1' in content:
|
| 279 |
+
if 'c1cc(O)cc(c1)O' in content:
|
| 280 |
+
return '3FG', mods # (2s)-amino(3,5-dihydroxyphenyl)-ethanoic acid
|
| 281 |
+
if 'c1ccc(c(c1)O)O' in content:
|
| 282 |
+
return 'DAH', mods # 3,4-Dihydroxy-phenylalanine
|
| 283 |
+
|
| 284 |
+
# Cyclic amino acids
|
| 285 |
+
if 'C1CCCC1' in content:
|
| 286 |
+
return 'CPA3', mods # 3-Cyclopentyl-alanine
|
| 287 |
+
if 'C1CCCCC1' in content:
|
| 288 |
+
if 'CC1CCCCC1' in content:
|
| 289 |
+
return 'ALC', mods # 3-cyclohexyl-alanine
|
| 290 |
+
else:
|
| 291 |
+
return 'CHG', mods # Cyclohexylglycine
|
| 292 |
+
|
| 293 |
+
# Chain-length variants
|
| 294 |
+
if 'CCC[C@@H]' in content or 'CCC[C@H]' in content:
|
| 295 |
+
return 'NLE', mods # Norleucine
|
| 296 |
+
if 'CC[C@@H]' in content or 'CC[C@H]' in content:
|
| 297 |
+
if not any(x in content for x in ['CC(C)', 'COC', 'CN(']):
|
| 298 |
+
return 'ABA', mods # 2-Aminobutyric acid
|
| 299 |
+
|
| 300 |
+
# Modified histidines
|
| 301 |
+
if 'c1cnc' in content:
|
| 302 |
+
if '[C@@H]1CN[C@@H](N1)F' in content:
|
| 303 |
+
return '2HF', mods # 2-fluoro-l-histidine
|
| 304 |
+
if 'c1cnc([nH]1)F' in content:
|
| 305 |
+
return '2HF1', mods # 2-fluoro-l-histidine variant
|
| 306 |
+
if 'c1c[nH]c(n1)F' in content:
|
| 307 |
+
return '2HF2', mods # 2-fluoro-l-histidine variant
|
| 308 |
+
|
| 309 |
+
# Sulfur and selenium containing
|
| 310 |
+
if '[SeH]' in content:
|
| 311 |
+
return 'CSE', mods # Selenocysteine
|
| 312 |
+
if 'S' in content:
|
| 313 |
+
if 'CSCc1ccccc1' in content:
|
| 314 |
+
return 'BCS', mods # benzylcysteine
|
| 315 |
+
if 'CCSC' in content:
|
| 316 |
+
return 'ESC', mods # Ethionine
|
| 317 |
+
if 'CCS' in content:
|
| 318 |
+
return 'HCS', mods # homocysteine
|
| 319 |
+
|
| 320 |
+
# Additional modifications
|
| 321 |
+
if 'CN=[N]=N' in content:
|
| 322 |
+
return 'AZDA', mods # azido-alanine
|
| 323 |
+
if '[NH]=[C](=[NH2])=[NH2]' in content:
|
| 324 |
+
if 'CCC[NH]=' in content:
|
| 325 |
+
return 'AGM', mods # 5-methyl-arginine
|
| 326 |
+
if 'CC[NH]=' in content:
|
| 327 |
+
return 'GDPR', mods # 2-Amino-3-guanidinopropionic acid
|
| 328 |
+
|
| 329 |
+
if 'CCON' in content:
|
| 330 |
+
return 'CAN', mods # canaline
|
| 331 |
+
if '[C@@H]1C=C[C@@H](C=C1)' in content:
|
| 332 |
+
return 'ACZ', mods # cis-amiclenomycin
|
| 333 |
+
if 'CCC(=O)[NH3]' in content:
|
| 334 |
+
return 'ONL', mods # 5-oxo-l-norleucine
|
| 335 |
+
if 'c1ccncc1' in content:
|
| 336 |
+
return 'PYR4', mods # 3-(4-Pyridyl)-alanine
|
| 337 |
+
if 'c1ccco1' in content:
|
| 338 |
+
return 'FUA2', mods # (2-furyl)-alanine
|
| 339 |
+
|
| 340 |
+
if 'c1ccc' in content:
|
| 341 |
+
if 'c1ccc(cc1)c1ccccc1' in content:
|
| 342 |
+
return 'BIF', mods # 4,4-biphenylalanine
|
| 343 |
+
if 'c1ccc(cc1)C(=O)c1ccccc1' in content:
|
| 344 |
+
return 'PBF', mods # 4-benzoyl-phenylalanine
|
| 345 |
+
if 'c1ccc(cc1)C(C)(C)C' in content:
|
| 346 |
+
return 'TBP4', mods # 4-tert-butyl-phenylalanine
|
| 347 |
+
if 'c1ccc(cc1)[C](=[NH2])=[NH2]' in content:
|
| 348 |
+
return '0BN', mods # 4-carbamimidoyl-l-phenylalanine
|
| 349 |
+
if 'c1cccc(c1)[C](=[NH2])=[NH2]' in content:
|
| 350 |
+
return 'APM', mods # m-amidinophenyl-3-alanine
|
| 351 |
+
|
| 352 |
+
# Multiple hydroxy patterns
|
| 353 |
+
if 'O' in content:
|
| 354 |
+
if '[C@H]([C@H](C)O)O' in content:
|
| 355 |
+
return 'ILX', mods # 4,5-dihydroxy-isoleucine
|
| 356 |
+
if '[C@H]([C@@H](C)O)O' in content:
|
| 357 |
+
return 'ALO', mods # Allo-threonine
|
| 358 |
+
if '[C@H](COP(O)(O)O)' in content:
|
| 359 |
+
return 'SEP', mods # phosphoserine
|
| 360 |
+
if '[C@H]([C@@H](C)OP(O)(O)O)' in content:
|
| 361 |
+
return 'TPO', mods # phosphothreonine
|
| 362 |
+
if '[C@H](c1ccc(O)cc1)O' in content:
|
| 363 |
+
return 'OMX', mods # (betar)-beta-hydroxy-l-tyrosine
|
| 364 |
+
if '[C@H](c1ccc(c(Cl)c1)O)O' in content:
|
| 365 |
+
return 'OMY', mods # (betar)-3-chloro-beta-hydroxy-l-tyrosine
|
| 366 |
+
|
| 367 |
+
# Heterocyclic patterns
|
| 368 |
+
if 'n1' in content:
|
| 369 |
+
if 'n1cccn1' in content:
|
| 370 |
+
return 'PYZ1', mods # 3-(1-Pyrazolyl)-alanine
|
| 371 |
+
if 'n1nncn1' in content:
|
| 372 |
+
return 'TEZA', mods # 3-(2-Tetrazolyl)-alanine
|
| 373 |
+
if 'c2c(n1)cccc2' in content:
|
| 374 |
+
return 'QU32', mods # 3-(2-Quinolyl)-alanine
|
| 375 |
+
if 'c1cnc2c(c1)cccc2' in content:
|
| 376 |
+
return 'QU33', mods # 3-(3-quinolyl)-alanine
|
| 377 |
+
if 'c1ccnc2c1cccc2' in content:
|
| 378 |
+
return 'QU34', mods # 3-(4-quinolyl)-alanine
|
| 379 |
+
if 'c1ccc2c(c1)nccc2' in content:
|
| 380 |
+
return 'QU35', mods # 3-(5-Quinolyl)-alanine
|
| 381 |
+
if 'c1ccc2c(c1)cncc2' in content:
|
| 382 |
+
return 'QU36', mods # 3-(6-Quinolyl)-alanine
|
| 383 |
+
if 'c1cnc2c(n1)cccc2' in content:
|
| 384 |
+
return 'QX32', mods # 3-(2-quinoxalyl)-alanine
|
| 385 |
+
|
| 386 |
+
# Multiple nitrogen patterns
|
| 387 |
+
if 'N' in content:
|
| 388 |
+
if '[NH3]CC[C@@H]' in content:
|
| 389 |
+
return 'DAB', mods # Diaminobutyric acid
|
| 390 |
+
if '[NH3]C[C@@H]' in content:
|
| 391 |
+
return 'DPP', mods # 2,3-Diaminopropanoic acid
|
| 392 |
+
if '[NH3]CCCCCC[C@@H]' in content:
|
| 393 |
+
return 'HHK', mods # (2s)-2,8-diaminooctanoic acid
|
| 394 |
+
if 'CCC[NH]=[C](=[NH2])=[NH2]' in content:
|
| 395 |
