ChuuniZ commited on
Commit
a4dd459
·
verified ·
1 Parent(s): 2e8b915

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. BiRefNet/README.md +8 -0
  2. Joy_caption/README.md +79 -0
  3. Joy_caption/app.py +536 -0
  4. Joy_caption/cgrkzexw-599808/text_model/adapter_config.json +34 -0
  5. Joy_caption/cgrkzexw-599808/text_model/special_tokens_map.json +23 -0
  6. Joy_caption/cgrkzexw-599808/text_model/tokenizer.json +0 -0
  7. Joy_caption/cgrkzexw-599808/text_model/tokenizer_config.json +2064 -0
  8. Joy_caption/joycaption_alpha_two_cli_mod.ipynb +46 -0
  9. Joy_caption/requirements.txt +10 -0
  10. LLM/Florence-2-base-PromptGen-v2.0/README.md +71 -0
  11. LLM/Florence-2-base-PromptGen-v2.0/added_tokens.json +1026 -0
  12. LLM/Florence-2-base-PromptGen-v2.0/config.json +137 -0
  13. LLM/Florence-2-base-PromptGen-v2.0/generation_config.json +13 -0
  14. LLM/Florence-2-base-PromptGen-v2.0/preprocessor_config.json +33 -0
  15. LLM/Florence-2-base-PromptGen-v2.0/special_tokens_map.json +0 -0
  16. LLM/Florence-2-base-PromptGen-v2.0/tokenizer.json +0 -0
  17. LLM/Florence-2-base-PromptGen-v2.0/tokenizer_config.json +0 -0
  18. LLM/Florence-2-base-PromptGen-v2.0/vocab.json +0 -0
  19. LLM/Florence-2-large-PromptGen-v2.0/configuration_florence2.py +340 -0
  20. LLM/Florence-2-large-PromptGen-v2.0/merges.txt +0 -0
  21. LLM/Florence-2-large-PromptGen-v2.0/processing_florence2.py +1088 -0
  22. LLM/Florence-2-large-PromptGen-v2.0/vocab.json +0 -0
  23. checkpoints/put_checkpoints_here +0 -0
  24. ckpts/wget-log +11 -0
  25. clip/put_clip_or_text_encoder_models_here +0 -0
  26. clip/siglip-so400m-patch14-384/README.md +112 -0
  27. clip/siglip-so400m-patch14-384/config.json +25 -0
  28. clip/siglip-so400m-patch14-384/preprocessor_config.json +23 -0
  29. clip/siglip-so400m-patch14-384/special_tokens_map.json +23 -0
  30. clip/siglip-so400m-patch14-384/tokenizer.json +0 -0
  31. clip/siglip-so400m-patch14-384/tokenizer_config.json +33 -0
  32. clip_vision/put_clip_vision_models_here +0 -0
  33. configs/anything_v3.yaml +73 -0
  34. configs/v1-inference.yaml +70 -0
  35. configs/v1-inference_clip_skip_2.yaml +73 -0
  36. configs/v1-inference_clip_skip_2_fp16.yaml +74 -0
  37. configs/v1-inference_fp16.yaml +71 -0
  38. configs/v1-inpainting-inference.yaml +71 -0
  39. configs/v2-inference-v.yaml +68 -0
  40. configs/v2-inference-v_fp32.yaml +68 -0
  41. configs/v2-inference.yaml +67 -0
  42. configs/v2-inference_fp32.yaml +67 -0
  43. configs/v2-inpainting-inference.yaml +158 -0
  44. controlnet/put_controlnets_and_t2i_here +0 -0
  45. controlnet/sd1.5/README.md +3 -0
  46. controlnet/sd1.5/control_v11e_sd15_ip2p.yaml +79 -0
  47. controlnet/sd1.5/control_v11e_sd15_shuffle.yaml +80 -0
  48. controlnet/sd1.5/control_v11f1e_sd15_tile.yaml +79 -0
  49. controlnet/sd1.5/control_v11f1p_sd15_depth.yaml +79 -0
  50. controlnet/sd1.5/control_v11p_sd15_canny.yaml +79 -0
BiRefNet/README.md ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: mit
4
+ ---
5
+
6
+ This is used to store the checkpoints of BiRefNet, please refer the following repo link
7
+ 1. Official implement https://github.com/zhengpeng7/birefnet
8
+ 2. ComfyUI BiRefNet node https://github.com/viperyl/ComfyUI-BiRefNet
Joy_caption/README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ ---
6
+ # Image Captioning App
7
+
8
+ This is a mod of [Wi-zz/joy-caption-pre-alpha](https://huggingface.co/Wi-zz/joy-caption-pre-alpha) and [fancyfeast/joy-caption-alpha-two](https://huggingface.co/spaces/fancyfeast/joy-caption-alpha-two). Thanks to [dominic1021](https://huggingface.co/dominic1021), [IceHibiki](https://huggingface.co/IceHibiki), [BullseyeMxP](https://huggingface.co/BullseyeMxP), [Wakeme](https://huggingface.co/Wakeme).
9
+
10
+ # Notice: I will contribute to Wi-zz after shaping the code.
11
+
12
+ ## Overview
13
+
14
+ This application generates descriptive captions for images using advanced ML models. It processes single images or entire directories, leveraging CLIP and LLM models for accurate and contextual captions. It has NSFW captioning support with natural language. This is just an extension of the original author's efforts to improve performance. Their repo is located here: https://huggingface.co/spaces/fancyfeast/joy-caption-alpha-two.
15
+
16
+ ## Features
17
+
18
+ - Single image and batch processing
19
+ - Multiple directory support
20
+ - Custom output directory
21
+ - Adjustable batch size
22
+ - Progress tracking
23
+
24
+ ## Usage
25
+
26
+ | Command | Description |
27
+ |---------|-------------|
28
+ | `python app.py image.jpg` | Process a single image |
29
+ | `python app.py /path/to/directory` | Process all images in a directory |
30
+ | `python app.py /path/to/dir1 /path/to/dir2` | Process multiple directories |
31
+ | `python app.py /path/to/dir --output /path/to/output` | Specify output directory |
32
+ | `python app.py /path/to/dir --bs 8` | Set batch size (default: 4) |
33
+
34
+ ## Technical Details
35
+
36
+ - **Models**: CLIP (vision), LLM (language), custom ImageAdapter
37
+ - **Optimization**: CUDA-enabled GPU support
38
+ - **Error Handling**: Skips problematic images in batch processing
39
+
40
+ ## Requirements
41
+
42
+ - Python 3.x
43
+ - PyTorch
44
+ - Transformers library
45
+ - PEFT library
46
+ - CUDA-capable GPU (recommended)
47
+
48
+ ## Installation
49
+
50
+ Windows
51
+
52
+ ```bash
53
+ git clone https://huggingface.co/John6666/joy-caption-alpha-two-cli-mod
54
+ cd joy-caption-alpha-two-cli-mod
55
+ python -m venv venv
56
+ .\venv\Scripts\activate
57
+ # Change as per https://pytorch.org/get-started/locally/
58
+ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
59
+ pip install -r requirements.txt
60
+ ```
61
+
62
+ Linux
63
+
64
+ ```bash
65
+ git clone https://huggingface.co/John6666/joy-caption-alpha-two-cli-mod
66
+ cd joy-caption-alpha-two-cli-mod
67
+ python3 -m venv venv
68
+ source venv/bin/activate
69
+ pip3 install torch torchvision torchaudio
70
+ pip3 install -r requirements.txt
71
+ ```
72
+
73
+ ## Contributing
74
+
75
+ Contributions are welcome! Please feel free to submit a Pull Request.
76
+
77
+ ## License
78
+
79
+ This project is licensed under the [MIT License](LICENSE).
Joy_caption/app.py ADDED
@@ -0,0 +1,536 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.amp.autocast_mode
3
+ import os
4
+ import sys
5
+ import logging
6
+ import warnings
7
+ import argparse
8
+ from PIL import Image
9
+ from pathlib import Path
10
+ from tqdm import tqdm
11
+ from torch import nn
12
+ from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
13
+ from typing import List, Union
14
+ import torchvision.transforms.functional as TVF
15
+ from peft import PeftModel
16
+ import gc
17
+ import sys
18
+ IS_COLAB = 'google.colab' in sys.modules
19
+
20
+ # Constants
21
+ IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
22
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
23
+ BASE_DIR = Path(__file__).resolve().parent # Define the base directory
24
+ CHECKPOINT_PATH = BASE_DIR / Path("cgrkzexw-599808")
25
+ CLIP_PATH = "google/siglip-so400m-patch14-384"
26
+ DEFAULT_MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-bnb-4bit"
27
+ #DEFAULT_MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit" # Default in Alpha One Two.
28
+ #DEFAULT_MODEL_PATH = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2" # Works better but full weight.
29
+ LORA_PATH = CHECKPOINT_PATH / "text_model"
30
+ CAPTION_TYPE_MAP = {
31
+ "Descriptive": [
32
+ "Write a descriptive caption for this image in a formal tone.",
33
+ "Write a descriptive caption for this image in a formal tone within {word_count} words.",
34
+ "Write a {length} descriptive caption for this image in a formal tone.",
35
+ ],
36
+ "Descriptive (Informal)": [
37
+ "Write a descriptive caption for this image in a casual tone.",
38
+ "Write a descriptive caption for this image in a casual tone within {word_count} words.",
39
+ "Write a {length} descriptive caption for this image in a casual tone.",
40
+ ],
41
+ "Training Prompt": [
42
+ "Write a stable diffusion prompt for this image.",
43
+ "Write a stable diffusion prompt for this image within {word_count} words.",
44
+ "Write a {length} stable diffusion prompt for this image.",
45
+ ],
46
+ "MidJourney": [
47
+ "Write a MidJourney prompt for this image.",
48
+ "Write a MidJourney prompt for this image within {word_count} words.",
49
+ "Write a {length} MidJourney prompt for this image.",
50
+ ],
51
+ "Booru tag list": [
52
+ "Write a list of Booru tags for this image.",
53
+ "Write a list of Booru tags for this image within {word_count} words.",
54
+ "Write a {length} list of Booru tags for this image.",
55
+ ],
56
+ "Booru-like tag list": [
57
+ "Write a list of Booru-like tags for this image.",
58
+ "Write a list of Booru-like tags for this image within {word_count} words.",
59
+ "Write a {length} list of Booru-like tags for this image.",
60
+ ],
61
+ "Art Critic": [
62
+ "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.",
63
+ "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.",
64
+ "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.",
65
+ ],
66
+ "Product Listing": [
67
+ "Write a caption for this image as though it were a product listing.",
68
+ "Write a caption for this image as though it were a product listing. Keep it under {word_count} words.",
69
+ "Write a {length} caption for this image as though it were a product listing.",
70
+ ],
71
+ "Social Media Post": [
72
+ "Write a caption for this image as if it were being used for a social media post.",
73
+ "Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.",
74
+ "Write a {length} caption for this image as if it were being used for a social media post.",
75
+ ],
76
+ }
77
+
78
+ class ImageAdapter(nn.Module):
79
+ def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
80
+ super().__init__()
81
+ self.deep_extract = deep_extract
82
+
83
+ if self.deep_extract:
84
+ input_features = input_features * 5
85
+
86
+ self.linear1 = nn.Linear(input_features, output_features)
87
+ self.activation = nn.GELU()
88
+ self.linear2 = nn.Linear(output_features, output_features)
89
+ self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
90
+ self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
91
+
92
+ # Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
93
+ self.other_tokens = nn.Embedding(3, output_features)
94
+ self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
95
+
96
+ def forward(self, vision_outputs: torch.Tensor):
97
+ if self.deep_extract:
98
+ x = torch.concat((
99
+ vision_outputs[-2],
100
+ vision_outputs[3],
101
+ vision_outputs[7],
102
+ vision_outputs[13],
103
+ vision_outputs[20],
104
+ ), dim=-1)
105
+ assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
106
+ assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
107
+ else:
108
+ x = vision_outputs[-2]
109
+
110
+ x = self.ln1(x)
111
+
112
+ if self.pos_emb is not None:
113
+ assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
114
+ x = x + self.pos_emb
115
+
116
+ x = self.linear1(x)
117
+ x = self.activation(x)
118
+ x = self.linear2(x)
119
+
120
+ # <|image_start|>, IMAGE, <|image_end|>
121
+ other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
122
+ assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
123
+ x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
124
+
125
+ return x
126
+
127
+ def get_eot_embedding(self):
128
+ return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
129
+
130
+
131
+ # Global Variables
132
+ IS_NF4 = True
133
+ IS_LORA = True
134
+ MODEL_PATH = DEFAULT_MODEL_PATH
135
+ device = "cuda" if torch.cuda.is_available() else "cpu"
136
+ print(f"Running on {device}")
137
+
138
+ warnings.filterwarnings("ignore", category=UserWarning)
139
+ logging.getLogger("transformers").setLevel(logging.ERROR)
140
+
141
+ class ImageAdapter(nn.Module):
142
+ def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
143
+ super().__init__()
144
+ self.deep_extract = deep_extract
145
+
146
+ if self.deep_extract:
147
+ input_features = input_features * 5
148
+
149
+ self.linear1 = nn.Linear(input_features, output_features)
150
+ self.activation = nn.GELU()
151
+ self.linear2 = nn.Linear(output_features, output_features)
152
+ self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
153
+ self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
154
+
155
+ # Mode token
156
+ #self.mode_token = nn.Embedding(n_modes, output_features)
157
+ #self.mode_token.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
158
+
159
+ # Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
160
+ self.other_tokens = nn.Embedding(3, output_features)
161
+ self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
162
+
163
+ def forward(self, vision_outputs: torch.Tensor):
164
+ if self.deep_extract:
165
+ x = torch.concat((
166
+ vision_outputs[-2],
167
+ vision_outputs[3],
168
+ vision_outputs[7],
169
+ vision_outputs[13],
170
+ vision_outputs[20],
171
+ ), dim=-1)
172
+ assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
173
+ assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
174
+ else:
175
+ x = vision_outputs[-2]
176
+
177
+ x = self.ln1(x)
178
+
179
+ if self.pos_emb is not None:
180
+ assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
181
+ x = x + self.pos_emb
182
+
183
+ x = self.linear1(x)
184
