import pandas as pd import numpy as np import torch from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_curve, f1_score import optuna from optuna.trial import TrialState import xgboost as xgb import os from datasets import load_from_disk from lightning.pytorch import seed_everything from rdkit import Chem, rdBase, DataStructs from typing import List from rdkit.Chem import AllChem import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score, roc_auc_score import seaborn as sns def save_and_plot_binary_predictions(y_true_train, y_pred_train, y_true_val, y_pred_val, threshold, output_path): """ Saves the true and predicted values for training and validation sets, and generates binary classification plots. Parameters: y_true_train (array): True labels for the training set. y_pred_train (array): Predicted probabilities for the training set. y_true_val (array): True labels for the validation set. y_pred_val (array): Predicted probabilities for the validation set. threshold (float): Classification threshold for predictions. output_path (str): Directory to save the CSV files and plots. """ os.makedirs(output_path, exist_ok=True) # Convert probabilities to binary predictions y_pred_train_binary = (y_pred_train >= threshold).astype(int) y_pred_val_binary = (y_pred_val >= threshold).astype(int) # Save training predictions train_df = pd.DataFrame({ 'True Label': y_true_train, 'Predicted Probability': y_pred_train, 'Predicted Label': y_pred_train_binary }) train_df.to_csv(os.path.join(output_path, 'train_predictions_binary.csv'), index=False) # Save validation predictions val_df = pd.DataFrame({ 'True Label': y_true_val, 'Predicted Probability': y_pred_val, 'Predicted Label': y_pred_val_binary }) val_df.to_csv(os.path.join(output_path, 'val_predictions_binary.csv'), index=False) # Plot training predictions plot_boxplot_with_threshold( y_true_train, y_pred_train, threshold, title="Training Set Binary Classification Plot", output_file=os.path.join(output_path, 'train_classification_plot.png') ) # Plot validation predictions plot_boxplot_with_threshold( y_true_val, y_pred_val, threshold, title="Validation Set Binary Classification Plot", output_file=os.path.join(output_path, 'val_classification_plot.png') ) def plot_binary_correlation(y_true, y_pred, threshold, title, output_file): # Scatter plot plt.figure(figsize=(10, 8)) plt.scatter(y_true, y_pred, alpha=0.5, label='Data points', color='#BC80FF') # Add threshold line plt.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold = {threshold}') # Add annotations plt.title(title) plt.xlabel("True Labels") plt.ylabel("Predicted Probability") plt.legend() # Save and show the plot plt.tight_layout() plt.savefig(output_file) plt.show() def plot_boxplot_with_threshold(y_true, y_pred, threshold, title, output_file): """ Generates a boxplot for binary classification and includes a threshold line. Parameters: y_true (array): True labels. y_pred (array): Predicted probabilities. threshold (float): Classification threshold for predictions. title (str): Title of the plot. output_file (str): Path to save the plot. """ plt.figure(figsize=(10, 8)) # Combine data into a DataFrame for seaborn df = pd.DataFrame({'True Label': y_true, 'Predicted Probability': y_pred}) # Boxplot sns.boxplot(x='True Label', y='Predicted Probability', data=df) # Add threshold line plt.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold = {threshold}') plt.text( x=0.5, y=threshold + 0.05, s=f"Threshold = {threshold}", color="red", fontsize=10 ) # Add annotations plt.title(title) plt.xlabel("True Label") plt.ylabel("Predicted Probability") plt.legend() # Save and show the plot plt.tight_layout() plt.savefig(output_file) plt.show() def plot_boxplot(y_true, y_pred, title, output_file): plt.figure(figsize=(10, 8)) # Combine data into a single DataFrame for seaborn df = pd.DataFrame({'True Label': y_true, 'Predicted Probability': y_pred}) sns.boxplot(x='True Label', y='Predicted Probability', data=df) # Add annotations plt.title(title) plt.xlabel("True Label") plt.ylabel("Predicted Probability") # Save and show the plot plt.tight_layout() plt.savefig(output_file) plt.show() def plot_binary_correlation_with_density(y_true, y_pred, threshold, title, output_file): """ Generates a scatter plot with a density plot for binary classification and saves it to a file. """ plt.figure(figsize=(10, 8)) # Scatter plot plt.scatter(range(len(y_true)), y_pred, alpha=0.5, label='Predicted Probabilities', color='#BC80FF') # Add density plot sns.kdeplot(y_pred, color='green', fill=True, alpha=0.3, label='Probability Density') # Add threshold line plt.