+
return 'GBUT', mods # 2-Amino-4-guanidinobutryric acid
|
| 396 |
+
if '[NH]=[C](=S)=[NH2]' in content:
|
| 397 |
+
return 'THIC', mods # Thio-citrulline
|
| 398 |
+
|
| 399 |
+
# Chain modified amino acids
|
| 400 |
+
if 'CC' in content:
|
| 401 |
+
if 'CCCC[C@@H]' in content:
|
| 402 |
+
return 'AHP', mods # 2-Aminoheptanoic acid
|
| 403 |
+
if 'CCC([C@@H])(C)C' in content:
|
| 404 |
+
return 'I2M', mods # 3-methyl-l-alloisoleucine
|
| 405 |
+
if 'CC[C@H]([C@@H])C' in content:
|
| 406 |
+
return 'IIL', mods # Allo-Isoleucine
|
| 407 |
+
if '[C@H](CCC(C)C)' in content:
|
| 408 |
+
return 'HLEU', mods # Homoleucine
|
| 409 |
+
if '[C@@H]([C@@H](C)O)C' in content:
|
| 410 |
+
return 'HLU', mods # beta-hydroxyleucine
|
| 411 |
+
|
| 412 |
+
# Modified glutamate/aspartate patterns
|
| 413 |
+
if '[C@@H]' in content:
|
| 414 |
+
if '[C@@H](C[C@@H](F))' in content:
|
| 415 |
+
return 'FGA4', mods # 4-Fluoro-glutamic acid
|
| 416 |
+
if '[C@@H](C[C@@H](O))' in content:
|
| 417 |
+
return '3GL', mods # 4-hydroxy-glutamic-acid
|
| 418 |
+
if '[C@@H](C[C@H](C))' in content:
|
| 419 |
+
return 'LME', mods # (3r)-3-methyl-l-glutamic acid
|
| 420 |
+
if '[C@@H](CC[C@H](C))' in content:
|
| 421 |
+
return 'MEG', mods # (3s)-3-methyl-l-glutamic acid
|
| 422 |
+
|
| 423 |
+
# Sulfur and selenium modifications
|
| 424 |
+
if 'S' in content:
|
| 425 |
+
if 'SCC[C@@H]' in content:
|
| 426 |
+
return 'HSER', mods # homoserine
|
| 427 |
+
if 'SCCN' in content:
|
| 428 |
+
return 'SLZ', mods # thialysine
|
| 429 |
+
if 'SC(=O)' in content:
|
| 430 |
+
return 'CSA', mods # s-acetonylcysteine
|
| 431 |
+
if '[S@@](=O)' in content:
|
| 432 |
+
return 'SME', mods # Methionine sulfoxide
|
| 433 |
+
if 'S(=O)(=O)' in content:
|
| 434 |
+
return 'OMT', mods # Methionine sulfone
|
| 435 |
+
|
| 436 |
+
# Double bond containing
|
| 437 |
+
if 'C=' in content:
|
| 438 |
+
if 'C=C[C@@H]' in content:
|
| 439 |
+
return '2AG', mods # 2-Allyl-glycine
|
| 440 |
+
if 'C=C[C@@H]' in content:
|
| 441 |
+
return 'LVG', mods # vinylglycine
|
| 442 |
+
if 'C=Cc1ccccc1' in content:
|
| 443 |
+
return 'STYA', mods # Styrylalanine
|
| 444 |
+
|
| 445 |
+
# Special cases
|
| 446 |
+
if '[C@@H]1Cc2c(C1)cccc2' in content:
|
| 447 |
+
return 'IGL', mods # alpha-amino-2-indanacetic acid
|
| 448 |
+
if '[C](=[C](=O)=O)=O' in content:
|
| 449 |
+
return '26P', mods # 2-amino-6-oxopimelic acid
|
| 450 |
+
if '[C](=[C](=O)=O)=C' in content:
|
| 451 |
+
return '2NP', mods # l-2-amino-6-methylene-pimelic acid
|
| 452 |
+
if 'c2cnc[nH]2' in content:
|
| 453 |
+
return 'HIS', mods # histidine core
|
| 454 |
+
if 'c1cccc2c1cc(O)cc2' in content:
|
| 455 |
+
return 'NAO1', mods # 5-hydroxy-1-naphthalene
|
| 456 |
+
if 'c1ccc2c(c1)cc(O)cc2' in content:
|
| 457 |
+
return 'NAO2', mods # 6-hydroxy-2-naphthalene
|
| 458 |
+
|
| 459 |
+
# Proline (P) - flexible ring numbers
|
| 460 |
+
if any([
|
| 461 |
+
# Check for any ring number in bond patterns
|
| 462 |
+
(segment.get('bond_after', '').startswith(f'N{n}C(=O)') and 'CCC' in content and
|
| 463 |
+
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
|
| 464 |
+
for n in '123456789'
|
| 465 |
+
]) or any([
|
| 466 |
+
# Check ending patterns with any ring number
|
| 467 |
+
(f'CCCN{n}' in content and content.endswith('=O') and
|
| 468 |
+
any(f'[C@@H]{n}' in content or f'[C@H]{n}' in content for n in '123456789'))
|
| 469 |
+
for n in '123456789'
|
| 470 |
+
]) or any([
|
| 471 |
+
# Handle CCC[C@H]n patterns
|
| 472 |
+
(content == f'CCC[C@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
|
| 473 |
+
(content == f'CCC[C@@H]{n}' and segment.get('bond_before', '').startswith(f'C(=O)N{n}')) or
|
| 474 |
+
# N-terminal Pro with any ring number
|
| 475 |
+
(f'N{n}CCC[C@H]{n}' in content) or
|
| 476 |
+
(f'N{n}CCC[C@@H]{n}' in content)
|
| 477 |
+
for n in '123456789'
|
| 478 |
+
]):
|
| 479 |
+
return 'Pro', mods
|
| 480 |
+
|
| 481 |
+
# Tryptophan (W) - more specific indole pattern
|
| 482 |
+
if re.search(r'c[0-9]c\[nH\]c[0-9]ccccc[0-9][0-9]', content) and \
|
| 483 |
+
'c[nH]c' in content.replace(' ', ''):
|
| 484 |
+
return 'Trp', mods
|
| 485 |
+
|
| 486 |
+
# Lysine (K) - both patterns
|
| 487 |
+
if '[C@@H](CCCCN)' in content or '[C@H](CCCCN)' in content:
|
| 488 |
+
return 'Lys', mods
|
| 489 |
+
|
| 490 |
+
# Arginine (R) - both patterns
|
| 491 |
+
if '[C@@H](CCCNC(=N)N)' in content or '[C@H](CCCNC(=N)N)' in content:
|
| 492 |
+
return 'Arg', mods
|
| 493 |
+
|
| 494 |
+
if ('C[C@H](CCCC)' in content or 'C[C@@H](CCCC)' in content) and 'CC(C)' not in content:
|
| 495 |
+
return 'Nle', mods
|
| 496 |
+
|
| 497 |
+
# Ornithine (Orn) - 3-carbon chain with NH2
|
| 498 |
+
if ('C[C@H](CCCN)' in content or 'C[C@@H](CCCN)' in content) and 'CC(C)' not in content:
|
| 499 |
+
return 'Orn', mods
|
| 500 |
+
|
| 501 |
+
# 2-Naphthylalanine (2Nal) - distinct from Phe pattern
|
| 502 |
+
if ('Cc3cc2ccccc2c3' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 503 |
+
return '2Nal', mods
|
| 504 |
+
|
| 505 |
+
# Cyclohexylalanine (Cha) - already in your code but moved here for clarity
|
| 506 |
+
if 'N2CCCCC2' in content or 'CCCCC2' in content:
|
| 507 |
+
return 'Cha', mods
|
| 508 |
+
|
| 509 |
+
# Aminobutyric acid (Abu) - 2-carbon chain
|
| 510 |
+