+ x = self.activation(x)
185
+ x = self.linear2(x)
186
+
187
+ # Mode token
188
+ #mode_token = self.mode_token(mode)
189
+ #assert mode_token.shape == (x.shape[0], mode_token.shape[1], x.shape[2]), f"Expected {(x.shape[0], 1, x.shape[2])}, got {mode_token.shape}"
190
+ #x = torch.cat((x, mode_token), dim=1)
191
+
192
+ # <|image_start|>, IMAGE, <|image_end|>
193
+ other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
194
+ assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
195
+ x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
196
+
197
+ return x
198
+
199
+ def get_eot_embedding(self):
200
+ return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
201
+
202
+ def load_models():
203
+ global MODEL_PATH, IS_NF4, IS_LORA
204
+ try:
205
+ if IS_NF4:
206
+ from transformers import BitsAndBytesConfig
207
+ nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4",
208
+ bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
209
+ print("Loading in NF4")
210
+ print("Loading CLIP 📎")
211
+ clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
212
+ clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
213
+ assert (CHECKPOINT_PATH / "clip_model.pt").exists()
214
+ if (CHECKPOINT_PATH / "clip_model.pt").exists():
215
+ print("Loading VLM's custom vision model 📎")
216
+ checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu', weights_only=False)
217
+ checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
218
+ clip_model.load_state_dict(checkpoint)
219
+ del checkpoint
220
+ clip_model.eval().requires_grad_(False).to(device)
221
+
222
+ print("Loading tokenizer 🪙")
223
+ tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True)
224
+ assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"
225
+
226
+ print(f"Loading LLM: {MODEL_PATH} 🤖")
227
+ text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, quantization_config=nf4_config).eval()
228
+
229
+ if False and IS_LORA and LORA_PATH.exists(): # omitted
230
+ print("Loading VLM's custom text model 🤖")
231
+ text_model = PeftModel.from_pretrained(model=text_model, model_id=LORA_PATH, quantization_config=nf4_config)
232
+ text_model = text_model.merge_and_unload(safe_merge=True) # to avoid PEFT bug https://github.com/huggingface/transformers/issues/28515
233
+ else: print("VLM's custom text model isn't loaded 🤖")
234
+
235
+ print("Loading image adapter 🖼️")
236
+ image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False).eval().to("cpu")
237
+ image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=False))
238
+ image_adapter.eval().to(device)
239
+ else:
240
+ print("Loading in bfloat16")
241
+ print("Loading CLIP 📎")
242
+ clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
243
+ clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
244
+ if (CHECKPOINT_PATH / "clip_model.pt").exists():
245
+ print("Loading VLM's custom vision model 📎")
246
+ checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu', weights_only=False)
247
+ checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
248
+ clip_model.load_state_dict(checkpoint)
249
+ del checkpoint
250
+ clip_model.eval().requires_grad_(False).to(device)
251
+
252
+ print("Loading tokenizer 🪙")
253
+ tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True)
254
+ assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"
255
+
256
+ print(f"Loading LLM: {MODEL_PATH} 🤖")
257
+ text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16).eval() # device_map="auto" may cause LoRA issue
258
+
259
+ if IS_LORA and LORA_PATH.exists():
260
+ print("Loading VLM's custom text model 🤖")
261
+ text_model = PeftModel.from_pretrained(model=text_model, model_id=LORA_PATH, device_map=device)
262
+ text_model = text_model.merge_and_unload(safe_merge=True) # to avoid PEFT bug https://github.com/huggingface/transformers/issues/28515
263
+ else: print("VLM's custom text model isn't loaded 🤖")
264
+
265
+ print("Loading image adapter 🖼️")
266
+ image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False).eval().to("cpu")
267
+ image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=False))
268
+ except Exception as e:
269
+ print(f"Error loading models: {e}")
270
+ sys.exit(1)
271
+ finally:
272
+ torch.cuda.empty_cache()
273
+ gc.collect()
274
+ return clip_processor, clip_model, tokenizer, text_model, image_adapter
275
+
276
+ @torch.inference_mode()
277
+ def stream_chat(input_images: List[Image.Image], caption_type: str, caption_length: Union[str, int], extra_options: list[str], name_input: str, custom_prompt: str,
278
+ max_new_tokens: int, top_p: float, temperature: float, batch_size: int, pbar: tqdm, models: tuple) -> List[str]:
279
+ global MODEL_PATH
280
+ clip_processor, clip_model, tokenizer, text_model, image_adapter = models
281
+ torch.cuda.empty_cache()
282
+ all_captions = []
283
+
284
+ # 'any' means no length specified
285
+ length = None if caption_length == "any" else caption_length
286
+
287
+ if isinstance(length, str):
288
+ try:
289
+ length = int(length)
290
+ except ValueError:
291
+ pass
292
+
293
+ # Build prompt
294
+ if length is None:
295
+ map_idx = 0
296
+ elif isinstance(length, int):
297
+ map_idx = 1
298
+ elif isinstance(length, str):
299
+ map_idx = 2
300
+ else:
301
+ raise ValueError(f"Invalid caption length: {length}")
302
+
303
+ prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx]
304
+
305
+ # Add extra options
306
+ if len(extra_options) > 0:
307
+ prompt_str += " " + " ".join(extra_options)
308
+
309
+ # Add name, length, word_count
310
+ prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length)
311
+
312
+ if custom_prompt.strip() != "":
313
+ prompt_str = custom_prompt.strip()
314
+
315
+ # For debugging
316
+ print(f"Prompt: {prompt_str}")
317
+
318
+ for i in range(0, len(input_images), batch_size):
319
+ batch = input_images[i:i+batch_size]
320
+
321
+ for input_image in input_images:
322
+ try:
323
+ # Preprocess image
324
+ # NOTE: I found the default processor for so400M to have worse results than just using PIL directly
325
+ #image = clip_processor(images=input_image, return_tensors='pt').pixel_values
326
+ image = input_image.resize((384, 384), Image.LANCZOS)
327
+ pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
328
+ pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
329
+ pixel_values = pixel_values.to(device)
330
+ except ValueError as e:
331
+ print(f"Error processing image: {e}")
332
+ print("Skipping this image and continuing...")
333
+ continue
334
+
335
+ # Embed image
336
+ # This results in Batch x Image Tokens x Features
337
+ with torch.amp.autocast_mode.autocast(device, enabled=True):
338
+ vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
339
+ image_features = vision_outputs.hidden_states
340
+ embedded_images = image_adapter(image_features).to(device)
341
+
342
+ # Build the conversation
343
+ convo = [
344
+ {
345
+ "role": "system",
346
+ "content": "You are a helpful image captioner.",
347
+ },
348
+ {
349
+ "role": "user",
350
+ "content": prompt_str,
351
+ },
352
+ ]
353
+
354
+ # Format the conversation
355
+ convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True)
356
+ assert isinstance(convo_string, str)
357
+
358
+ # Tokenize the conversation
359
+ # prompt_str is tokenized separately so we can do the calculations below
360
+ convo_tokens = tokenizer.encode(convo_string, return_tensors="pt", add_special_tokens=False, truncation=False)
361
+ prompt_tokens = tokenizer.encode(prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False)
362
+ assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor)
363
+ convo_tokens = convo_tokens.squeeze(0) # Squeeze just to make the following easier
364
+ prompt_tokens = prompt_tokens.squeeze(0)
365
+
366
+ # Calculate where to inject the image
367
+ eot_id_indices = (convo_tokens == tokenizer.convert_tokens_to_ids("<|eot_id|>")).nonzero(as_tuple=True)[0].tolist()
368
+ assert len(eot_id_indices) == 2, f"Expected 2 <|eot_id|> tokens, got {len(eot_id_indices)}"
369
+
370
+ preamble_len = eot_id_indices[1] - prompt_tokens.shape[0] # Number of tokens before the prompt
371
+
372
+ # Embed the tokens
373
+ convo_embeds = text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to(device))
374
+
375
+ # Construct the input
376
+ input_embeds = torch.cat([
377
+ convo_embeds[:, :preamble_len], # Part before the prompt
378
+ embedded_images.to(dtype=convo_embeds.dtype), # Image
379
+ convo_embeds[:, preamble_len:], # The prompt and anything after it
380
+ ], dim=1).to(device)
381
+
382
+ input_ids = torch.cat([
383
+ convo_tokens[:preamble_len].unsqueeze(0),
384
+ torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), # Dummy tokens for the image (TODO: Should probably use a special token here so as not to confuse any generation algorithms that might be inspecting the input)
385
+ convo_tokens[preamble_len:].unsqueeze(0),
386
+ ], dim=1).to(device)
387
+ attention_mask = torch.ones_like(input_ids)
388
+
389
+ # Debugging
390
+ #print(f"Input to model: {repr(tokenizer.decode(input_ids[0]))}")
391
+
392
+ generate_ids = text_model.generate(input_ids=input_ids, inputs_embeds=input_embeds, attention_mask=attention_mask, do_sample=True,
393
+ suppress_tokens=None, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature)
394
+
395
+ # Trim off the prompt
396
+ generate_ids = generate_ids[:, input_ids.shape[1]:]
397
+ if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
398
+ generate_ids = generate_ids[:, :-1]
399
+
400
+ caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
401
+ all_captions.append(caption.strip())
402
+
403
+ if pbar:
404
+ pbar.update(len(batch))
405
+
406
+ return all_captions
407
+
408
+ def process_directory(input_dir: Path, output_dir: Path, caption_type: str, caption_length: Union[str, int], extra_options: list[str], name_input: str, custom_prompt: str,
409
+ max_new_tokens: int, top_p: float, temperature: float, batch_size: int, models: tuple):
410
+ output_dir.mkdir(parents=True, exist_ok=True)
411
+ image_files = [f for f in input_dir.iterdir() if f.suffix.lower() in IMAGE_EXTENSIONS]
412
+ images_to_process = [f for f in image_files if not (output_dir / f"{f.stem}.txt").exists()]
413
+
414
+ if not images_to_process:
415
+ print("No new images to process.")
416
+ return
417
+
418
+ with tqdm(total=len(images_to_process), desc="Processing images", unit="image") as pbar:
419
+ for i in range(0, len(images_to_process), batch_size):
420
+ batch_files = images_to_process[i:i+batch_size]
421
+ batch_images = [Image.open(f).convert('RGB') for f in batch_files]
422
+
423
+ captions = stream_chat(batch_images, caption_type, caption_length, extra_options, name_input, custom_prompt,
424
+ max_new_tokens, top_p, temperature, batch_size, pbar, models)
425
+
426
+ for file, caption in zip(batch_files, captions):
427
+ with open(output_dir / f"{file.stem}.txt", 'w', encoding='utf-8') as f:
428
+ f.write(caption)
429
+
430
+ for img in batch_images:
431
+ img.close()
432
+
433
+ def parse_arguments():
434
+ parser = argparse.ArgumentParser(description="Process images and generate captions.")
435
+ parser.add_argument("input", nargs='+', help="Input image file or directory (or multiple directories)")
436
+ parser.add_argument("--output", help="Output directory (optional)")
437
+ parser.add_argument("--bs", type=int, default=4, help="Batch size (default: 4)")
438
+ parser.add_argument("--type", type=str, default="Descriptive",
439
+ choices=["Descriptive", "Descriptive (Informal)", "Training Prompt", "MidJourney", "Booru tag list", "Booru-like tag list", "Art Critic", "Product Listing", "Social Media Post"],
440
+ help='Caption Type (default: "Descriptive")')
441
+ parser.add_argument("--len", default="long",
442
+ choices=["any", "very short", "short", "medium-length", "long", "very long"] + [str(i) for i in range(20, 261, 10)],
443
+ help='Caption Length (default: "long")')
444
+ parser.add_argument("--extra", default=[], type=list[str], help='Extra Options',
445
+ choices=[
446
+ "If there is a person/character in the image you must refer to them as {name}.",
447
+ "Do NOT include information about people/characters that cannot be changed (like ethnicity, gender, etc), but do still include changeable attributes (like hair style).",
448
+ "Include information about lighting.",
449
+ "Include information about camera angle.",
450
+ "Include information about whether there is a watermark or not.",
451
+ "Include information about whether there are JPEG artifacts or not.",
452
+ "If it is a photo you MUST include information about what camera was likely used and details such as aperture, shutter speed, ISO, etc.",
453
+ "Do NOT include anything sexual; keep it PG.",
454
+ "Do NOT mention the image's resolution.",
455
+ "You MUST include information about the subjective aesthetic quality of the image from low to very high.",
456
+ "Include information on the image's composition style, such as leading lines, rule of thirds, or symmetry.",
457
+ "Do NOT mention any text that is in the image.",
458
+ "Specify the depth of field and whether the background is in focus or blurred.",
459
+ "If applicable, mention the likely use of artificial or natural lighting sources.",
460
+ "Do NOT use any ambiguous language.",
461
+ "Include whether the image is sfw, suggestive, or nsfw.",
462
+ "ONLY describe the most important elements of the image."
