--- library_name: transformers language: - hy license: cc-by-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - Chillarmo/common_voice_20_armenian - mms - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-common_voice_20-hy-mms-finetune results: [] datasets: - Chillarmo/common_voice_20_armenian pipeline_tag: automatic-speech-recognition --- # wav2vec2-common_voice_20-hy-mms-finetune This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the COMMON_VOICE_20_ARMENIAN dataset. It achieves the following results on the evaluation set: - Loss: 0.1588 - Wer: 0.2465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | No log | 0.2137 | 100 | 0.2269 | 0.3076 | | No log | 0.4274 | 200 | 0.1915 | 0.2824 | | No log | 0.6410 | 300 | 0.1993 | 0.2964 | | No log | 0.8547 | 400 | 0.1832 | 0.2735 | | 0.9965 | 1.0684 | 500 | 0.1764 | 0.2649 | | 0.9965 | 1.2821 | 600 | 0.1733 | 0.2625 | | 0.9965 | 1.4957 | 700 | 0.1725 | 0.2592 | | 0.9965 | 1.7094 | 800 | 0.1706 | 0.2581 | | 0.9965 | 1.9231 | 900 | 0.1681 | 0.2585 | | 0.2922 | 2.1368 | 1000 | 0.1694 | 0.2591 | | 0.2922 | 2.3504 | 1100 | 0.1701 | 0.2575 | | 0.2922 | 2.5641 | 1200 | 0.1701 | 0.2614 | | 0.2922 | 2.7778 | 1300 | 0.1654 | 0.2535 | | 0.2922 | 2.9915 | 1400 | 0.1644 | 0.2517 | | 0.2788 | 3.2051 | 1500 | 0.1636 | 0.2540 | | 0.2788 | 3.4188 | 1600 | 0.1616 | 0.2512 | | 0.2788 | 3.6325 | 1700 | 0.1600 | 0.2470 | | 0.2788 | 3.8462 | 1800 | 0.1587 | 0.2464 | ### Framework versions - Transformers 4.51.0 - Pytorch 2.2.1+cu121 - Datasets 3.5.0 - Tokenizers 0.21.1