if ('C[C@H](CC)' in content or 'C[C@@H](CC)' in content) and not any(p in content for p in ['CC(C)', 'CCCC', 'CCC(C)']):
|
| 511 |
+
return 'Abu', mods
|
| 512 |
+
|
| 513 |
+
# Pipecolic acid (Pip) - 6-membered ring like Pro
|
| 514 |
+
if ('N3CCCCC3' in content or 'CCCCC3' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 515 |
+
return 'Pip', mods
|
| 516 |
+
|
| 517 |
+
# Cyclohexylglycine (Chg) - direct cyclohexyl without CH2
|
| 518 |
+
if ('C[C@H](C1CCCCC1)' in content or 'C[C@@H](C1CCCCC1)' in content):
|
| 519 |
+
return 'Chg', mods
|
| 520 |
+
|
| 521 |
+
# 4-Fluorophenylalanine (4F-Phe)
|
| 522 |
+
if ('Cc2ccc(F)cc2' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 523 |
+
return '4F-Phe', mods
|
| 524 |
+
|
| 525 |
+
# Regular residue identification
|
| 526 |
+
if ('NCC(=O)' in content) or (content == 'C'):
|
| 527 |
+
# Middle case - between bonds
|
| 528 |
+
if segment.get('bond_before') and segment.get('bond_after'):
|
| 529 |
+
if ('C(=O)N' in segment['bond_before'] or 'C(=O)N(C)' in segment['bond_before']):
|
| 530 |
+
return 'Gly', mods
|
| 531 |
+
# Terminal case - at the end
|
| 532 |
+
elif segment.get('bond_before') and segment.get('bond_before').startswith('C(=O)N'):
|
| 533 |
+
return 'Gly', mods
|
| 534 |
+
|
| 535 |
+
if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content:
|
| 536 |
+
return 'Leu', mods
|
| 537 |
+
if '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content:
|
| 538 |
+
return 'Leu', mods
|
| 539 |
+
|
| 540 |
+
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content:
|
| 541 |
+
return 'Thr', mods
|
| 542 |
+
|
| 543 |
+
if '[C@H](Cc2ccccc2)' in content or '[C@@H](Cc2ccccc2)' in content:
|
| 544 |
+
return 'Phe', mods
|
| 545 |
+
|
| 546 |
+
if ('[C@H](C(C)C)' in content or # With outer parentheses
|
| 547 |
+
'[C@@H](C(C)C)' in content or # With outer parentheses
|
| 548 |
+
'[C@H]C(C)C' in content or # Without outer parentheses
|
| 549 |
+
'[C@@H]C(C)C' in content): # Without outer parentheses
|
| 550 |
+
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]']): # Still check not Leu
|
| 551 |
+
return 'Val', mods
|
| 552 |
+
|
| 553 |
+
if '[C@H](COC(C)(C)C)' in content or '[C@@H](COC(C)(C)C)' in content:
|
| 554 |
+
return 'O-tBu', mods
|
| 555 |
+
|
| 556 |
+
if any([
|
| 557 |
+
'CC[C@H](C)' in content,
|
| 558 |
+
'CC[C@@H](C)' in content,
|
| 559 |
+
'C(C)C[C@H]' in content and 'CC(C)C' not in content,
|
| 560 |
+
'C(C)C[C@@H]' in content and 'CC(C)C' not in content
|
| 561 |
+
]):
|
| 562 |
+
return 'Ile', mods
|
| 563 |
+
|
| 564 |
+
if ('[C@H](C)' in content or '[C@@H](C)' in content):
|
| 565 |
+
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O', 'CC[C@H]', 'CC[C@@H]']):
|
| 566 |
+
return 'Ala', mods
|
| 567 |
+
|
| 568 |
+
# Tyrosine (Tyr) - 4-hydroxybenzyl side chain
|
| 569 |
+
if re.search(r'Cc[0-9]ccc\(O\)cc[0-9]', content):
|
| 570 |
+
return 'Tyr', mods
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
# Serine (Ser) - Hydroxymethyl side chain
|
| 574 |
+
if '[C@H](CO)' in content or '[C@@H](CO)' in content:
|
| 575 |
+
if not ('C(C)O' in content or 'COC' in content):
|
| 576 |
+
return 'Ser', mods
|
| 577 |
+
|
| 578 |
+
# Threonine (Thr) - 1-hydroxyethyl side chain
|
| 579 |
+
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content or '[C@@H](C)O' in content or '[C@H](C)O' in content:
|
| 580 |
+
return 'Thr', mods
|
| 581 |
+
|
| 582 |
+
# Cysteine (Cys) - Thiol side chain
|
| 583 |
+
if '[C@H](CS)' in content or '[C@@H](CS)' in content:
|
| 584 |
+
return 'Cys', mods
|
| 585 |
+
|
| 586 |
+
# Methionine (Met) - Methylthioethyl side chain
|
| 587 |
+
if ('C[C@H](CCSC)' in content or 'C[C@@H](CCSC)' in content):
|
| 588 |
+
return 'Met', mods
|
| 589 |
+
|
| 590 |
+
# Asparagine (Asn) - Carbamoylmethyl side chain
|
| 591 |
+
if ('CC(=O)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 592 |
+
return 'Asn', mods
|
| 593 |
+
|
| 594 |
+
# Glutamine (Gln) - Carbamoylethyl side chain
|
| 595 |
+
if ('CCC(=O)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 596 |
+
return 'Gln', mods
|
| 597 |
+
|
| 598 |
+
# Aspartic acid (Asp) - Carboxymethyl side chain
|
| 599 |
+
if ('CC(=O)O' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 600 |
+
return 'Asp', mods
|
| 601 |
+
|
| 602 |
+
# Glutamic acid (Glu) - Carboxyethyl side chain
|
| 603 |
+
if ('CCC(=O)O' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 604 |
+
return 'Glu', mods
|
| 605 |
+
|
| 606 |
+
# Arginine (Arg) - 3-guanidinopropyl side chain
|
| 607 |
+
if ('CCCNC(=N)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 608 |
+
return 'Arg', mods
|
| 609 |
+
|
| 610 |
+
# Histidine (His) - Imidazole side chain
|
| 611 |
+
if ('Cc2cnc[nH]2' in content) and ('C[C@H]' in content or 'C[C@@H]' in content):
|
| 612 |
+
return 'His', mods
|
| 613 |
+
|
| 614 |
+
return None, mods
|
| 615 |
+
|
| 616 |
+
def get_modifications(self, segment):
|
| 617 |
+
"""Get modifications based on bond types"""
|
| 618 |
+
mods = []
|
| 619 |
+
if segment.get('bond_after'):
|
| 620 |
+
if 'N(C)' in segment['bond_after'] or segment['bond_after'].startswith('C(=O)N(C)'):
|
| 621 |
+
mods.append('N-Me')
|
| 622 |
+
if 'OC(=O)' in segment['bond_after']:
|
| 623 |
+
mods.append('O-linked')
|
| 624 |
+
return mods
|
| 625 |