463
+ ])
464
+ parser.add_argument("--name", type=str, default="", help='Person/Character Name (if applicable)')
465
+ parser.add_argument("--prompt", type=str, default="", help='Custom Prompt (optional, will override all other settings)')
466
+ parser.add_argument("--model", type=str, default=DEFAULT_MODEL_PATH,
467
+ help='Huggingface LLM repo (default: "unsloth/Meta-Llama-3.1-8B-bnb-4bit")')
468
+ parser.add_argument("--bf16", action="store_true", default=False, help="Use bfloat16 (default: NF4)")
469
+ parser.add_argument("--nolora", action="store_true", default=False, help="Disable VLM's custom text model (default: Enable)")
470
+ parser.add_argument("--tokens", type=int, default=300, help="Max tokens (default: 300)")
471
+ parser.add_argument("--topp", type=float, default=0.9, help="Top-P (default: 0.9)")
472
+ parser.add_argument("--temp", type=float, default=0.6, help="Temperature (default: 0.6)")
473
+ return parser.parse_args()
474
+
475
+ def is_valid_repo(repo_id):
476
+ from huggingface_hub import HfApi
477
+ import re
478
+ try:
479
+ if not re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', repo_id): return False
480
+ api = HfApi()
481
+ if api.repo_exists(repo_id=repo_id): return True
482
+ else: return False
483
+ except Exception as e:
484
+ print(f"Failed to connect {repo_id}. {e}")
485
+ return False
486
+
487
+ def main():
488
+ global MODEL_PATH, IS_NF4, IS_LORA
489
+ args = parse_arguments()
490
+ input_paths = [Path(input_path) for input_path in args.input]
491
+ batch_size = args.bs
492
+ caption_type = args.type
493
+ caption_length = args.len
494
+ extra_options = args.extra
495
+ name_input = args.name
496
+ custom_prompt = args.prompt
497
+ max_new_tokens = args.tokens
498
+ top_p = args.topp
499
+ temperature = args.temp
500
+ IS_NF4 = False if args.bf16 else True
501
+ IS_LORA = False if args.nolora else True
502
+ if is_valid_repo(args.model): MODEL_PATH = args.model
503
+ else: sys.exit(1)
504
+ models = load_models()
505
+
506
+ for input_path in input_paths:
507
+ if input_path.is_file() and input_path.suffix.lower() in IMAGE_EXTENSIONS:
508
+ output_path = input_path.with_suffix('.txt')
509
+ print(f"Processing single image 🎞️: {input_path.name}")
510
+ with tqdm(total=1, desc="Processing image", unit="image") as pbar:
511
+ captions = stream_chat([Image.open(input_path).convert('RGB')], caption_type, caption_length, extra_options, name_input, custom_prompt,
512
+ max_new_tokens, top_p, temperature, 1, pbar, models)
513
+ with open(output_path, 'w', encoding='utf-8') as f:
514
+ f.write(captions[0])
515
+ print(f"Output saved to {output_path}")
516
+ elif input_path.is_dir():
517
+ output_path = Path(args.output) if args.output else input_path
518
+ print(f"Processing directory 📁: {input_path}")
519
+ print(f"Output directory 📦: {output_path}")
520
+ print(f"Batch size 🗄️: {batch_size}")
521
+ process_directory(input_path, output_path, caption_type, caption_length, extra_options, name_input, custom_prompt,
522
+ max_new_tokens, top_p, temperature, batch_size, models)
523
+ else:
524
+ print(f"Invalid input: {input_path}")
525
+ print("Skipping...")
526
+
527
+ if not input_paths:
528
+ print("Usage:")
529
+ print("For single image: python app.py [image_file] [--bs batch_size]")
530
+ print("For directory (same input/output): python app.py [directory] [--bs batch_size]")
531
+ print("For directory (separate input/output): python app.py [directory] --output [output_directory] [--bs batch_size]")
532
+ print("For multiple directories: python app.py [directory1] [directory2] ... [--output output_directory] [--bs batch_size]")
533
+ sys.exit(1)
534
+
535
+ if __name__ == "__main__":
536
+ main()
Joy_caption/cgrkzexw-599808/text_model/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/Meta-Llama-3.1-8B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj",
25
+ "gate_proj",
26
+ "down_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
Joy_caption/cgrkzexw-599808/text_model/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
Joy_caption/cgrkzexw-599808/text_model/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Joy_caption/cgrkzexw-599808/text_model/tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 July 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\n\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\n\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\n\" }}\n{{- \"Today Date: \" + date_string + \"\n\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\n\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\n\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content'] %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\n\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\n\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\n\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\n\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 131072,
2061
+ "pad_token": "<|finetune_right_pad_id|>",
2062
+ "padding_side": "right",
2063
+ "tokenizer_class": "PreTrainedTokenizerFast"
2064
+ }
Joy_caption/joycaption_alpha_two_cli_mod.ipynb ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "id": "ZgkQ4kDil23W"
8
+ },
9
+ "outputs": [],
10
+ "source": [
11
+ "!git clone https://huggingface.co/John6666/joy-caption-alpha-two-cli-mod/\n",
12
+ "!pip install -r /content/joy-caption-alpha-two-cli-mod/requirements.txt\n",
13
+ "!pip install bitsandbytes triton\n",
14
+ "!pip install accelerate==0.30.1\n",
15
+ "!python /content/joy-caption-alpha-two-cli-mod/app.py"
16
+ ]
17
+ },
18
+ {
19
+ "cell_type": "code",
20
+ "execution_count": null,
21
+ "metadata": {
22
+ "id": "gPwD8BVsnU7p"
23
+ },
24
+ "outputs": [],
25
+ "source": [
26
+ "!python /content/joy-caption-alpha-two-cli-mod/app.py"
27
+ ]
28
+ }
29
+ ],
30
+ "metadata": {
31
+ "accelerator": "GPU",
32
+ "colab": {
33
+ "gpuType": "T4",
34
+ "provenance": []
35
+ },
36
+ "kernelspec": {
37
+ "display_name": "Python 3",
38
+ "name": "python3"
39
+ },
40
+ "language_info": {
41
+ "name": "python"
42
+ }
43
+ },
44
+ "nbformat": 4,
45
+ "nbformat_minor": 0
46
+ }
Joy_caption/requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ huggingface_hub>=0.23.4
2
+ accelerate
3
+ torch
4
+ transformers==4.44.0
5
+ sentencepiece
6
+ bitsandbytes
7
+ Pillow
8
+ protobuf
9
+ peft==0.12.0
10
+ torchvision
LLM/Florence-2-base-PromptGen-v2.0/README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ # Florence-2-base-PromptGen v2.0
5
+ This upgrade is based on PromptGen 1.5 with some new features to the model:
6
+
7
+ ## Features:
8
+ * Improved caption quality for \<GENERATE_TAGS\>, \<DETAILED_CAPTION\> and \<MORE_DETAILED_CAPTION\>.
9
+ <img style="width:100%; hight:100%" src="https://msdn.miaoshouai.com/miaoshou/bo/2024-11-05_03-15-15.png" />
10
+ <img style="width:100%; hight:100%" src="https://msdn.miaoshouai.com/miaoshou/bo/2024-11-05_03-40-29.png" />
11
+ * A new \<ANALYZE\> instruction, which helps the model to better understands the image composition of the input image.
12
+ <img style="width:100%; hight:100%" src="https://msdn.miaoshouai.com/miaoshou/bo/2024-11-05_03-42-58.png" />
13
+ <img style="width:100%; hight:100%" src="https://msdn.miaoshouai.com/miaoshou/bo/2024-11-05_07-42-36.png" />
14
+ * Memory efficient compare to other models! This is a really light weight caption model that allows you to use a little more than 1G of VRAM and produce lightening fast and high quality image captions.
15
+ <img style="width:100%; hight:100%" src="https://msdn.miaoshouai.com/miaoshou/bo/2024-09-05_12-56-39.png" />
16
+ * Designed to handle image captions for Flux model for both T5XXL CLIP and CLIP_L, the Miaoshou Tagger new node called "Flux CLIP Text Encode" which eliminates the need to run two separate tagger tools for caption creation. You can easily populate both CLIPs in a single generation, significantly boosting speed when working with Flux models.
17
+ <img style="width:100%; hight:100%" src="https://msdn.miaoshouai.com/miaoshou/bo/2024-09-05_14-11-02.png" />
18
+
19
+ ## Instruction prompt:
20
+ \<GENERATE_TAGS\> generate prompt as danbooru style tags<br>
21
+ \<CAPTION\> a one line caption for the image<br>
22
+ \<DETAILED_CAPTION\> a structured caption format which detects the position of the subjects in the image<br>
23
+ \<MORE_DETAILED_CAPTION\> a very detailed description for the image<br>
24
+ \<ANALYZE\> image composition analysis mode<br>
25
+ \<MIXED_CAPTION\> a mixed caption style of more detailed caption and tags, this is extremely useful for FLUX model when using T5XXL and CLIP_L together. A new node in MiaoshouTagger ComfyUI is added to support this instruction.<br>
26
+ \<MIXED_CAPTION_PLUS\> Combine the power of mixed caption with analyze.<br>
27
+
28
+ ## Version History:
29
+ For version 2.0, you will notice the following
30
+ 1. \<ANALYZE\> along with a beta node in ComfyUI for partial image analysis
31
+ 2. A new instruction for \<MIXED_CAPTION_PLUS\>
32
+ 3. A much improve accuracy for \<GENERATE_TAGS\>, \<DETAILED_CAPTION\> and \<MORE_DETAILED_CAPTION\>
33
+
34
+
35
+ ## How to use:
36
+
37
+ To use this model, you can load it directly from the Hugging Face Model Hub:
38
+
39
+ ```python
40
+
41
+ model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v2.0", trust_remote_code=True)
42
+ processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v2.0", trust_remote_code=True)
43
+
44
+ prompt = "<MORE_DETAILED_CAPTION>"
45
+
46
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
47
+ image = Image.open(requests.get(url, stream=True).raw)
48
+
49
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
50
+
51
+ generated_ids = model.generate(
52
+     input_ids=inputs["input_ids"],
53
+     pixel_values=inputs["pixel_values"],
54
+     max_new_tokens=1024,
55
+     do_sample=False,
56
+     num_beams=3
57
+ )
58
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
59
+
60
+ parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
61
+
62
+ print(parsed_answer)
63
+ ```
64
+
65
+ ## Use under MiaoshouAI Tagger ComfyUI
66
+ If you just want to use this model, you can use it under ComfyUI-Miaoshouai-Tagger
67
+
68
+ https://github.com/miaoshouai/ComfyUI-Miaoshouai-Tagger
69
+
70
+ A detailed use and install instruction is already there.
71
+ (If you have already installed MiaoshouAI Tagger, you need to update the node in ComfyUI Manager first or use git pull to get the latest update.)
LLM/Florence-2-base-PromptGen-v2.0/added_tokens.json ADDED
@@ -0,0 +1,1026 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</cap>": 51270,
3
+ "</dcap>": 51274,
4
+ "</grounding>": 51276,
5
+ "</ncap>": 51272,
6
+ "</ocr>": 50268,
7
+ "</od>": 50266,
8
+ "</poly>": 51287,
9
+ "</proposal>": 51285,
10
+ "</region_cap>": 51281,
11
+ "</region_to_desciption>": 51283,