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold = {threshold}') # Add annotations plt.title(title) plt.xlabel("Index") plt.ylabel("Predicted Probability") plt.legend() # Save and show the plot plt.tight_layout() plt.savefig(output_file) plt.show() seed_everything(42) dataset = load_from_disk('/home/st512/peptune/scripts/peptide-mdlm-mcts/scoring/functions/solubility/new_data') sequences = np.stack(dataset['sequence']) # Ensure sequences are SMILES strings labels = np.stack(dataset['labels']) embeddings = np.stack(dataset['embedding']) # Initialize best F1 score and model path best_f1 = -np.inf best_model_path = "/home/st512/peptune/scripts/peptide-mdlm-mcts/scoring/functions/solubility/new_train/" # Trial callback def trial_info_callback(study, trial): if study.best_trial == trial: print(f"Trial {trial.number}:") print(f" Weighted F1 Score: {trial.value}") def objective(trial): params = { 'objective': 'binary:logistic', 'lambda': trial.suggest_float('lambda', 1e-8, 10.0, log=True), 'alpha': trial.suggest_float('alpha', 1e-8, 10.0, log=True), 'colsample_bytree': trial.suggest_float('colsample_bytree', 0.1, 1.0), 'subsample': trial.suggest_float('subsample', 0.1, 1.0), 'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.3), 'max_depth': trial.suggest_int('max_depth', 2, 30), 'min_child_weight': trial.suggest_int('min_child_weight', 1, 20), 'tree_method': 'hist', 'device': 'cuda:0', } num_boost_round = trial.suggest_int('num_boost_round', 10, 1000) # Split the data train_idx, val_idx = train_test_split( np.arange(len(sequences)), test_size=0.2, stratify=labels, random_state=42 ) train_subset = dataset.select(train_idx).with_format("torch") val_subset = dataset.select(val_idx).with_format("torch") # Extract embeddings and labels for train/validation train_embeddings = train_subset['embedding'] valid_embeddings = val_subset['embedding'] train_labels = train_subset['labels'] valid_labels = val_subset['labels'] # Prepare training and validation sets dtrain = xgb.DMatrix(train_embeddings, label=train_labels) dvalid = xgb.DMatrix(valid_embeddings, label=valid_labels) # Train the model model = xgb.train( params=params, dtrain=dtrain, num_boost_round=num_boost_round, evals=[(dvalid, "validation")], early_stopping_rounds=50, verbose_eval=False, ) # Predict probabilities preds_train = model.predict(dtrain) preds_val = model.predict(dvalid) # Perform dynamic thresholding on validation predictions best_f1_val = -np.inf best_threshold = 0.5 for threshold in np.arange(0.1, 1.0, 0.05): # Try thresholds from 0.1 to 1.0 preds_val_binary = (preds_val >= threshold).astype(int) f1_temp = f1_score(valid_labels, preds_val_binary, average="weighted") if f1_temp > best_f1_val: best_f1_val = f1_temp best_threshold = threshold print(f"Best F1 Score: {best_f1_val:.3f} at Threshold: {best_threshold:.3f}") # Calculate AUC for additional insight auc_val = roc_auc_score(valid_labels, preds_val) print(f"AUC: {auc_val:.3f}") # Save the best model if the F1 score is improved if trial.study.user_attrs.get("best_f1", -np.inf) < best_f1_val: trial.study.set_user_attr("best_f1", best_f1_val) trial.study.set_user_attr("best_threshold", best_threshold) # Save the best threshold os.makedirs(best_model_path, exist_ok=True) model.save_model(os.path.join(best_model_path, "best_model.json")) print(f"Best model saved to {os.path.join(best_model_path, 'best_model.json')}") # Save and plot binary predictions with the best threshold save_and_plot_binary_predictions( train_labels, preds_train, valid_labels, preds_val, best_threshold, best_model_path ) return best_f1_val if __name__ == "__main__": study = optuna.create_study(direction="maximize", pruner=optuna.pruners.MedianPruner()) study.optimize(objective, n_trials=200) print("Study statistics: ") print(f" Number of finished trials: {len(study.trials)}") print(f" Best AUC: {study.user_attrs.get('best_auc', None)}") for key, value in study.best_trial.params.items(): print(f" {key}: {value}")