+
|
| 626 |
+
def analyze_structure(self, smiles):
|
| 627 |
+
"""Main analysis function with debug output"""
|
| 628 |
+
print("\nAnalyzing structure:", smiles)
|
| 629 |
+
|
| 630 |
+
# Split into segments
|
| 631 |
+
segments = self.split_on_bonds(smiles)
|
| 632 |
+
|
| 633 |
+
print("\nSegment Analysis:")
|
| 634 |
+
sequence = []
|
| 635 |
+
for i, segment in enumerate(segments):
|
| 636 |
+
print(f"\nSegment {i}:")
|
| 637 |
+
print(f"Content: {segment['content']}")
|
| 638 |
+
print(f"Bond before: {segment.get('bond_before', 'None')}")
|
| 639 |
+
print(f"Bond after: {segment.get('bond_after', 'None')}")
|
| 640 |
+
|
| 641 |
+
residue, mods = self.identify_residue(segment)
|
| 642 |
+
if residue:
|
| 643 |
+
if mods:
|
| 644 |
+
sequence.append(f"{residue}({','.join(mods)})")
|
| 645 |
+
else:
|
| 646 |
+
sequence.append(residue)
|
| 647 |
+
print(f"Identified as: {residue}")
|
| 648 |
+
print(f"Modifications: {mods}")
|
| 649 |
+
else:
|
| 650 |
+
print(f"Warning: Could not identify residue in segment: {segment['content']}")
|
| 651 |
+
|
| 652 |
+
# Check if cyclic
|
| 653 |
+
is_cyclic, peptide_cycles, aromatic_cycles = self.is_cyclic(smiles)
|
| 654 |
+
three_letter = '-'.join(sequence)
|
| 655 |
+
one_letter = ''.join(self.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence)
|
| 656 |
+
|
| 657 |
+
if is_cyclic:
|
| 658 |
+
three_letter = f"cyclo({three_letter})"
|
| 659 |
+
one_letter = f"cyclo({one_letter})"
|
| 660 |
+
|
| 661 |
+
print(f"\nFinal sequence: {three_letter}")
|
| 662 |
+
print(f"One-letter code: {one_letter}")
|
| 663 |
+
print(f"Is cyclic: {is_cyclic}")
|
| 664 |
+
#print(f"Peptide cycles: {peptide_cycles}")
|
| 665 |
+
#print(f"Aromatic cycles: {aromatic_cycles}")
|
| 666 |
+
|
| 667 |
+
return three_letter, len(segments)
|
| 668 |
+
"""return {
|
| 669 |
+
'three_letter': three_letter,
|
| 670 |
+
#'one_letter': one_letter,
|
| 671 |
+
'is_cyclic': is_cyclic
|
| 672 |
+
}"""
|
| 673 |
+
|
| 674 |
+
def return_sequence(self, smiles):
|
| 675 |
+
"""Main analysis function with debug output"""
|
| 676 |
+
print("\nAnalyzing structure:", smiles)
|
| 677 |
+
|
| 678 |
+
# Split into segments
|
| 679 |
+
segments = self.split_on_bonds(smiles)
|
| 680 |
+
|
| 681 |
+
print("\nSegment Analysis:")
|
| 682 |
+
sequence = []
|
| 683 |
+
for i, segment in enumerate(segments):
|
| 684 |
+
print(f"\nSegment {i}:")
|
| 685 |
+
print(f"Content: {segment['content']}")
|
| 686 |
+
print(f"Bond before: {segment.get('bond_before', 'None')}")
|
| 687 |
+
print(f"Bond after: {segment.get('bond_after', 'None')}")
|
| 688 |
+
|
| 689 |
+
residue, mods = self.identify_residue(segment)
|
| 690 |
+
if residue:
|
| 691 |
+
if mods:
|
| 692 |
+
sequence.append(f"{residue}({','.join(mods)})")
|
| 693 |
+
else:
|
| 694 |
+
sequence.append(residue)
|
| 695 |
+
print(f"Identified as: {residue}")
|
| 696 |
+
print(f"Modifications: {mods}")
|
| 697 |
+
else:
|
| 698 |
+
print(f"Warning: Could not identify residue in segment: {segment['content']}")
|
| 699 |
+
|
| 700 |
+
return sequence
|
| 701 |
+
|
| 702 |
+
"""
|
| 703 |
+
def annotate_cyclic_structure(mol, sequence):
|
| 704 |
+
'''Create annotated 2D structure with clear, non-overlapping residue labels'''
|
| 705 |
+
# Generate 2D coordinates
|
| 706 |
+
# Generate 2D coordinates
|
| 707 |
+
AllChem.Compute2DCoords(mol)
|
| 708 |
+
|
| 709 |
+
# Create drawer with larger size for annotations
|
| 710 |
+
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) # Even larger size
|
| 711 |
+
|
| 712 |
+
# Get residue list and reverse it to match structural representation
|
| 713 |
+
if sequence.startswith('cyclo('):
|
| 714 |
+
residues = sequence[6:-1].split('-')
|
| 715 |
+
else:
|
| 716 |
+
residues = sequence.split('-')
|
| 717 |
+
residues = list(reversed(residues)) # Reverse the sequence
|
| 718 |
+
|
| 719 |
+
# Draw molecule first to get its bounds
|
| 720 |
+
drawer.drawOptions().addAtomIndices = False
|
| 721 |
+
drawer.DrawMolecule(mol)
|
| 722 |
+
drawer.FinishDrawing()
|
| 723 |
+
|
| 724 |
+
# Convert to PIL Image
|
| 725 |
+
img = Image.open(BytesIO(drawer.GetDrawingText()))
|
| 726 |
+
draw = ImageDraw.Draw(img)
|
| 727 |
+
|
| 728 |
+
try:
|
| 729 |
+
# Try to use DejaVuSans as it's commonly available on Linux systems
|
| 730 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
|
| 731 |
+
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
|
| 732 |
+
except OSError:
|
| 733 |
+
try:
|
| 734 |
+
# Fallback to Arial if available (common on Windows)
|
| 735 |
+
font = ImageFont.truetype("arial.ttf", 60)
|
| 736 |
+
small_font = ImageFont.truetype("arial.ttf", 60)
|
| 737 |
+
except OSError:
|
| 738 |
+
# If no TrueType fonts are available, fall back to default
|
| 739 |
+
print("Warning: TrueType fonts not available, using default font")
|
| 740 |
+
font = ImageFont.load_default()
|
| 741 |
+
small_font = ImageFont.load_default()
|
| 742 |
+
# Get molecule bounds
|
| 743 |
+
conf = mol.GetConformer()
|
| 744 |
+
positions = []
|
| 745 |
+
for i in range(mol.GetNumAtoms()):
|
| 746 |
+
pos = conf.GetAtomPosition(i)
|
| 747 |
+
positions.append((pos.x, pos.y))
|
| 748 |
+
|
| 749 |
+
x_coords = [p[0] for p in positions]
|
| 750 |
+
y_coords = [p[1] for p in positions]
|
| 751 |