12
+ "</seg>": 51278,
13
+ "<and>": 51288,
14
+ "<cap>": 51269,
15
+ "<dcap>": 51273,
16
+ "<grounding>": 51275,
17
+ "<loc_0>": 50269,
18
+ "<loc_100>": 50369,
19
+ "<loc_101>": 50370,
20
+ "<loc_102>": 50371,
21
+ "<loc_103>": 50372,
22
+ "<loc_104>": 50373,
23
+ "<loc_105>": 50374,
24
+ "<loc_106>": 50375,
25
+ "<loc_107>": 50376,
26
+ "<loc_108>": 50377,
27
+ "<loc_109>": 50378,
28
+ "<loc_10>": 50279,
29
+ "<loc_110>": 50379,
30
+ "<loc_111>": 50380,
31
+ "<loc_112>": 50381,
32
+ "<loc_113>": 50382,
33
+ "<loc_114>": 50383,
34
+ "<loc_115>": 50384,
35
+ "<loc_116>": 50385,
36
+ "<loc_117>": 50386,
37
+ "<loc_118>": 50387,
38
+ "<loc_119>": 50388,
39
+ "<loc_11>": 50280,
40
+ "<loc_120>": 50389,
41
+ "<loc_121>": 50390,
42
+ "<loc_122>": 50391,
43
+ "<loc_123>": 50392,
44
+ "<loc_124>": 50393,
45
+ "<loc_125>": 50394,
46
+ "<loc_126>": 50395,
47
+ "<loc_127>": 50396,
48
+ "<loc_128>": 50397,
49
+ "<loc_129>": 50398,
50
+ "<loc_12>": 50281,
51
+ "<loc_130>": 50399,
52
+ "<loc_131>": 50400,
53
+ "<loc_132>": 50401,
54
+ "<loc_133>": 50402,
55
+ "<loc_134>": 50403,
56
+ "<loc_135>": 50404,
57
+ "<loc_136>": 50405,
58
+ "<loc_137>": 50406,
59
+ "<loc_138>": 50407,
60
+ "<loc_139>": 50408,
61
+ "<loc_13>": 50282,
62
+ "<loc_140>": 50409,
63
+ "<loc_141>": 50410,
64
+ "<loc_142>": 50411,
65
+ "<loc_143>": 50412,
66
+ "<loc_144>": 50413,
67
+ "<loc_145>": 50414,
68
+ "<loc_146>": 50415,
69
+ "<loc_147>": 50416,
70
+ "<loc_148>": 50417,
71
+ "<loc_149>": 50418,
72
+ "<loc_14>": 50283,
73
+ "<loc_150>": 50419,
74
+ "<loc_151>": 50420,
75
+ "<loc_152>": 50421,
76
+ "<loc_153>": 50422,
77
+ "<loc_154>": 50423,
78
+ "<loc_155>": 50424,
79
+ "<loc_156>": 50425,
80
+ "<loc_157>": 50426,
81
+ "<loc_158>": 50427,
82
+ "<loc_159>": 50428,
83
+ "<loc_15>": 50284,
84
+ "<loc_160>": 50429,
85
+ "<loc_161>": 50430,
86
+ "<loc_162>": 50431,
87
+ "<loc_163>": 50432,
88
+ "<loc_164>": 50433,
89
+ "<loc_165>": 50434,
90
+ "<loc_166>": 50435,
91
+ "<loc_167>": 50436,
92
+ "<loc_168>": 50437,
93
+ "<loc_169>": 50438,
94
+ "<loc_16>": 50285,
95
+ "<loc_170>": 50439,
96
+ "<loc_171>": 50440,
97
+ "<loc_172>": 50441,
98
+ "<loc_173>": 50442,
99
+ "<loc_174>": 50443,
100
+ "<loc_175>": 50444,
101
+ "<loc_176>": 50445,
102
+ "<loc_177>": 50446,
103
+ "<loc_178>": 50447,
104
+ "<loc_179>": 50448,
105
+ "<loc_17>": 50286,
106
+ "<loc_180>": 50449,
107
+ "<loc_181>": 50450,
108
+ "<loc_182>": 50451,
109
+ "<loc_183>": 50452,
110
+ "<loc_184>": 50453,
111
+ "<loc_185>": 50454,
112
+ "<loc_186>": 50455,
113
+ "<loc_187>": 50456,
114
+ "<loc_188>": 50457,
115
+ "<loc_189>": 50458,
116
+ "<loc_18>": 50287,
117
+ "<loc_190>": 50459,
118
+ "<loc_191>": 50460,
119
+ "<loc_192>": 50461,
120
+ "<loc_193>": 50462,
121
+ "<loc_194>": 50463,
122
+ "<loc_195>": 50464,
123
+ "<loc_196>": 50465,
124
+ "<loc_197>": 50466,
125
+ "<loc_198>": 50467,
126
+ "<loc_199>": 50468,
127
+ "<loc_19>": 50288,
128
+ "<loc_1>": 50270,
129
+ "<loc_200>": 50469,
130
+ "<loc_201>": 50470,
131
+ "<loc_202>": 50471,
132
+ "<loc_203>": 50472,
133
+ "<loc_204>": 50473,
134
+ "<loc_205>": 50474,
135
+ "<loc_206>": 50475,
136
+ "<loc_207>": 50476,
137
+ "<loc_208>": 50477,
138
+ "<loc_209>": 50478,
139
+ "<loc_20>": 50289,
140
+ "<loc_210>": 50479,
141
+ "<loc_211>": 50480,
142
+ "<loc_212>": 50481,
143
+ "<loc_213>": 50482,
144
+ "<loc_214>": 50483,
145
+ "<loc_215>": 50484,
146
+ "<loc_216>": 50485,
147
+ "<loc_217>": 50486,
148
+ "<loc_218>": 50487,
149
+ "<loc_219>": 50488,
150
+ "<loc_21>": 50290,
151
+ "<loc_220>": 50489,
152
+ "<loc_221>": 50490,
153
+ "<loc_222>": 50491,
154
+ "<loc_223>": 50492,
155
+ "<loc_224>": 50493,
156
+ "<loc_225>": 50494,
157
+ "<loc_226>": 50495,
158
+ "<loc_227>": 50496,
159
+ "<loc_228>": 50497,
160
+ "<loc_229>": 50498,
161
+ "<loc_22>": 50291,
162
+ "<loc_230>": 50499,
163
+ "<loc_231>": 50500,
164
+ "<loc_232>": 50501,
165
+ "<loc_233>": 50502,
166
+ "<loc_234>": 50503,
167
+ "<loc_235>": 50504,
168
+ "<loc_236>": 50505,
169
+ "<loc_237>": 50506,
170
+ "<loc_238>": 50507,
171
+ "<loc_239>": 50508,
172
+ "<loc_23>": 50292,
173
+ "<loc_240>": 50509,
174
+ "<loc_241>": 50510,
175
+ "<loc_242>": 50511,
176
+ "<loc_243>": 50512,
177
+ "<loc_244>": 50513,
178
+ "<loc_245>": 50514,
179
+ "<loc_246>": 50515,
180
+ "<loc_247>": 50516,
181
+ "<loc_248>": 50517,
182
+ "<loc_249>": 50518,
183
+ "<loc_24>": 50293,
184
+ "<loc_250>": 50519,
185
+ "<loc_251>": 50520,
186
+ "<loc_252>": 50521,
187
+ "<loc_253>": 50522,
188
+ "<loc_254>": 50523,
189
+ "<loc_255>": 50524,
190
+ "<loc_256>": 50525,
191
+ "<loc_257>": 50526,
192
+ "<loc_258>": 50527,
193
+ "<loc_259>": 50528,
194
+ "<loc_25>": 50294,
195
+ "<loc_260>": 50529,
196
+ "<loc_261>": 50530,
197
+ "<loc_262>": 50531,
198
+ "<loc_263>": 50532,
199
+ "<loc_264>": 50533,
200
+ "<loc_265>": 50534,
201
+ "<loc_266>": 50535,
202
+ "<loc_267>": 50536,
203
+ "<loc_268>": 50537,
204
+ "<loc_269>": 50538,
205
+ "<loc_26>": 50295,
206
+ "<loc_270>": 50539,
207
+ "<loc_271>": 50540,
208
+ "<loc_272>": 50541,
209
+ "<loc_273>": 50542,
210
+ "<loc_274>": 50543,
211
+ "<loc_275>": 50544,
212
+ "<loc_276>": 50545,
213
+ "<loc_277>": 50546,
214
+ "<loc_278>": 50547,
215
+ "<loc_279>": 50548,
216
+ "<loc_27>": 50296,
217
+ "<loc_280>": 50549,
218
+ "<loc_281>": 50550,
219
+ "<loc_282>": 50551,
220
+ "<loc_283>": 50552,
221
+ "<loc_284>": 50553,
222
+ "<loc_285>": 50554,
223
+ "<loc_286>": 50555,
224
+ "<loc_287>": 50556,
225
+ "<loc_288>": 50557,
226
+ "<loc_289>": 50558,
227
+ "<loc_28>": 50297,
228
+ "<loc_290>": 50559,
229
+ "<loc_291>": 50560,
230
+ "<loc_292>": 50561,
231
+ "<loc_293>": 50562,
232
+ "<loc_294>": 50563,
233
+ "<loc_295>": 50564,
234
+ "<loc_296>": 50565,
235
+ "<loc_297>": 50566,
236
+ "<loc_298>": 50567,
237
+ "<loc_299>": 50568,
238
+ "<loc_29>": 50298,
239
+ "<loc_2>": 50271,
240
+ "<loc_300>": 50569,
241
+ "<loc_301>": 50570,
242
+ "<loc_302>": 50571,
243
+ "<loc_303>": 50572,
244
+ "<loc_304>": 50573,
245
+ "<loc_305>": 50574,
246
+ "<loc_306>": 50575,
247
+ "<loc_307>": 50576,
248
+ "<loc_308>": 50577,
249
+ "<loc_309>": 50578,
250
+ "<loc_30>": 50299,
251
+ "<loc_310>": 50579,
252
+ "<loc_311>": 50580,
253
+ "<loc_312>": 50581,
254
+ "<loc_313>": 50582,
255
+ "<loc_314>": 50583,
256
+ "<loc_315>": 50584,
257
+ "<loc_316>": 50585,
258
+ "<loc_317>": 50586,
259
+ "<loc_318>": 50587,
260
+ "<loc_319>": 50588,
261
+ "<loc_31>": 50300,
262
+ "<loc_320>": 50589,
263
+ "<loc_321>": 50590,
264
+ "<loc_322>": 50591,
265
+ "<loc_323>": 50592,
266
+ "<loc_324>": 50593,
267
+ "<loc_325>": 50594,
268
+ "<loc_326>": 50595,
269
+ "<loc_327>": 50596,
270
+ "<loc_328>": 50597,
271
+ "<loc_329>": 50598,
272
+ "<loc_32>": 50301,
273
+ "<loc_330>": 50599,
274
+ "<loc_331>": 50600,
275
+ "<loc_332>": 50601,
276
+ "<loc_333>": 50602,
277
+ "<loc_334>": 50603,
278
+ "<loc_335>": 50604,
279
+ "<loc_336>": 50605,
280
+ "<loc_337>": 50606,
281
+ "<loc_338>": 50607,
282
+ "<loc_339>": 50608,
283
+ "<loc_33>": 50302,
284
+ "<loc_340>": 50609,
285
+ "<loc_341>": 50610,
286
+ "<loc_342>": 50611,
287
+ "<loc_343>": 50612,
288
+ "<loc_344>": 50613,
289
+ "<loc_345>": 50614,
290
+ "<loc_346>": 50615,
291
+ "<loc_347>": 50616,
292
+ "<loc_348>": 50617,
293
+ "<loc_349>": 50618,
294
+ "<loc_34>": 50303,
295
+ "<loc_350>": 50619,
296
+ "<loc_351>": 50620,
297
+ "<loc_352>": 50621,
298
+ "<loc_353>": 50622,
299
+ "<loc_354>": 50623,
300
+ "<loc_355>": 50624,
301
+ "<loc_356>": 50625,
302
+ "<loc_357>": 50626,
303
+ "<loc_358>": 50627,
304
+ "<loc_359>": 50628,
305
+ "<loc_35>": 50304,
306
+ "<loc_360>": 50629,
307
+ "<loc_361>": 50630,
308
+ "<loc_362>": 50631,
309
+ "<loc_363>": 50632,
310
+ "<loc_364>": 50633,
311
+ "<loc_365>": 50634,
312
+ "<loc_366>": 50635,
313
+ "<loc_367>": 50636,
314
+ "<loc_368>": 50637,
315
+ "<loc_369>": 50638,
316
+ "<loc_36>": 50305,
317
+ "<loc_370>": 50639,
318
+ "<loc_371>": 50640,
319
+ "<loc_372>": 50641,
320
+ "<loc_373>": 50642,
321
+ "<loc_374>": 50643,
322
+ "<loc_375>": 50644,
323
+ "<loc_376>": 50645,
324
+ "<loc_377>": 50646,
325
+ "<loc_378>": 50647,
326
+ "<loc_379>": 50648,
327
+ "<loc_37>": 50306,
328
+ "<loc_380>": 50649,
329
+ "<loc_381>": 50650,
330
+ "<loc_382>": 50651,
331
+ "<loc_383>": 50652,
332
+ "<loc_384>": 50653,
333
+ "<loc_385>": 50654,
334
+ "<loc_386>": 50655,
335
+ "<loc_387>": 50656,
336
+ "<loc_388>": 50657,
337
+ "<loc_389>": 50658,
338
+ "<loc_38>": 50307,
339
+ "<loc_390>": 50659,
340
+ "<loc_391>": 50660,
341
+ "<loc_392>": 50661,
342
+ "<loc_393>": 50662,
343
+ "<loc_394>": 50663,
344
+ "<loc_395>": 50664,
345
+ "<loc_396>": 50665,
346
+ "<loc_397>": 50666,
347
+ "<loc_398>": 50667,
348
+ "<loc_399>": 50668,
349
+ "<loc_39>": 50308,
350
+ "<loc_3>": 50272,
351
+ "<loc_400>": 50669,
352
+ "<loc_401>": 50670,
353
+ "<loc_402>": 50671,
354
+ "<loc_403>": 50672,
355
+ "<loc_404>": 50673,
356
+ "<loc_405>": 50674,
357
+ "<loc_406>": 50675,
358
+ "<loc_407>": 50676,
359
+ "<loc_408>": 50677,
360
+ "<loc_409>": 50678,
361
+ "<loc_40>": 50309,
362
+ "<loc_410>": 50679,
363
+ "<loc_411>": 50680,
364
+ "<loc_412>": 50681,
365
+ "<loc_413>": 50682,
366
+ "<loc_414>": 50683,
367
+ "<loc_415>": 50684,
368
+ "<loc_416>": 50685,
369
+ "<loc_417>": 50686,
370
+ "<loc_418>": 50687,
371
+ "<loc_419>": 50688,
372
+ "<loc_41>": 50310,
373
+ "<loc_420>": 50689,
374
+ "<loc_421>": 50690,
375
+ "<loc_422>": 50691,
376
+ "<loc_423>": 50692,
377
+ "<loc_424>": 50693,
378
+ "<loc_425>": 50694,
379
+ "<loc_426>": 50695,
380
+ "<loc_427>": 50696,
381
+ "<loc_428>": 50697,
382
+ "<loc_429>": 50698,
383
+ "<loc_42>": 50311,
384
+ "<loc_430>": 50699,
385
+ "<loc_431>": 50700,
386
+ "<loc_432>": 50701,
387
+ "<loc_433>": 50702,
388
+ "<loc_434>": 50703,
389
+ "<loc_435>": 50704,
390
+ "<loc_436>": 50705,
391
+ "<loc_437>": 50706,
392
+ "<loc_438>": 50707,
393
+ "<loc_439>": 50708,
394
+ "<loc_43>": 50312,
395
+ "<loc_440>": 50709,
396
+ "<loc_441>": 50710,
397
+ "<loc_442>": 50711,
398
+ "<loc_443>": 50712,
399
+ "<loc_444>": 50713,
400
+ "<loc_445>": 50714,
401
+ "<loc_446>": 50715,
402
+ "<loc_447>": 50716,
403
+ "<loc_448>": 50717,
404
+ "<loc_449>": 50718,
405
+ "<loc_44>": 50313,
406
+ "<loc_450>": 50719,
407
+ "<loc_451>": 50720,
408
+ "<loc_452>": 50721,
409
+ "<loc_453>": 50722,
410
+ "<loc_454>": 50723,
411
+ "<loc_455>": 50724,
412
+ "<loc_456>": 50725,
413
+ "<loc_457>": 50726,
414
+ "<loc_458>": 50727,
415
+ "<loc_459>": 50728,
416
+ "<loc_45>": 50314,
417
+ "<loc_460>": 50729,
418
+ "<loc_461>": 50730,
419
+ "<loc_462>": 50731,
420
+ "<loc_463>": 50732,
421
+ "<loc_464>": 50733,
422
+ "<loc_465>": 50734,
423
+ "<loc_466>": 50735,
424
+ "<loc_467>": 50736,
425
+ "<loc_468>": 50737,
426
+ "<loc_469>": 50738,
427
+ "<loc_46>": 50315,
428
+ "<loc_470>": 50739,
429
+ "<loc_471>": 50740,
430
+ "<loc_472>": 50741,
431
+ "<loc_473>": 50742,