+
min_x, max_x = min(x_coords), max(x_coords)
|
| 752 |
+
min_y, max_y = min(y_coords), max(y_coords)
|
| 753 |
+
|
| 754 |
+
# Calculate scaling factors
|
| 755 |
+
scale = 150 # Increased scale factor
|
| 756 |
+
center_x = 1000 # Image center
|
| 757 |
+
center_y = 1000
|
| 758 |
+
|
| 759 |
+
# Add residue labels in a circular arrangement around the structure
|
| 760 |
+
n_residues = len(residues)
|
| 761 |
+
radius = 700 # Distance of labels from center
|
| 762 |
+
|
| 763 |
+
# Start from the rightmost point (3 o'clock position) and go counterclockwise
|
| 764 |
+
# Offset by -3 positions to align with structure
|
| 765 |
+
offset = 0 # Adjust this value to match the structure alignment
|
| 766 |
+
for i, residue in enumerate(residues):
|
| 767 |
+
# Calculate position in a circle around the structure
|
| 768 |
+
# Start from 0 (3 o'clock) and go counterclockwise
|
| 769 |
+
angle = -(2 * np.pi * ((i + offset) % n_residues) / n_residues)
|
| 770 |
+
|
| 771 |
+
# Calculate label position
|
| 772 |
+
label_x = center_x + radius * np.cos(angle)
|
| 773 |
+
label_y = center_y + radius * np.sin(angle)
|
| 774 |
+
|
| 775 |
+
# Draw residue label
|
| 776 |
+
text = f"{i+1}. {residue}"
|
| 777 |
+
bbox = draw.textbbox((label_x, label_y), text, font=font)
|
| 778 |
+
padding = 10
|
| 779 |
+
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
|
| 780 |
+
bbox[2]+padding, bbox[3]+padding],
|
| 781 |
+
fill='white', outline='white')
|
| 782 |
+
draw.text((label_x, label_y), text,
|
| 783 |
+
font=font, fill='black', anchor="mm")
|
| 784 |
+
|
| 785 |
+
# Add sequence at the top with white background
|
| 786 |
+
seq_text = f"Sequence: {sequence}"
|
| 787 |
+
bbox = draw.textbbox((center_x, 100), seq_text, font=small_font)
|
| 788 |
+
padding = 10
|
| 789 |
+
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
|
| 790 |
+
bbox[2]+padding, bbox[3]+padding],
|
| 791 |
+
fill='white', outline='white')
|
| 792 |
+
draw.text((center_x, 100), seq_text,
|
| 793 |
+
font=small_font, fill='black', anchor="mm")
|
| 794 |
+
|
| 795 |
+
return img
|
| 796 |
+
|
| 797 |
+
"""
|
| 798 |
+
def annotate_cyclic_structure(mol, sequence):
|
| 799 |
+
"""Create structure visualization with just the sequence header"""
|
| 800 |
+
# Generate 2D coordinates
|
| 801 |
+
AllChem.Compute2DCoords(mol)
|
| 802 |
+
|
| 803 |
+
# Create drawer with larger size for annotations
|
| 804 |
+
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000)
|
| 805 |
+
|
| 806 |
+
# Draw molecule first
|
| 807 |
+
drawer.drawOptions().addAtomIndices = False
|
| 808 |
+
drawer.DrawMolecule(mol)
|
| 809 |
+
drawer.FinishDrawing()
|
| 810 |
+
|
| 811 |
+
# Convert to PIL Image
|
| 812 |
+
img = Image.open(BytesIO(drawer.GetDrawingText()))
|
| 813 |
+
draw = ImageDraw.Draw(img)
|
| 814 |
+
try:
|
| 815 |
+
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
|
| 816 |
+
except OSError:
|
| 817 |
+
try:
|
| 818 |
+
small_font = ImageFont.truetype("arial.ttf", 60)
|
| 819 |
+
except OSError:
|
| 820 |
+
print("Warning: TrueType fonts not available, using default font")
|
| 821 |
+
small_font = ImageFont.load_default()
|
| 822 |
+
|
| 823 |
+
# Add just the sequence header at the top
|
| 824 |
+
seq_text = f"Sequence: {sequence}"
|
| 825 |
+
bbox = draw.textbbox((1000, 100), seq_text, font=small_font)
|
| 826 |
+
padding = 10
|
| 827 |
+
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
|
| 828 |
+
bbox[2]+padding, bbox[3]+padding],
|
| 829 |
+
fill='white', outline='white')
|
| 830 |
+
draw.text((1000, 100), seq_text,
|
| 831 |
+
font=small_font, fill='black', anchor="mm")
|
| 832 |
+
|
| 833 |
+
return img
|
| 834 |
+
|
| 835 |
+
def create_enhanced_linear_viz(sequence, smiles):
|
| 836 |
+
"""Create an enhanced linear representation using PeptideAnalyzer"""
|
| 837 |
+
analyzer = PeptideAnalyzer() # Create analyzer instance
|
| 838 |
+
|
| 839 |
+
# Create figure with two subplots
|
| 840 |
+
fig = plt.figure(figsize=(15, 10))
|
| 841 |
+
gs = fig.add_gridspec(2, 1, height_ratios=[1, 2])
|
| 842 |
+
ax_struct = fig.add_subplot(gs[0])
|
| 843 |
+
ax_detail = fig.add_subplot(gs[1])
|
| 844 |
+
|
| 845 |
+
# Parse sequence and get residues
|
| 846 |
+
if sequence.startswith('cyclo('):
|
| 847 |
+
residues = sequence[6:-1].split('-')
|
| 848 |
+
else:
|
| 849 |
+
residues = sequence.split('-')
|
| 850 |
+
|
| 851 |
+
# Get segments using analyzer
|
| 852 |
+
segments = analyzer.split_on_bonds(smiles)
|
| 853 |
+
|
| 854 |
+
# Debug print
|
| 855 |
+
print(f"Number of residues: {len(residues)}")
|
| 856 |
+
print(f"Number of segments: {len(segments)}")
|
| 857 |
+
|
| 858 |
+
# Top subplot - Basic structure
|
| 859 |
+
ax_struct.set_xlim(0, 10)
|
| 860 |
+
ax_struct.set_ylim(0, 2)
|
| 861 |
+
|
| 862 |
+
num_residues = len(residues)
|
| 863 |
+
spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0
|
| 864 |
+
|
| 865 |
+
# Draw basic structure
|
| 866 |
+
y_pos = 1.5
|
| 867 |
+
for i in range(num_residues):
|
| 868 |
+
x_pos = 0.5 + i * spacing
|
| 869 |
+
|
| 870 |
+
# Draw amino acid box
|
| 871 |
+
rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4,
|
| 872 |
+
facecolor='lightblue', edgecolor='black')
|
| 873 |
+
ax_struct.add_patch(rect)
|
| 874 |
+
|
| 875 |
+
# Draw connecting bonds if not the last residue
|
| 876 |
+
if i < num_residues - 1:
|
| 877 |
+
segment = segments[i] if i < len(segments) else None
|
| 878 |
+
if segment:
|
| 879 |
+
# Determine bond type from segment info
|
| 880 |
+
bond_type = 'ester' if 'O-linked' in segment.get('bond_after', '') else 'peptide'
|
| 881 |
+
is_n_methylated = 'N-Me' in segment.get('bond_after', '')
|
| 882 |
+
|
| 883 |
+
bond_color = 'red' if bond_type == 'ester' else 'black'
|
| 884 |
+
linestyle = '--' if bond_type == 'ester' else '-'
|
| 885 |
+
|
| 886 |
+
# Draw bond line
|
| 887 |
+
ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos],
|
| 888 |
+
color=bond_color, linestyle=linestyle, linewidth=2)
|
| 889 |
+
|
| 890 |
+
# Add bond type label
|
| 891 |
+
mid_x = x_pos + spacing/2
|
| 892 |
+
bond_label = f"{bond_type}"
|
| 893 |
+
if is_n_methylated:
|
| 894 |
+
bond_label += "\n(N-Me)"
|
| 895 |
+
ax_struct.text(mid_x, y_pos+0.1, bond_label,
|
| 896 |
+
ha='center', va='bottom', fontsize=10,
|
| 897 |
+
color=bond_color)
|
| 898 |
+
|
| 899 |
+
# Add residue label
|
| 900 |
+
ax_struct.text(x_pos, y_pos-0.5, residues[i],
|
| 901 |
+
ha='center', va='top', fontsize=14)
|
| 902 |
+
|
| 903 |
+
# Bottom subplot - Detailed breakdown
|
| 904 |
+
ax_detail.set_ylim(0, len(segments)+1)
|
| 905 |
+
ax_detail.set_xlim(0, 1)
|
| 906 |
+
|
| 907 |
+
# Create detailed breakdown
|
| 908 |
+
segment_y = len(segments) # Start from top
|
| 909 |
+
for i, segment in enumerate(segments):
|
| 910 |
+
y = segment_y - i
|
| 911 |
+
|
| 912 |
+
# Check if this is a bond or residue
|
| 913 |
+
residue, mods = analyzer.identify_residue(segment)
|
| 914 |
+
if residue:
|
| 915 |
+
text = f"Residue {i+1}: {residue}"
|
| 916 |
+
if mods:
|
| 917 |
+
text += f" ({', '.join(mods)})"
|
| 918 |
+
color = 'blue'
|
| 919 |
+
else:
|
| 920 |
+
# Must be a bond
|
| 921 |
+
text = f"Bond {i}: "
|
| 922 |
+
if 'O-linked' in segment.get('bond_after', ''):
|
| 923 |
+
text += "ester"
|
| 924 |
+
elif 'N-Me' in segment.get('bond_after', ''):
|
| 925 |
+
text += "peptide (N-methylated)"
|
| 926 |
+
else:
|
| 927 |
+
text += "peptide"
|
| 928 |
+
color = 'red'
|
| 929 |
+
|
| 930 |
+
# Add segment analysis
|
| 931 |
+
ax_detail.text(0.05, y, text, fontsize=12, color=color)
|
| 932 |
+
ax_detail.text(0.5, y, f"SMILES: {segment.get('content', '')}", fontsize=10, color='gray')
|
| 933 |
+
|
| 934 |
+
# If cyclic, add connection indicator
|
| 935 |
+
if sequence.startswith('cyclo('):
|
| 936 |
+
ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos),
|
| 937 |
+
arrowprops=dict(arrowstyle='<->', color='red', lw=2))
|
| 938 |
+
ax_struct.text(5, y_pos+0.3, 'Cyclic Connection',
|
| 939 |
+
ha='center', color='red', fontsize=14)
|
| 940 |
+
|
| 941 |
+
# Add titles and adjust layout
|
| 942 |
+
ax_struct.set_title("Peptide Structure Overview", pad=20)
|
| 943 |
+
ax_detail.set_title("Segment Analysis Breakdown", pad=20)
|
| 944 |
+
|
| 945 |
+
# Remove axes
|
| 946 |
+
for ax in [ax_struct, ax_detail]:
|
| 947 |
+
ax.set_xticks([])
|
| 948 |
+
ax.set_yticks([])
|
| 949 |
+
ax.axis('off')
|
| 950 |
+
|
| 951 |
+
plt.tight_layout()
|
| 952 |
+
return fig
|
| 953 |
+
|
| 954 |
+
class PeptideStructureGenerator:
|
| 955 |
+
"""A class to generate 3D structures of peptides using different embedding methods"""
|
| 956 |
+
|
| 957 |
+
@staticmethod
|
| 958 |
+
def prepare_molecule(smiles):
|
| 959 |
+
"""Prepare molecule with proper hydrogen handling"""
|
| 960 |
+
mol = Chem.MolFromSmiles(smiles, sanitize=False)
|
| 961 |
+
if mol is None:
|
| 962 |
+
raise ValueError("Failed to create molecule from SMILES")
|
| 963 |
+
|
| 964 |
+
# Calculate valence for each atom
|
| 965 |
+
for atom in mol.GetAtoms():
|
| 966 |
+
atom.UpdatePropertyCache(strict=False)
|
| 967 |
+
|
| 968 |
+
# Sanitize with reduced requirements
|
| 969 |
+
Chem.SanitizeMol(mol,
|
| 970 |
+
sanitizeOps=Chem.SANITIZE_FINDRADICALS|
|
| 971 |
+
Chem.SANITIZE_KEKULIZE|
|
| 972 |
+
Chem.SANITIZE_SETAROMATICITY|
|
| 973 |
+
Chem.SANITIZE_SETCONJUGATION|
|
| 974 |
+
Chem.SANITIZE_SETHYBRIDIZATION|
|
| 975 |
+
Chem.SANITIZE_CLEANUPCHIRALITY)
|
| 976 |
+
|
| 977 |
+
mol = Chem.AddHs(mol)
|
| 978 |
+
return mol
|
| 979 |
+
|
| 980 |
+
@staticmethod
|
| 981 |
+
def get_etkdg_params(attempt=0):
|
| 982 |
+
"""Get ETKDG parameters with optional modifications based on attempt number"""
|
| 983 |
+
params = AllChem.ETKDGv3()
|
| 984 |
+
params.randomSeed = -1
|
| 985 |
+
params.maxIterations = 200
|
| 986 |
+
params.numThreads = 4 # Reduced for web interface
|
| 987 |
+
params.useBasicKnowledge = True
|
| 988 |
+
params.enforceChirality = True
|
| 989 |
+
params.useExpTorsionAnglePrefs = True
|
| 990 |
+
params.useSmallRingTorsions = True
|
| 991 |
+
params.useMacrocycleTorsions = True
|
| 992 |
+
params.ETversion = 2
|
| 993 |
+
params.pruneRmsThresh = -1
|
| 994 |
+
params.embedRmsThresh = 0.5
|
| 995 |
+
|
| 996 |
+
if attempt > 10:
|
| 997 |
+
params.bondLength = 1.5 + (attempt - 10) * 0.02
|
| 998 |
+
params.useExpTorsionAnglePrefs = False
|
| 999 |
+
|
| 1000 |
+
return params
|
| 1001 |
+
|
| 1002 |
+
def generate_structure_etkdg(self, smiles, max_attempts=20):
|
| 1003 |
+
"""Generate 3D structure using ETKDG without UFF optimization"""
|
| 1004 |
+
success = False
|
| 1005 |