432
+ "<loc_474>": 50743,
433
+ "<loc_475>": 50744,
434
+ "<loc_476>": 50745,
435
+ "<loc_477>": 50746,
436
+ "<loc_478>": 50747,
437
+ "<loc_479>": 50748,
438
+ "<loc_47>": 50316,
439
+ "<loc_480>": 50749,
440
+ "<loc_481>": 50750,
441
+ "<loc_482>": 50751,
442
+ "<loc_483>": 50752,
443
+ "<loc_484>": 50753,
444
+ "<loc_485>": 50754,
445
+ "<loc_486>": 50755,
446
+ "<loc_487>": 50756,
447
+ "<loc_488>": 50757,
448
+ "<loc_489>": 50758,
449
+ "<loc_48>": 50317,
450
+ "<loc_490>": 50759,
451
+ "<loc_491>": 50760,
452
+ "<loc_492>": 50761,
453
+ "<loc_493>": 50762,
454
+ "<loc_494>": 50763,
455
+ "<loc_495>": 50764,
456
+ "<loc_496>": 50765,
457
+ "<loc_497>": 50766,
458
+ "<loc_498>": 50767,
459
+ "<loc_499>": 50768,
460
+ "<loc_49>": 50318,
461
+ "<loc_4>": 50273,
462
+ "<loc_500>": 50769,
463
+ "<loc_501>": 50770,
464
+ "<loc_502>": 50771,
465
+ "<loc_503>": 50772,
466
+ "<loc_504>": 50773,
467
+ "<loc_505>": 50774,
468
+ "<loc_506>": 50775,
469
+ "<loc_507>": 50776,
470
+ "<loc_508>": 50777,
471
+ "<loc_509>": 50778,
472
+ "<loc_50>": 50319,
473
+ "<loc_510>": 50779,
474
+ "<loc_511>": 50780,
475
+ "<loc_512>": 50781,
476
+ "<loc_513>": 50782,
477
+ "<loc_514>": 50783,
478
+ "<loc_515>": 50784,
479
+ "<loc_516>": 50785,
480
+ "<loc_517>": 50786,
481
+ "<loc_518>": 50787,
482
+ "<loc_519>": 50788,
483
+ "<loc_51>": 50320,
484
+ "<loc_520>": 50789,
485
+ "<loc_521>": 50790,
486
+ "<loc_522>": 50791,
487
+ "<loc_523>": 50792,
488
+ "<loc_524>": 50793,
489
+ "<loc_525>": 50794,
490
+ "<loc_526>": 50795,
491
+ "<loc_527>": 50796,
492
+ "<loc_528>": 50797,
493
+ "<loc_529>": 50798,
494
+ "<loc_52>": 50321,
495
+ "<loc_530>": 50799,
496
+ "<loc_531>": 50800,
497
+ "<loc_532>": 50801,
498
+ "<loc_533>": 50802,
499
+ "<loc_534>": 50803,
500
+ "<loc_535>": 50804,
501
+ "<loc_536>": 50805,
502
+ "<loc_537>": 50806,
503
+ "<loc_538>": 50807,
504
+ "<loc_539>": 50808,
505
+ "<loc_53>": 50322,
506
+ "<loc_540>": 50809,
507
+ "<loc_541>": 50810,
508
+ "<loc_542>": 50811,
509
+ "<loc_543>": 50812,
510
+ "<loc_544>": 50813,
511
+ "<loc_545>": 50814,
512
+ "<loc_546>": 50815,
513
+ "<loc_547>": 50816,
514
+ "<loc_548>": 50817,
515
+ "<loc_549>": 50818,
516
+ "<loc_54>": 50323,
517
+ "<loc_550>": 50819,
518
+ "<loc_551>": 50820,
519
+ "<loc_552>": 50821,
520
+ "<loc_553>": 50822,
521
+ "<loc_554>": 50823,
522
+ "<loc_555>": 50824,
523
+ "<loc_556>": 50825,
524
+ "<loc_557>": 50826,
525
+ "<loc_558>": 50827,
526
+ "<loc_559>": 50828,
527
+ "<loc_55>": 50324,
528
+ "<loc_560>": 50829,
529
+ "<loc_561>": 50830,
530
+ "<loc_562>": 50831,
531
+ "<loc_563>": 50832,
532
+ "<loc_564>": 50833,
533
+ "<loc_565>": 50834,
534
+ "<loc_566>": 50835,
535
+ "<loc_567>": 50836,
536
+ "<loc_568>": 50837,
537
+ "<loc_569>": 50838,
538
+ "<loc_56>": 50325,
539
+ "<loc_570>": 50839,
540
+ "<loc_571>": 50840,
541
+ "<loc_572>": 50841,
542
+ "<loc_573>": 50842,
543
+ "<loc_574>": 50843,
544
+ "<loc_575>": 50844,
545
+ "<loc_576>": 50845,
546
+ "<loc_577>": 50846,
547
+ "<loc_578>": 50847,
548
+ "<loc_579>": 50848,
549
+ "<loc_57>": 50326,
550
+ "<loc_580>": 50849,
551
+ "<loc_581>": 50850,
552
+ "<loc_582>": 50851,
553
+ "<loc_583>": 50852,
554
+ "<loc_584>": 50853,
555
+ "<loc_585>": 50854,
556
+ "<loc_586>": 50855,
557
+ "<loc_587>": 50856,
558
+ "<loc_588>": 50857,
559
+ "<loc_589>": 50858,
560
+ "<loc_58>": 50327,
561
+ "<loc_590>": 50859,
562
+ "<loc_591>": 50860,
563
+ "<loc_592>": 50861,
564
+ "<loc_593>": 50862,
565
+ "<loc_594>": 50863,
566
+ "<loc_595>": 50864,
567
+ "<loc_596>": 50865,
568
+ "<loc_597>": 50866,
569
+ "<loc_598>": 50867,
570
+ "<loc_599>": 50868,
571
+ "<loc_59>": 50328,
572
+ "<loc_5>": 50274,
573
+ "<loc_600>": 50869,
574
+ "<loc_601>": 50870,
575
+ "<loc_602>": 50871,
576
+ "<loc_603>": 50872,
577
+ "<loc_604>": 50873,
578
+ "<loc_605>": 50874,
579
+ "<loc_606>": 50875,
580
+ "<loc_607>": 50876,
581
+ "<loc_608>": 50877,
582
+ "<loc_609>": 50878,
583
+ "<loc_60>": 50329,
584
+ "<loc_610>": 50879,
585
+ "<loc_611>": 50880,
586
+ "<loc_612>": 50881,
587
+ "<loc_613>": 50882,
588
+ "<loc_614>": 50883,
589
+ "<loc_615>": 50884,
590
+ "<loc_616>": 50885,
591
+ "<loc_617>": 50886,
592
+ "<loc_618>": 50887,
593
+ "<loc_619>": 50888,
594
+ "<loc_61>": 50330,
595
+ "<loc_620>": 50889,
596
+ "<loc_621>": 50890,
597
+ "<loc_622>": 50891,
598
+ "<loc_623>": 50892,
599
+ "<loc_624>": 50893,
600
+ "<loc_625>": 50894,
601
+ "<loc_626>": 50895,
602
+ "<loc_627>": 50896,
603
+ "<loc_628>": 50897,
604
+ "<loc_629>": 50898,
605
+ "<loc_62>": 50331,
606
+ "<loc_630>": 50899,
607
+ "<loc_631>": 50900,
608
+ "<loc_632>": 50901,
609
+ "<loc_633>": 50902,
610
+ "<loc_634>": 50903,
611
+ "<loc_635>": 50904,
612
+ "<loc_636>": 50905,
613
+ "<loc_637>": 50906,
614
+ "<loc_638>": 50907,
615
+ "<loc_639>": 50908,
616
+ "<loc_63>": 50332,
617
+ "<loc_640>": 50909,
618
+ "<loc_641>": 50910,
619
+ "<loc_642>": 50911,
620
+ "<loc_643>": 50912,
621
+ "<loc_644>": 50913,
622
+ "<loc_645>": 50914,
623
+ "<loc_646>": 50915,
624
+ "<loc_647>": 50916,
625
+ "<loc_648>": 50917,
626
+ "<loc_649>": 50918,
627
+ "<loc_64>": 50333,
628
+ "<loc_650>": 50919,
629
+ "<loc_651>": 50920,
630
+ "<loc_652>": 50921,
631
+ "<loc_653>": 50922,
632
+ "<loc_654>": 50923,
633
+ "<loc_655>": 50924,
634
+ "<loc_656>": 50925,
635
+ "<loc_657>": 50926,
636
+ "<loc_658>": 50927,
637
+ "<loc_659>": 50928,
638
+ "<loc_65>": 50334,
639
+ "<loc_660>": 50929,
640
+ "<loc_661>": 50930,
641
+ "<loc_662>": 50931,
642
+ "<loc_663>": 50932,
643
+ "<loc_664>": 50933,
644
+ "<loc_665>": 50934,
645
+ "<loc_666>": 50935,
646
+ "<loc_667>": 50936,
647
+ "<loc_668>": 50937,
648
+ "<loc_669>": 50938,
649
+ "<loc_66>": 50335,
650
+ "<loc_670>": 50939,
651
+ "<loc_671>": 50940,
652
+ "<loc_672>": 50941,
653
+ "<loc_673>": 50942,
654
+ "<loc_674>": 50943,
655
+ "<loc_675>": 50944,
656
+ "<loc_676>": 50945,
657
+ "<loc_677>": 50946,
658
+ "<loc_678>": 50947,
659
+ "<loc_679>": 50948,
660
+ "<loc_67>": 50336,
661
+ "<loc_680>": 50949,
662
+ "<loc_681>": 50950,
663
+ "<loc_682>": 50951,
664
+ "<loc_683>": 50952,
665
+ "<loc_684>": 50953,
666
+ "<loc_685>": 50954,
667
+ "<loc_686>": 50955,
668
+ "<loc_687>": 50956,
669
+ "<loc_688>": 50957,
670
+ "<loc_689>": 50958,
671
+ "<loc_68>": 50337,
672
+ "<loc_690>": 50959,
673
+ "<loc_691>": 50960,
674
+ "<loc_692>": 50961,
675
+ "<loc_693>": 50962,
676
+ "<loc_694>": 50963,
677
+ "<loc_695>": 50964,
678
+ "<loc_696>": 50965,
679
+ "<loc_697>": 50966,
680
+ "<loc_698>": 50967,
681
+ "<loc_699>": 50968,
682
+ "<loc_69>": 50338,
683
+ "<loc_6>": 50275,
684
+ "<loc_700>": 50969,
685
+ "<loc_701>": 50970,
686
+ "<loc_702>": 50971,
687
+ "<loc_703>": 50972,
688
+ "<loc_704>": 50973,
689
+ "<loc_705>": 50974,
690
+ "<loc_706>": 50975,
691
+ "<loc_707>": 50976,
692
+ "<loc_708>": 50977,
693
+ "<loc_709>": 50978,
694
+ "<loc_70>": 50339,
695
+ "<loc_710>": 50979,
696
+ "<loc_711>": 50980,
697
+ "<loc_712>": 50981,
698
+ "<loc_713>": 50982,
699
+ "<loc_714>": 50983,
700
+ "<loc_715>": 50984,
701
+ "<loc_716>": 50985,
702
+ "<loc_717>": 50986,
703
+ "<loc_718>": 50987,
704
+ "<loc_719>": 50988,
705
+ "<loc_71>": 50340,
706
+ "<loc_720>": 50989,
707
+ "<loc_721>": 50990,
708
+ "<loc_722>": 50991,
709
+ "<loc_723>": 50992,
710
+ "<loc_724>": 50993,
711
+ "<loc_725>": 50994,
712
+ "<loc_726>": 50995,
713
+ "<loc_727>": 50996,
714
+ "<loc_728>": 50997,
715
+ "<loc_729>": 50998,
716
+ "<loc_72>": 50341,
717
+ "<loc_730>": 50999,
718
+ "<loc_731>": 51000,
719
+ "<loc_732>": 51001,
720
+ "<loc_733>": 51002,
721
+ "<loc_734>": 51003,
722
+ "<loc_735>": 51004,
723
+ "<loc_736>": 51005,
724
+ "<loc_737>": 51006,
725
+ "<loc_738>": 51007,
726
+ "<loc_739>": 51008,
727
+ "<loc_73>": 50342,
728
+ "<loc_740>": 51009,
729
+ "<loc_741>": 51010,
730
+ "<loc_742>": 51011,
731
+ "<loc_743>": 51012,
732
+ "<loc_744>": 51013,
733
+ "<loc_745>": 51014,
734
+ "<loc_746>": 51015,
735
+ "<loc_747>": 51016,
736
+ "<loc_748>": 51017,
737
+ "<loc_749>": 51018,
738
+ "<loc_74>": 50343,
739
+ "<loc_750>": 51019,
740
+ "<loc_751>": 51020,
741
+ "<loc_752>": 51021,
742
+ "<loc_753>": 51022,
743
+ "<loc_754>": 51023,
744
+ "<loc_755>": 51024,
745
+ "<loc_756>": 51025,
746
+ "<loc_757>": 51026,
747
+ "<loc_758>": 51027,
748
+ "<loc_759>": 51028,
749
+ "<loc_75>": 50344,
750
+ "<loc_760>": 51029,
751
+ "<loc_761>": 51030,
752
+ "<loc_762>": 51031,
753
+ "<loc_763>": 51032,
754
+ "<loc_764>": 51033,
755
+ "<loc_765>": 51034,
756
+ "<loc_766>": 51035,
757
+ "<loc_767>": 51036,
758
+ "<loc_768>": 51037,
759
+ "<loc_769>": 51038,
760
+ "<loc_76>": 50345,
761
+ "<loc_770>": 51039,
762
+ "<loc_771>": 51040,
763
+ "<loc_772>": 51041,
764
+ "<loc_773>": 51042,
765
+ "<loc_774>": 51043,
766
+ "<loc_775>": 51044,
767
+ "<loc_776>": 51045,
768
+ "<loc_777>": 51046,
769
+ "<loc_778>": 51047,
770
+ "<loc_779>": 51048,
771
+ "<loc_77>": 50346,
772
+ "<loc_780>": 51049,
773
+ "<loc_781>": 51050,
774
+ "<loc_782>": 51051,
775
+ "<loc_783>": 51052,
776
+ "<loc_784>": 51053,
777
+ "<loc_785>": 51054,
778
+ "<loc_786>": 51055,
779
+ "<loc_787>": 51056,
780
+ "<loc_788>": 51057,
781
+ "<loc_789>": 51058,
782
+ "<loc_78>": 50347,
783
+ "<loc_790>": 51059,
784
+ "<loc_791>": 51060,
785
+ "<loc_792>": 51061,
786
+ "<loc_793>": 51062,
787
+ "<loc_794>": 51063,
788
+ "<loc_795>": 51064,
789
+ "<loc_796>": 51065,
790
+ "<loc_797>": 51066,
791
+ "<loc_798>": 51067,
792
+ "<loc_799>": 51068,
793
+ "<loc_79>": 50348,
794
+ "<loc_7>": 50276,
795
+ "<loc_800>": 51069,
796
+ "<loc_801>": 51070,
797
+ "<loc_802>": 51071,
798
+ "<loc_803>": 51072,
799
+ "<loc_804>": 51073,
800
+ "<loc_805>": 51074,
801
+ "<loc_806>": 51075,
802
+ "<loc_807>": 51076,
803
+ "<loc_808>": 51077,
804
+ "<loc_809>": 51078,
805
+ "<loc_80>": 50349,
806
+ "<loc_810>": 51079,
807
+ "<loc_811>": 51080,
808
+ "<loc_812>": 51081,
809
+ "<loc_813>": 51082,
810
+ "<loc_814>": 51083,
811
+ "<loc_815>": 51084,
812
+ "<loc_816>": 51085,
813
+ "<loc_817>": 51086,
814
+ "<loc_818>": 51087,
815
+ "<loc_819>": 51088,
816
+ "<loc_81>": 50350,
817
+ "<loc_820>": 51089,
818
+ "<loc_821>": 51090,
819
+ "<loc_822>": 51091,
820
+ "<loc_823>": 51092,
821
+ "<loc_824>": 51093,
822
+ "<loc_825>": 51094,
823
+ "<loc_826>": 51095,
824
+ "<loc_827>": 51096,
825
+ "<loc_828>": 51097,
826
+ "<loc_829>": 51098,
827
+ "<loc_82>": 50351,
828
+ "<loc_830>": 51099,
829
+ "<loc_831>": 51100,
830
+ "<loc_832>": 51101,
831
+ "<loc_833>": 51102,
832
+ "<loc_834>": 51103,
833
+ "<loc_835>": 51104,
834
+ "<loc_836>": 51105,
835
+ "<loc_837>": 51106,
836
+ "<loc_838>": 51107,
837
+ "<loc_839>": 51108,
838
+ "<loc_83>": 50352,
839
+ "<loc_840>": 51109,
840
+ "<loc_841>": 51110,
841
+ "<loc_842>": 51111,
842
+ "<loc_843>": 51112,
843
+ "<loc_844>": 51113,
844
+ "<loc_845>": 51114,
845
+ "<loc_846>": 51115,
846
+ "<loc_847>": 51116,
847
+ "<loc_848>": 51117,
848