+
mol = None
|
| 1006 |
+
|
| 1007 |
+
for attempt in range(max_attempts):
|
| 1008 |
+
try:
|
| 1009 |
+
mol = self.prepare_molecule(smiles)
|
| 1010 |
+
params = self.get_etkdg_params(attempt)
|
| 1011 |
+
|
| 1012 |
+
if AllChem.EmbedMolecule(mol, params) == 0:
|
| 1013 |
+
success = True
|
| 1014 |
+
break
|
| 1015 |
+
except Exception as e:
|
| 1016 |
+
continue
|
| 1017 |
+
|
| 1018 |
+
if not success:
|
| 1019 |
+
raise ValueError("Failed to generate structure with ETKDG")
|
| 1020 |
+
|
| 1021 |
+
return mol
|
| 1022 |
+
|
| 1023 |
+
def generate_structure_uff(self, smiles, max_attempts=20):
|
| 1024 |
+
"""Generate 3D structure using ETKDG followed by UFF optimization"""
|
| 1025 |
+
best_mol = None
|
| 1026 |
+
lowest_energy = float('inf')
|
| 1027 |
+
|
| 1028 |
+
for attempt in range(max_attempts):
|
| 1029 |
+
try:
|
| 1030 |
+
test_mol = self.prepare_molecule(smiles)
|
| 1031 |
+
params = self.get_etkdg_params(attempt)
|
| 1032 |
+
|
| 1033 |
+
if AllChem.EmbedMolecule(test_mol, params) == 0:
|
| 1034 |
+
res = AllChem.UFFOptimizeMolecule(test_mol, maxIters=2000,
|
| 1035 |
+
vdwThresh=10.0, confId=0,
|
| 1036 |
+
ignoreInterfragInteractions=True)
|
| 1037 |
+
|
| 1038 |
+
if res == 0:
|
| 1039 |
+
ff = AllChem.UFFGetMoleculeForceField(test_mol)
|
| 1040 |
+
if ff:
|
| 1041 |
+
current_energy = ff.CalcEnergy()
|
| 1042 |
+
if current_energy < lowest_energy:
|
| 1043 |
+
lowest_energy = current_energy
|
| 1044 |
+
best_mol = Chem.Mol(test_mol)
|
| 1045 |
+
except Exception:
|
| 1046 |
+
continue
|
| 1047 |
+
|
| 1048 |
+
if best_mol is None:
|
| 1049 |
+
raise ValueError("Failed to generate optimized structure")
|
| 1050 |
+
|
| 1051 |
+
return best_mol
|
| 1052 |
+
|
| 1053 |
+
@staticmethod
|
| 1054 |
+
def mol_to_sdf_bytes(mol):
|
| 1055 |
+
"""Convert RDKit molecule to SDF file bytes"""
|
| 1056 |
+
# First write to StringIO in text mode
|
| 1057 |
+
sio = StringIO()
|
| 1058 |
+
writer = Chem.SDWriter(sio)
|
| 1059 |
+
writer.write(mol)
|
| 1060 |
+
writer.close()
|
| 1061 |
+
|
| 1062 |
+
# Convert the string to bytes
|
| 1063 |
+
return sio.getvalue().encode('utf-8')
|
| 1064 |
+
|
| 1065 |
+
def process_input(smiles_input=None, file_obj=None, show_linear=False,
|
| 1066 |
+
show_segment_details=False, generate_3d=False, use_uff=False):
|
| 1067 |
+
"""Process input and create visualizations using PeptideAnalyzer"""
|
| 1068 |
+
analyzer = PeptideAnalyzer()
|
| 1069 |
+
temp_dir = tempfile.mkdtemp() if generate_3d else None
|
| 1070 |
+
structure_files = []
|
| 1071 |
+
|
| 1072 |
+
# Handle direct SMILES input
|
| 1073 |
+
if smiles_input:
|
| 1074 |
+
smiles = smiles_input.strip()
|
| 1075 |
+
|
| 1076 |
+
# First check if it's a peptide using analyzer's method
|
| 1077 |
+
if not analyzer.is_peptide(smiles):
|
| 1078 |
+
return "Error: Input SMILES does not appear to be a peptide structure.", None, None
|
| 1079 |
+
|
| 1080 |
+
try:
|
| 1081 |
+
# Create molecule
|
| 1082 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 1083 |
+
if mol is None:
|
| 1084 |
+
return "Error: Invalid SMILES notation.", None, None
|
| 1085 |
+
|
| 1086 |
+
# Generate 3D structures if requested
|
| 1087 |
+
if generate_3d:
|
| 1088 |
+
generator = PeptideStructureGenerator()
|
| 1089 |
+
|
| 1090 |
+
try:
|
| 1091 |
+
# Generate ETKDG structure
|
| 1092 |
+
mol_etkdg = generator.generate_structure_etkdg(smiles)
|
| 1093 |
+
etkdg_path = os.path.join(temp_dir, "structure_etkdg.sdf")
|
| 1094 |
+
writer = Chem.SDWriter(etkdg_path)
|
| 1095 |
+
writer.write(mol_etkdg)
|
| 1096 |
+
writer.close()
|
| 1097 |
+
structure_files.append(etkdg_path)
|
| 1098 |
+
|
| 1099 |
+
# Generate UFF structure if requested
|
| 1100 |
+
if use_uff:
|
| 1101 |
+
mol_uff = generator.generate_structure_uff(smiles)
|
| 1102 |
+
uff_path = os.path.join(temp_dir, "structure_uff.sdf")
|
| 1103 |
+
writer = Chem.SDWriter(uff_path)
|
| 1104 |
+
writer.write(mol_uff)
|
| 1105 |
+
writer.close()
|
| 1106 |
+
structure_files.append(uff_path)
|
| 1107 |
+
|
| 1108 |
+
except Exception as e:
|
| 1109 |
+
return f"Error generating 3D structures: {str(e)}", None, None, None
|
| 1110 |
+
|
| 1111 |
+
# Use analyzer to get sequence
|
| 1112 |
+
segments = analyzer.split_on_bonds(smiles)
|
| 1113 |
+
|
| 1114 |
+
# Process segments and build sequence
|
| 1115 |
+
sequence_parts = []
|
| 1116 |
+
output_text = ""
|
| 1117 |
+
|
| 1118 |
+
# Only include segment analysis in output if requested
|
| 1119 |
+
if show_segment_details:
|
| 1120 |
+
output_text += "Segment Analysis:\n"
|
| 1121 |
+
for i, segment in enumerate(segments):
|
| 1122 |
+
output_text += f"\nSegment {i}:\n"
|
| 1123 |
+
output_text += f"Content: {segment['content']}\n"
|
| 1124 |
+
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n"
|
| 1125 |
+
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n"
|
| 1126 |
+
|
| 1127 |
+
residue, mods = analyzer.identify_residue(segment)
|
| 1128 |
+
if residue:
|
| 1129 |
+
if mods:
|
| 1130 |
+
sequence_parts.append(f"{residue}({','.join(mods)})")
|
| 1131 |
+
else:
|
| 1132 |
+
sequence_parts.append(residue)
|
| 1133 |
+
output_text += f"Identified as: {residue}\n"
|
| 1134 |
+
output_text += f"Modifications: {mods}\n"
|
| 1135 |
+
else:
|
| 1136 |
+