+ "<loc_849>": 51118,
849
+ "<loc_84>": 50353,
850
+ "<loc_850>": 51119,
851
+ "<loc_851>": 51120,
852
+ "<loc_852>": 51121,
853
+ "<loc_853>": 51122,
854
+ "<loc_854>": 51123,
855
+ "<loc_855>": 51124,
856
+ "<loc_856>": 51125,
857
+ "<loc_857>": 51126,
858
+ "<loc_858>": 51127,
859
+ "<loc_859>": 51128,
860
+ "<loc_85>": 50354,
861
+ "<loc_860>": 51129,
862
+ "<loc_861>": 51130,
863
+ "<loc_862>": 51131,
864
+ "<loc_863>": 51132,
865
+ "<loc_864>": 51133,
866
+ "<loc_865>": 51134,
867
+ "<loc_866>": 51135,
868
+ "<loc_867>": 51136,
869
+ "<loc_868>": 51137,
870
+ "<loc_869>": 51138,
871
+ "<loc_86>": 50355,
872
+ "<loc_870>": 51139,
873
+ "<loc_871>": 51140,
874
+ "<loc_872>": 51141,
875
+ "<loc_873>": 51142,
876
+ "<loc_874>": 51143,
877
+ "<loc_875>": 51144,
878
+ "<loc_876>": 51145,
879
+ "<loc_877>": 51146,
880
+ "<loc_878>": 51147,
881
+ "<loc_879>": 51148,
882
+ "<loc_87>": 50356,
883
+ "<loc_880>": 51149,
884
+ "<loc_881>": 51150,
885
+ "<loc_882>": 51151,
886
+ "<loc_883>": 51152,
887
+ "<loc_884>": 51153,
888
+ "<loc_885>": 51154,
889
+ "<loc_886>": 51155,
890
+ "<loc_887>": 51156,
891
+ "<loc_888>": 51157,
892
+ "<loc_889>": 51158,
893
+ "<loc_88>": 50357,
894
+ "<loc_890>": 51159,
895
+ "<loc_891>": 51160,
896
+ "<loc_892>": 51161,
897
+ "<loc_893>": 51162,
898
+ "<loc_894>": 51163,
899
+ "<loc_895>": 51164,
900
+ "<loc_896>": 51165,
901
+ "<loc_897>": 51166,
902
+ "<loc_898>": 51167,
903
+ "<loc_899>": 51168,
904
+ "<loc_89>": 50358,
905
+ "<loc_8>": 50277,
906
+ "<loc_900>": 51169,
907
+ "<loc_901>": 51170,
908
+ "<loc_902>": 51171,
909
+ "<loc_903>": 51172,
910
+ "<loc_904>": 51173,
911
+ "<loc_905>": 51174,
912
+ "<loc_906>": 51175,
913
+ "<loc_907>": 51176,
914
+ "<loc_908>": 51177,
915
+ "<loc_909>": 51178,
916
+ "<loc_90>": 50359,
917
+ "<loc_910>": 51179,
918
+ "<loc_911>": 51180,
919
+ "<loc_912>": 51181,
920
+ "<loc_913>": 51182,
921
+ "<loc_914>": 51183,
922
+ "<loc_915>": 51184,
923
+ "<loc_916>": 51185,
924
+ "<loc_917>": 51186,
925
+ "<loc_918>": 51187,
926
+ "<loc_919>": 51188,
927
+ "<loc_91>": 50360,
928
+ "<loc_920>": 51189,
929
+ "<loc_921>": 51190,
930
+ "<loc_922>": 51191,
931
+ "<loc_923>": 51192,
932
+ "<loc_924>": 51193,
933
+ "<loc_925>": 51194,
934
+ "<loc_926>": 51195,
935
+ "<loc_927>": 51196,
936
+ "<loc_928>": 51197,
937
+ "<loc_929>": 51198,
938
+ "<loc_92>": 50361,
939
+ "<loc_930>": 51199,
940
+ "<loc_931>": 51200,
941
+ "<loc_932>": 51201,
942
+ "<loc_933>": 51202,
943
+ "<loc_934>": 51203,
944
+ "<loc_935>": 51204,
945
+ "<loc_936>": 51205,
946
+ "<loc_937>": 51206,
947
+ "<loc_938>": 51207,
948
+ "<loc_939>": 51208,
949
+ "<loc_93>": 50362,
950
+ "<loc_940>": 51209,
951
+ "<loc_941>": 51210,
952
+ "<loc_942>": 51211,
953
+ "<loc_943>": 51212,
954
+ "<loc_944>": 51213,
955
+ "<loc_945>": 51214,
956
+ "<loc_946>": 51215,
957
+ "<loc_947>": 51216,
958
+ "<loc_948>": 51217,
959
+ "<loc_949>": 51218,
960
+ "<loc_94>": 50363,
961
+ "<loc_950>": 51219,
962
+ "<loc_951>": 51220,
963
+ "<loc_952>": 51221,
964
+ "<loc_953>": 51222,
965
+ "<loc_954>": 51223,
966
+ "<loc_955>": 51224,
967
+ "<loc_956>": 51225,
968
+ "<loc_957>": 51226,
969
+ "<loc_958>": 51227,
970
+ "<loc_959>": 51228,
971
+ "<loc_95>": 50364,
972
+ "<loc_960>": 51229,
973
+ "<loc_961>": 51230,
974
+ "<loc_962>": 51231,
975
+ "<loc_963>": 51232,
976
+ "<loc_964>": 51233,
977
+ "<loc_965>": 51234,
978
+ "<loc_966>": 51235,
979
+ "<loc_967>": 51236,
980
+ "<loc_968>": 51237,
981
+ "<loc_969>": 51238,
982
+ "<loc_96>": 50365,
983
+ "<loc_970>": 51239,
984
+ "<loc_971>": 51240,
985
+ "<loc_972>": 51241,
986
+ "<loc_973>": 51242,
987
+ "<loc_974>": 51243,
988
+ "<loc_975>": 51244,
989
+ "<loc_976>": 51245,
990
+ "<loc_977>": 51246,
991
+ "<loc_978>": 51247,
992
+ "<loc_979>": 51248,
993
+ "<loc_97>": 50366,
994
+ "<loc_980>": 51249,
995
+ "<loc_981>": 51250,
996
+ "<loc_982>": 51251,
997
+ "<loc_983>": 51252,
998
+ "<loc_984>": 51253,
999
+ "<loc_985>": 51254,
1000
+ "<loc_986>": 51255,
1001
+ "<loc_987>": 51256,
1002
+ "<loc_988>": 51257,
1003
+ "<loc_989>": 51258,
1004
+ "<loc_98>": 50367,
1005
+ "<loc_990>": 51259,
1006
+ "<loc_991>": 51260,
1007
+ "<loc_992>": 51261,
1008
+ "<loc_993>": 51262,
1009
+ "<loc_994>": 51263,
1010
+ "<loc_995>": 51264,
1011
+ "<loc_996>": 51265,
1012
+ "<loc_997>": 51266,
1013
+ "<loc_998>": 51267,
1014
+ "<loc_999>": 51268,
1015
+ "<loc_99>": 50368,
1016
+ "<loc_9>": 50278,
1017
+ "<ncap>": 51271,
1018
+ "<ocr>": 50267,
1019
+ "<od>": 50265,
1020
+ "<poly>": 51286,
1021
+ "<proposal>": 51284,
1022
+ "<region_cap>": 51280,
1023
+ "<region_to_desciption>": 51282,
1024
+ "<seg>": 51277,
1025
+ "<sep>": 51279
1026
+ }
LLM/Florence-2-base-PromptGen-v2.0/config.json ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/Florence-2-base",
3
+ "architectures": [
4
+ "Florence2ForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_florence2.Florence2Config",
8
+ "AutoModelForCausalLM": "modeling_florence2.Florence2ForConditionalGeneration"
9
+ },
10
+ "bos_token_id": 0,
11
+ "eos_token_id": 2,
12
+ "ignore_index": -100,
13
+ "is_encoder_decoder": true,
14
+ "model_type": "florence2",
15
+ "pad_token_id": 1,
16
+ "projection_dim": 768,
17
+ "text_config": {
18
+ "_name_or_path": "",
19
+ "activation_dropout": 0.1,
20
+ "activation_function": "gelu",
21
+ "add_bias_logits": false,
22
+ "add_cross_attention": false,
23
+ "add_final_layer_norm": false,
24
+ "architectures": null,
25
+ "attention_dropout": 0.1,
26
+ "bad_words_ids": null,
27
+ "begin_suppress_tokens": null,
28
+ "bos_token_id": 0,
29
+ "chunk_size_feed_forward": 0,
30
+ "classif_dropout": 0.1,
31
+ "classifier_dropout": 0.0,
32
+ "cross_attention_hidden_size": null,
33
+ "d_model": 768,
34
+ "decoder_attention_heads": 12,
35
+ "decoder_ffn_dim": 3072,
36
+ "decoder_layerdrop": 0.0,
37
+ "decoder_layers": 6,
38
+ "decoder_start_token_id": 2,
39
+ "diversity_penalty": 0.0,
40
+ "do_sample": false,
41
+ "dropout": 0.1,
42
+ "early_stopping": true,
43
+ "encoder_attention_heads": 12,
44
+ "encoder_ffn_dim": 3072,
45
+ "encoder_layerdrop": 0.0,
46
+ "encoder_layers": 6,
47
+ "encoder_no_repeat_ngram_size": 0,
48
+ "eos_token_id": 2,
49
+ "exponential_decay_length_penalty": null,
50
+ "finetuning_task": null,
51
+ "forced_bos_token_id": 0,
52
+ "forced_eos_token_id": 2,
53
+ "gradient_checkpointing": false,
54
+ "id2label": {
55
+ "0": "LABEL_0",
56
+ "1": "LABEL_1",
57
+ "2": "LABEL_2"
58
+ },
59
+ "init_std": 0.02,
60
+ "is_decoder": false,
61
+ "is_encoder_decoder": true,
62
+ "label2id": {
63
+ "LABEL_0": 0,
64
+ "LABEL_1": 1,
65
+ "LABEL_2": 2
66
+ },
67
+ "length_penalty": 1.0,
68
+ "max_length": 20,
69
+ "max_position_embeddings": 1024,
70
+ "min_length": 0,
71
+ "model_type": "florence2_language",
72
+ "no_repeat_ngram_size": 3,
73
+ "normalize_before": false,
74
+ "num_beam_groups": 1,
75
+ "num_beams": 3,
76
+ "num_hidden_layers": 6,
77
+ "num_return_sequences": 1,
78
+ "output_attentions": false,
79
+ "output_hidden_states": false,
80
+ "output_scores": false,
81
+ "pad_token_id": 1,
82
+ "prefix": null,
83
+ "problem_type": null,
84
+ "pruned_heads": {},
85
+ "remove_invalid_values": false,
86
+ "repetition_penalty": 1.0,
87
+ "return_dict": true,
88
+ "return_dict_in_generate": false,
89
+ "scale_embedding": false,
90
+ "sep_token_id": null,
91
+ "suppress_tokens": null,
92
+ "task_specific_params": null,
93
+ "temperature": 1.0,
94
+ "tf_legacy_loss": false,
95
+ "tie_encoder_decoder": false,
96
+ "tie_word_embeddings": true,
97
+ "tokenizer_class": null,
98
+ "top_k": 50,
99
+ "top_p": 1.0,
100
+ "torch_dtype": null,
101
+ "torchscript": false,
102
+ "typical_p": 1.0,
103
+ "use_bfloat16": false,
104
+ "use_cache": true,
105
+ "vocab_size": 51289
106
+ },
107
+ "torch_dtype": "float32",
108
+ "transformers_version": "4.44.2",
109
+ "vision_config": {
110
+ "model_type": "davit",
111
+ "drop_path_rate": 0.1,
112
+ "patch_size": [7, 3, 3, 3],
113
+ "patch_stride": [4, 2, 2, 2],
114
+ "patch_padding": [3, 1, 1, 1],
115
+ "patch_prenorm": [false, true, true, true],
116
+ "enable_checkpoint": false,
117
+ "dim_embed": [128, 256, 512, 1024],
118
+ "num_heads": [4, 8, 16, 32],
119
+ "num_groups": [4, 8, 16, 32],
120
+ "depths": [1, 1, 9, 1],
121
+ "window_size": 12,
122
+ "projection_dim": 768,
123
+ "visual_temporal_embedding": {
124
+ "type": "COSINE",
125
+ "max_temporal_embeddings": 100
126
+ },
127
+ "image_pos_embed": {
128
+ "type": "learned_abs_2d",
129
+ "max_pos_embeddings": 50
130
+ },
131
+ "image_feature_source": ["spatial_avg_pool", "temporal_avg_pool"]
132
+ },
133
+ "vocab_size": 51289,
134
+ "torch_dtype": "float16",
135
+ "transformers_version": "4.41.0.dev0",
136
+ "is_encoder_decoder": true
137
+ }
LLM/Florence-2-base-PromptGen-v2.0/generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "decoder_start_token_id": 2,
5
+ "early_stopping": true,
6
+ "eos_token_id": 2,
7
+ "forced_bos_token_id": 0,
8
+ "forced_eos_token_id": 2,
9
+ "no_repeat_ngram_size": 3,
10
+ "num_beams": 3,
11
+ "pad_token_id": 1,
12
+ "transformers_version": "4.44.2"
13
+ }
LLM/Florence-2-base-PromptGen-v2.0/preprocessor_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_florence2.Florence2Processor"
4
+ },
5
+ "crop_size": {
6
+ "height": 768,
7
+ "width": 768
8
+ },
9
+ "do_center_crop": false,
10
+ "do_convert_rgb": null,
11
+ "do_normalize": true,
12
+ "do_rescale": true,
13
+ "do_resize": true,
14
+ "image_mean": [
15
+ 0.485,
16
+ 0.456,
17
+ 0.406
18
+ ],
19
+ "image_processor_type": "CLIPImageProcessor",
20
+ "image_seq_length": 577,
21
+ "image_std": [
22
+ 0.229,
23
+ 0.224,
24
+ 0.225
25
+ ],
26
+ "processor_class": "Florence2Processor",
27
+ "resample": 3,
28
+ "rescale_factor": 0.00392156862745098,
29
+ "size": {
30
+ "height": 768,
31
+ "width": 768
32
+ }
33
+ }
LLM/Florence-2-base-PromptGen-v2.0/special_tokens_map.json ADDED
The diff for this file is too large to render. See raw diff
 
LLM/Florence-2-base-PromptGen-v2.0/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
LLM/Florence-2-base-PromptGen-v2.0/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
LLM/Florence-2-base-PromptGen-v2.0/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
LLM/Florence-2-large-PromptGen-v2.0/configuration_florence2.py ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import warnings
15
+ """ Florence-2 configuration"""
16
+
17
+ from typing import Optional
18
+
19
+ from transformers import AutoConfig
20
+ from transformers.configuration_utils import PretrainedConfig
21
+ from transformers.utils import logging
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ class Florence2VisionConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel
28
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
29
+ defaults will yield a similar configuration to that of the Florence2VisionModel architecture.
30
+
31
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
32
+ documentation from [`PretrainedConfig`] for more information.
33
+
34
+ Args:
35
+ drop_path_rate (`float`, *optional*, defaults to 0.1):
36
+ The dropout rate of the drop path layer.
37
+ patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):
38
+ The patch size of the image.
39
+ patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):
40
+ The patch stride of the image.
41
+ patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):
42
+ The patch padding of the image.
43
+ patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):
44
+ Whether to apply layer normalization before the patch embedding layer.
45
+ enable_checkpoint (`bool`, *optional*, defaults to False):
46
+ Whether to enable checkpointing.
47
+ dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):
48
+ The dimension of the embedding layer.
49
+ num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
50
+ The number of attention heads.
51
+ num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
52
+ The number of groups.
53
+ depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):
54
+ The depth of the model.
55
+ window_size (`int`, *optional*, defaults to 12):
56
+ The window size of the model.
57
+ projection_dim (`int`, *optional*, defaults to 1024):
58
+ The dimension of the projection layer.
59
+ visual_temporal_embedding (`dict`, *optional*):
60
+ The configuration of the visual temporal embedding.
61
+ image_pos_embed (`dict`, *optional*):
62
+ The configuration of the image position embedding.
63
+ image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):
64
+ The source of the image feature.
65
+ Example:
66
+
67
+ ```python
68
+ >>> from transformers import Florence2VisionConfig, Florence2VisionModel
69
+
70
+ >>> # Initializing a Florence2 Vision style configuration
71
+ >>> configuration = Florence2VisionConfig()
72
+
73
+ >>> # Initializing a model (with random weights)
74
+ >>> model = Florence2VisionModel(configuration)
75
+
76
+ >>> # Accessing the model configuration
77
+ >>> configuration = model.config
78
+ ```"""
79
+
80
+ model_type = "florence2_vision"
81
+ keys_to_ignore_at_inference = ["past_key_values"]
82
+
83
+ def __init__(
84
+ self,
85
+ drop_path_rate=0.1,
86
+ patch_size=[7, 3, 3, 3],
87
+ patch_stride=[4, 2, 2, 2],
88
+ patch_padding=[3, 1, 1, 1],
89
+ patch_prenorm=[False, True, True, True],
90
+ enable_checkpoint=False,
91
+ dim_embed=[256, 512, 1024, 2048],
92
+ num_heads=[8, 16, 32, 64],
93
+ num_groups=[8, 16, 32, 64],
94
+ depths=[1, 1, 9, 1],
95
+ window_size=12,
96
+ projection_dim=1024,
97
+ visual_temporal_embedding=None,
98
+ image_pos_embed=None,
99
+ image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
100
+ **kwargs,
101
+ ):
102
+ self.drop_path_rate = drop_path_rate
103
+ self.patch_size = patch_size
104
+ self.patch_stride = patch_stride
105
+ self.patch_padding = patch_padding
106
+ self.patch_prenorm = patch_prenorm
107
+ self.enable_checkpoint = enable_checkpoint
108
+ self.dim_embed = dim_embed
109
+ self.num_heads = num_heads
110
+ self.num_groups = num_groups
111
+ self.depths = depths
112
+ self.window_size = window_size
113
+ self.projection_dim = projection_dim
114
+ self.visual_temporal_embedding = visual_temporal_embedding
115
+ self.image_pos_embed = image_pos_embed
116
+ self.image_feature_source = image_feature_source
117
+
118
+ super().__init__(**kwargs)
119
+
120
+
121
+
122
+ class Florence2LanguageConfig(PretrainedConfig):
123
+ r"""
124
+ This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART
125
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
126
+ defaults will yield a similar configuration to that of the BART
127
+ [facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
128
+
129
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
130
+ documentation from [`PretrainedConfig`] for more information.
131
+
132
+
133
+ Args:
134
+ vocab_size (`int`, *optional*, defaults to 51289):
135
+ Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the
136
+ `inputs_ids` passed when calling [`Florence2LanguageModel`].
137
+ d_model (`int`, *optional*, defaults to 1024):
138
+ Dimensionality of the layers and the pooler layer.
139
+ encoder_layers (`int`, *optional*, defaults to 12):
140
+ Number of encoder layers.
141
+ decoder_layers (`int`, *optional*, defaults to 12):
142
+ Number of decoder layers.
143
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
144
+ Number of attention heads for each attention layer in the Transformer encoder.
145
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
146
+ Number of attention heads for each attention layer in the Transformer decoder.
147
+ decoder_ffn_dim (`int`, *optional*, defaults to 4096):
148
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
149
+ encoder_ffn_dim (`int`, *optional*, defaults to 4096):
150
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
151
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
152
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
153
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
154
+ dropout (`float`, *optional*, defaults to 0.1):
155
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
156
+ attention_dropout (`float`, *optional*, defaults to 0.0):
157
+ The dropout ratio for the attention probabilities.
158
+ activation_dropout (`float`, *optional*, defaults to 0.0):
159
+ The dropout ratio for activations inside the fully connected layer.
160
+ classifier_dropout (`float`, *optional*, defaults to 0.0):
161
+ The dropout ratio for classifier.
162
+ max_position_embeddings (`int`, *optional*, defaults to 1024):
163
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
164
+ just in case (e.g., 512 or 1024 or 2048).
165
+ init_std (`float`, *optional*, defaults to 0.02):
166
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
167
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
168
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
169
+ for more details.
170
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
171
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
172
+ for more details.
173
+ scale_embedding (`bool`, *optional*, defaults to `False`):
174
+ Scale embeddings by diving by sqrt(d_model).
175
+ use_cache (`bool`, *optional*, defaults to `True`):
176
+ Whether or not the model should return the last key/values attentions (not used by all models).
177
+ num_labels (`int`, *optional*, defaults to 3):
178
+ The number of labels to use in [`Florence2LanguageForSequenceClassification`].
179
+ forced_eos_token_id (`int`, *optional*, defaults to 2):
180
+ The id of the token to force as the last generated token when `max_length` is reached. Usually set to
181
+ `eos_token_id`.
182
+
183
+ Example:
184
+
185
+ ```python
186
+ >>> from transformers import Florence2LanguageConfig, Florence2LanguageModel
187
+
188
+ >>> # Initializing a Florence2 Language style configuration
189
+ >>> configuration = Florence2LanguageConfig()
190
+
191
+ >>> # Initializing a model (with random weights)
192
+ >>> model = Florence2LangaugeModel(configuration)
193
+
194
+ >>> # Accessing the model configuration
195
+ >>> configuration = model.config
196
+ ```"""
197
+
198
+ model_type = "florence2_language"
199
+ keys_to_ignore_at_inference = ["past_key_values"]
200
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
201
+
202
+ def __init__(
203
+ self,
204
+ vocab_size=51289,
205
+ max_position_embeddings=1024,
206
+ encoder_layers=12,
207
+ encoder_ffn_dim=4096,
208
+ encoder_attention_heads=16,
209
+ decoder_layers=12,
210
+ decoder_ffn_dim=4096,
211
+ decoder_attention_heads=16,
212
+ encoder_layerdrop=0.0,
213
+ decoder_layerdrop=0.0,
214
+ activation_function="gelu",
215
+ d_model=1024,
216
+ dropout=0.1,
217
+ attention_dropout=0.0,
218
+ activation_dropout=0.0,
219
+ init_std=0.02,
220
+ classifier_dropout=0.0,
221
+ scale_embedding=False,
222
+ use_cache=True,
223
+ num_labels=3,
224
+ pad_token_id=1,
225
+ bos_token_id=0,
226
+ eos_token_id=2,
227
+ is_encoder_decoder=True,
228
+ decoder_start_token_id=2,
229
+ forced_eos_token_id=2,
230
+ **kwargs,
231
+ ):
232
+ self.vocab_size = vocab_size
233
+ self.max_position_embeddings = max_position_embeddings
234
+ self.d_model = d_model
235
+ self.encoder_ffn_dim = encoder_ffn_dim
236
+ self.encoder_layers = encoder_layers
237
+ self.encoder_attention_heads = encoder_attention_heads
238
+ self.decoder_ffn_dim = decoder_ffn_dim
239
+ self.decoder_layers = decoder_layers
240
+ self.decoder_attention_heads = decoder_attention_heads
241
+ self.dropout = dropout
242
+ self.attention_dropout = attention_dropout
243
+ self.activation_dropout = activation_dropout
244
+ self.activation_function = activation_function
245
+ self.init_std = init_std
246
+ self.encoder_layerdrop = encoder_layerdrop
247
+ self.decoder_layerdrop = decoder_layerdrop
248
+ self.classifier_dropout = classifier_dropout
249
+ self.use_cache = use_cache
250
+ self.num_hidden_layers = encoder_layers
251
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
252
+
253
+ super().__init__(
254
+ num_labels=num_labels,
255
+ pad_token_id=pad_token_id,
256
+ bos_token_id=bos_token_id,
257
+ eos_token_id=eos_token_id,
258
+ is_encoder_decoder=is_encoder_decoder,
259
+ decoder_start_token_id=decoder_start_token_id,
260
+ forced_eos_token_id=forced_eos_token_id,
261
+ **kwargs,
262
+ )
263
+
264
+ # ensure backward compatibility for BART CNN models
265
+ if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
266
+ self.forced_bos_token_id = self.bos_token_id
267
+ warnings.warn(
268
+ f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
269
+ "The config can simply be saved and uploaded again to be fixed."
270
+ )
271
+
272
+ class Florence2Config(PretrainedConfig):
273
+ r"""
274
+ This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an
275
+ Florence-2 model according to the specified arguments, defining the model architecture.
276
+
277
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
278
+ documentation from [`PretrainedConfig`] for more information.
279
+
280
+ Args:
281
+ vision_config (`Florence2VisionConfig`, *optional*):
282
+ Custom vision config or dict
283
+ text_config (`Union[AutoConfig, dict]`, *optional*):
284
+ The config object of the text backbone.
285
+ ignore_index (`int`, *optional*, defaults to -100):
286
+ The ignore index for the loss function.
287
+ vocab_size (`int`, *optional*, defaults to 51289):
288
+ Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the
289
+ `inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]
290
+ projection_dim (`int`, *optional*, defaults to 1024):
291
+ Dimension of the multimodal projection space.