output_text += f"Warning: Could not identify residue in segment: {segment['content']}\n"
|
| 1137 |
+
output_text += "\n"
|
| 1138 |
+
else:
|
| 1139 |
+
# Just build sequence without detailed analysis in output
|
| 1140 |
+
for segment in segments:
|
| 1141 |
+
residue, mods = analyzer.identify_residue(segment)
|
| 1142 |
+
if residue:
|
| 1143 |
+
if mods:
|
| 1144 |
+
sequence_parts.append(f"{residue}({','.join(mods)})")
|
| 1145 |
+
else:
|
| 1146 |
+
sequence_parts.append(residue)
|
| 1147 |
+
|
| 1148 |
+
# Check if cyclic using analyzer's method
|
| 1149 |
+
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles)
|
| 1150 |
+
three_letter = '-'.join(sequence_parts)
|
| 1151 |
+
one_letter = ''.join(analyzer.three_to_one.get(aa.split('(')[0], 'X') for aa in sequence_parts)
|
| 1152 |
+
|
| 1153 |
+
if is_cyclic:
|
| 1154 |
+
three_letter = f"cyclo({three_letter})"
|
| 1155 |
+
one_letter = f"cyclo({one_letter})"
|
| 1156 |
+
|
| 1157 |
+
# Create cyclic structure visualization
|
| 1158 |
+
img_cyclic = annotate_cyclic_structure(mol, three_letter)
|
| 1159 |
+
|
| 1160 |
+
# Create linear representation if requested
|
| 1161 |
+
img_linear = None
|
| 1162 |
+
if show_linear:
|
| 1163 |
+
fig_linear = create_enhanced_linear_viz(three_letter, smiles)
|
| 1164 |
+
buf = BytesIO()
|
| 1165 |
+
fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300)
|
| 1166 |
+
buf.seek(0)
|
| 1167 |
+
img_linear = Image.open(buf)
|
| 1168 |
+
plt.close(fig_linear)
|
| 1169 |
+
|
| 1170 |
+
# Add summary to output
|
| 1171 |
+
summary = "Summary:\n"
|
| 1172 |
+
summary += f"Sequence: {three_letter}\n"
|
| 1173 |
+
summary += f"One-letter code: {one_letter}\n"
|
| 1174 |
+
summary += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
|
| 1175 |
+
#if is_cyclic:
|
| 1176 |
+
#summary += f"Peptide Cycles: {', '.join(peptide_cycles)}\n"
|
| 1177 |
+
#summary += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n"
|
| 1178 |
+
|
| 1179 |
+
if structure_files:
|
| 1180 |
+
summary += "\n3D Structures Generated:\n"
|
| 1181 |
+
for filepath in structure_files:
|
| 1182 |
+
summary += f"- {os.path.basename(filepath)}\n"
|
| 1183 |
+
|
| 1184 |
+
return summary + output_text, img_cyclic, img_linear, structure_files if structure_files else None
|
| 1185 |
+
|
| 1186 |
+
except Exception as e:
|
| 1187 |
+
return f"Error processing SMILES: {str(e)}", None, None, None
|
| 1188 |
+
|
| 1189 |
+
# Handle file input
|
| 1190 |
+
if file_obj is not None:
|
| 1191 |
+
try:
|
| 1192 |
+
# Handle file content
|
| 1193 |
+
if hasattr(file_obj, 'name'):
|
| 1194 |
+
with open(file_obj.name, 'r') as f:
|
| 1195 |
+
content = f.read()
|
| 1196 |
+
else:
|
| 1197 |
+
content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj)
|
| 1198 |
+
|
| 1199 |
+
output_text = ""
|
| 1200 |
+
for line in content.splitlines():
|
| 1201 |
+
smiles = line.strip()
|
| 1202 |
+
if smiles:
|
| 1203 |
+
# Check if it's a peptide
|
| 1204 |
+
if not analyzer.is_peptide(smiles):
|
| 1205 |
+
output_text += f"Skipping non-peptide SMILES: {smiles}\n"
|
| 1206 |
+
continue
|
| 1207 |
+
|
| 1208 |
+
# Process this SMILES
|
| 1209 |
+
segments = analyzer.split_on_bonds(smiles)
|
| 1210 |
+
sequence_parts = []
|
| 1211 |
+
|
| 1212 |
+
# Add segment details if requested
|
| 1213 |
+
if show_segment_details:
|
| 1214 |
+
output_text += f"\nSegment Analysis for SMILES: {smiles}\n"
|
| 1215 |
+
for i, segment in enumerate(segments):
|
| 1216 |
+
output_text += f"\nSegment {i}:\n"
|
| 1217 |
+
output_text += f"Content: {segment['content']}\n"
|
| 1218 |
+
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n"
|
| 1219 |
+
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n"
|
| 1220 |
+
residue, mods = analyzer.identify_residue(segment)
|
| 1221 |
+
if residue:
|
| 1222 |
+
if mods:
|
| 1223 |
+
sequence_parts.append(f"{residue}({','.join(mods)})")
|
| 1224 |
+
else:
|
| 1225 |
+
sequence_parts.append(residue)
|
| 1226 |
+
output_text += f"Identified as: {residue}\n"
|
| 1227 |
+
output_text += f"Modifications: {mods}\n"
|
| 1228 |
+
else:
|
| 1229 |
+
for segment in segments:
|
| 1230 |
+
residue, mods = analyzer.identify_residue(segment)
|
| 1231 |
+
if residue:
|
| 1232 |
+
if mods:
|
| 1233 |
+
sequence_parts.append(f"{residue}({','.join(mods)})")
|
| 1234 |
+
else:
|
| 1235 |
+
sequence_parts.append(residue)
|
| 1236 |
+
|
| 1237 |
+
# Get cyclicity and create sequence
|
| 1238 |
+
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles)
|
| 1239 |
+
sequence = f"cyclo({'-'.join(sequence_parts)})" if is_cyclic else '-'.join(sequence_parts)
|
| 1240 |
+
|
| 1241 |
+
output_text += f"\nSummary for SMILES: {smiles}\n"
|
| 1242 |
+
output_text += f"Sequence: {sequence}\n"
|
| 1243 |
+
output_text += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
|
| 1244 |
+
if is_cyclic:
|
| 1245 |
+
output_text += f"Peptide Cycles: {', '.join(peptide_cycles)}\n"
|
| 1246 |
+
#output_text += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n"
|
| 1247 |
+
output_text += "-" * 50 + "\n"
|
| 1248 |
+
|
| 1249 |
+
return output_text, None, None
|
| 1250 |
+
|
| 1251 |
+
except Exception as e:
|
| 1252 |
+
return f"Error processing file: {str(e)}", None, None
|
| 1253 |
+
|
| 1254 |
+
return "No input provided.", None, None
|
| 1255 |
+
|