292
+
293
+ Example:
294
+
295
+ ```python
296
+ >>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig
297
+
298
+ >>> # Initializing a clip-like vision config
299
+ >>> vision_config = CLIPVisionConfig()
300
+
301
+ >>> # Initializing a Bart config
302
+ >>> text_config = BartConfig()
303
+
304
+ >>> # Initializing a Florence-2 configuration
305
+ >>> configuration = Florence2Config(vision_config, text_config)
306
+
307
+ >>> # Initializing a model from the florence-2 configuration
308
+ >>> model = Florence2ForConditionalGeneration(configuration)
309
+
310
+ >>> # Accessing the model configuration
311
+ >>> configuration = model.config
312
+ ```"""
313
+
314
+ model_type = "florence2"
315
+ is_composition = False
316
+
317
+ def __init__(
318
+ self,
319
+ vision_config=None,
320
+ text_config=None,
321
+ ignore_index=-100,
322
+ vocab_size=51289,
323
+ projection_dim=1024,
324
+ **kwargs,
325
+ ):
326
+ self.ignore_index = ignore_index
327
+ self.vocab_size = vocab_size
328
+ self.projection_dim = projection_dim
329
+ if vision_config is not None:
330
+ vision_config = PretrainedConfig(**vision_config)
331
+ self.vision_config = vision_config
332
+ self.vocab_size = self.vocab_size
333
+
334
+ self.text_config = text_config
335
+ if text_config is not None:
336
+ self.text_config = Florence2LanguageConfig(**text_config)
337
+
338
+
339
+ super().__init__(**kwargs)
340
+
LLM/Florence-2-large-PromptGen-v2.0/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
LLM/Florence-2-large-PromptGen-v2.0/processing_florence2.py ADDED
@@ -0,0 +1,1088 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for Florence-2.
17
+ """
18
+
19
+ import re
20
+ import logging
21
+ from typing import List, Optional, Union
22
+ import numpy as np
23
+
24
+ import torch
25
+
26
+ from transformers.feature_extraction_utils import BatchFeature
27
+ from transformers.image_utils import ImageInput, is_valid_image
28
+ from transformers.processing_utils import ProcessorMixin
29
+ from transformers.tokenization_utils_base import (
30
+ PaddingStrategy,
31
+ PreTokenizedInput,
32
+ TextInput,
33
+ TruncationStrategy,
34
+ )
35
+ from transformers.utils import TensorType
36
+
37
+
38
+ logger = logging.getLogger(__name__)
39
+
40
+ # Copied from transformers.models.idefics2.processing_idefics2.is_url
41
+ def is_url(val) -> bool:
42
+ return isinstance(val, str) and val.startswith("http")
43
+
44
+ # Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
45
+ def is_image_or_image_url(elem):
46
+ return is_url(elem) or is_valid_image(elem)
47
+
48
+
49
+ def _is_str_or_image(elem):
50
+ return isinstance(elem, (str)) or is_image_or_image_url(elem)
51
+
52
+
53
+ class Florence2Processor(ProcessorMixin):
54
+ r"""
55
+ Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor.
56
+
57
+ [`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the
58
+ [`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information.
59
+
60
+ Args:
61
+ image_processor ([`CLIPImageProcessor`], *optional*):
62
+ The image processor is a required input.
63
+ tokenizer ([`BartTokenizerFast`], *optional*):
64
+ The tokenizer is a required input.
65
+ """
66
+
67
+ attributes = ["image_processor", "tokenizer"]
68
+ image_processor_class = "CLIPImageProcessor"
69
+ tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
70
+
71
+ def __init__(
72
+ self,
73
+ image_processor=None,
74
+ tokenizer=None,
75
+ ):
76
+ if image_processor is None:
77
+ raise ValueError("You need to specify an `image_processor`.")
78
+ if tokenizer is None:
79
+ raise ValueError("You need to specify a `tokenizer`.")
80
+ if not hasattr(image_processor, "image_seq_length"):
81
+ raise ValueError("Image processor is missing an `image_seq_length` attribute.")
82
+
83
+ self.image_seq_length = image_processor.image_seq_length
84
+
85
+ tokens_to_add = {
86
+ 'additional_special_tokens': \
87
+ tokenizer.additional_special_tokens + \
88
+ ['<od>', '</od>', '<ocr>', '</ocr>'] + \
89
+ [f'<loc_{x}>' for x in range(1000)] + \
90
+ ['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>']
91
+ }
92
+ tokenizer.add_special_tokens(tokens_to_add)
93
+
94
+ self.tasks_answer_post_processing_type = {
95
+ '<OCR>': 'pure_text',
96
+ '<OCR_WITH_REGION>': 'ocr',
97
+ '<CAPTION>': 'pure_text',
98
+ '<DETAILED_CAPTION>': 'pure_text',
99
+ '<MORE_DETAILED_CAPTION>': 'pure_text',
100
+ '<OD>': 'description_with_bboxes',
101
+ '<DENSE_REGION_CAPTION>': 'description_with_bboxes',
102
+ '<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding",
103
+ '<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons',
104
+ '<REGION_TO_SEGMENTATION>': 'polygons',
105
+ '<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons',
106
+ '<REGION_TO_CATEGORY>': 'pure_text',
107
+ '<REGION_TO_DESCRIPTION>': 'pure_text',
108
+ '<REGION_TO_OCR>': 'pure_text',
109
+ '<REGION_PROPOSAL>': 'bboxes'
110
+ }
111
+
112
+ self.task_prompts_without_inputs = {
113
+ '<OCR>': 'What is the text in the image?',
114
+ '<OCR_WITH_REGION>': 'What is the text in the image, with regions?',
115
+ '<CAPTION>': 'What does the image describe?',
116
+ '<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.',
117
+ '<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.',
118
+ '<OD>': 'Locate the objects with category name in the image.',
119
+ '<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.',
120
+ '<REGION_PROPOSAL>': 'Locate the region proposals in the image.'
121
+ }
122
+
123
+ self.task_prompts_with_input = {
124
+ '<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}",
125
+ '<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask',
126
+ '<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}',
127
+ '<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.',
128
+ '<REGION_TO_CATEGORY>': 'What is the region {input}?',
129
+ '<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?',
130
+ '<REGION_TO_OCR>': 'What text is in the region {input}?',
131
+ }
132
+
133
+ self.post_processor = Florence2PostProcesser(tokenizer=tokenizer)
134
+
135
+
136
+ super().__init__(image_processor, tokenizer)
137
+
138
+ def _construct_prompts(self, text):
139
+ # replace the task tokens with the task prompts if task token is in the text
140
+ prompts = []
141
+ for _text in text:
142
+ # 1. fixed task prompts without additional inputs
143
+ for task_token, task_prompt in self.task_prompts_without_inputs.items():
144
+ if task_token in _text:
145
+ assert _text == task_token, f"Task token {task_token} should be the only token in the text."
146
+ _text = task_prompt
147
+ break
148
+ # 2. task prompts with additional inputs
149
+ for task_token, task_prompt in self.task_prompts_with_input.items():
150
+ if task_token in _text:
151
+ _text = task_prompt.format(input=_text.replace(task_token, ''))
152
+ break
153
+ prompts.append(_text)
154
+ return prompts
155
+
156
+ def __call__(
157
+ self,
158
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
159
+ images: ImageInput = None,
160
+ tokenize_newline_separately: bool = True,
161
+ padding: Union[bool, str, PaddingStrategy] = False,
162
+ truncation: Union[bool, str, TruncationStrategy] = None,
163
+ max_length=None,
164
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
165
+ do_resize: bool = None,
166
+ do_normalize: bool = None,
167
+ image_mean: Optional[Union[float, List[float]]] = None,
168
+ image_std: Optional[Union[float, List[float]]] = None,
169
+ data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
170
+ input_data_format: Optional[
171
+ Union[str, "ChannelDimension"] # noqa: F821
172
+ ] = None,
173
+ resample: "PILImageResampling" = None, # noqa: F821
174
+ do_convert_rgb: bool = None,
175
+ do_thumbnail: bool = None,
176
+ do_align_long_axis: bool = None,
177
+ do_rescale: bool = None,
178
+ ) -> BatchFeature:
179
+ """
180
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
181
+ and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode
182
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
183
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
184
+ of the above two methods for more information.
185
+
186
+ Args:
187
+ text (`str`, `List[str]`, `List[List[str]]`):
188
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
189
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
190
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
191
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
192
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
193
+ tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
194
+ number of channels, H and W are image height and width.
195
+ tokenize_newline_separately (`bool`, defaults to `True`):
196
+ Adds a separately tokenized '\n' at the end of the prompt.
197
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
198
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
199
+ index) among:
200
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
201
+ sequence if provided).
202
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
203
+ acceptable input length for the model if that argument is not provided.
204
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
205
+ lengths).
206
+ max_length (`int`, *optional*):
207
+ Maximum length of the returned list and optionally padding length (see above).
208
+ truncation (`bool`, *optional*):
209
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
210
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
211
+ If set, will return tensors of a particular framework. Acceptable values are:
212
+
213
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
214
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
215
+ - `'np'`: Return NumPy `np.ndarray` objects.
216
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
217
+
218
+ Returns:
219
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
220
+
221
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
222
+ is provided, the `input_ids` will also contain the suffix input ids.
223
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
224
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
225
+ `None`).
226
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
227
+ - **labels** -- Labels compatible with training if `suffix` is not None
228
+ """
229
+
230
+ return_token_type_ids = False
231
+
232
+ if images is None:
233
+ raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.")
234
+ if text is None:
235
+ logger.warning_once(
236
+ "You are using Florence-2 without a text prompt."
237
+ )
238
+ text = ""
239
+
240
+ if isinstance(text, List) and isinstance(images, List):
241
+ if len(images) < len(text):
242
+ raise ValueError(
243
+ f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
244
+ )
245
+ if _is_str_or_image(text):
246
+ text = [text]
247
+ elif isinstance(text, list) and _is_str_or_image(text[0]):
248
+ pass
249
+
250
+ pixel_values = self.image_processor(
251
+ images,
252
+ do_resize=do_resize,
253
+ do_normalize=do_normalize,
254
+ return_tensors=return_tensors,
255
+ image_mean=image_mean,
256
+ image_std=image_std,
257
+ input_data_format=input_data_format,
258
+ data_format=data_format,
259
+ resample=resample,
260
+ do_convert_rgb=do_convert_rgb,
261
+ )["pixel_values"]
262
+
263
+ if max_length is not None:
264
+ max_length -= self.image_seq_length # max_length has to account for the image tokens
265
+
266
+ text = self._construct_prompts(text)
267
+
268
+ inputs = self.tokenizer(
269
+ text,
270
+ return_tensors=return_tensors,
271
+ padding=padding,
272
+ max_length=max_length,
273
+ truncation=truncation,
274
+ return_token_type_ids=return_token_type_ids,
275
+ )
276
+
277
+ return_data = {**inputs, "pixel_values": pixel_values}
278
+
279
+ if return_token_type_ids:
280
+ labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
281
+ return_data.update({"labels": labels})
282
+ return BatchFeature(data=return_data)
283
+
284
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
285
+ def batch_decode(self, *args, **kwargs):
286
+ """
287
+ This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
288
+ refer to the docstring of this method for more information.
289
+ """
290
+ return self.tokenizer.batch_decode(*args, **kwargs)
291
+
292
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
293
+ def decode(self, *args, **kwargs):
294
+ """
295
+ This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
296
+ the docstring of this method for more information.
297
+ """
298
+ return self.tokenizer.decode(*args, **kwargs)
299
+
300
+ @property
301
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
302
+ def model_input_names(self):
303
+ tokenizer_input_names = self.tokenizer.model_input_names
304
+ image_processor_input_names = self.image_processor.model_input_names
305
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
306
+
307
+ def post_process_generation(self, text, task, image_size):
308
+ """
309
+ Post-process the output of the model to each of the task outputs.
310
+
311
+ Args:
312
+ text (`str`): The text to post-process.
313
+ task (`str`): The task to post-process the text for.
314
+ image_size (`Tuple[int, int]`): The size of the image. height x width.
315
+ """
316
+
317
+ task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text')
318
+ task_answer = self.post_processor(
319
+ text=text,
320
+ image_size=image_size,
321
+ parse_tasks=task_answer_post_processing_type,
322
+ )[task_answer_post_processing_type]
323
+
324
+ if task_answer_post_processing_type == 'pure_text':
325
+ final_answer = task_answer
326
+ # remove the special tokens
327
+ final_answer = final_answer.replace('<s>', '').replace('</s>', '')
328
+ elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
329
+ od_instances = task_answer
330
+ bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
331
+ labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances]
332
+ final_answer = {'bboxes': bboxes_od, 'labels': labels_od}
333
+ elif task_answer_post_processing_type in ['ocr']:
334
+ bboxes = [_od_instance['quad_box'] for _od_instance in task_answer]
335
+ labels = [str(_od_instance['text']) for _od_instance in task_answer]
336
+ final_answer = {'quad_boxes': bboxes, 'labels': labels}
337
+ elif task_answer_post_processing_type in ['phrase_grounding']:
338
+ bboxes = []
339
+ labels = []
340
+ for _grounded_phrase in task_answer:
341
+ for _bbox in _grounded_phrase['bbox']:
342
+ bboxes.append(_bbox)
343
+ labels.append(_grounded_phrase['cat_name'])
344
+ final_answer = {'bboxes': bboxes, 'labels': labels}
345
+ elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']:
346
+ labels = []
347
+ polygons = []
348
+ for result in task_answer:
349
+ label = result['cat_name']
350
+ _polygons = result['polygons']
351
+ labels.append(label)
352
+ polygons.append(_polygons)
353
+ final_answer = {'polygons': polygons, 'labels': labels}
354
+ elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']:
355
+ bboxes = []
356
+ bboxes_labels = []
357
+ polygons = []
358
+ polygons_labels = []
359
+ for result in task_answer:
360
+ label = result['cat_name']
361
+ if 'polygons' in result:
362
+ _polygons = result['polygons']
363
+ polygons.append(_polygons)
364
+ polygons_labels.append(label)
365
+ else:
366
+ _bbox = result['bbox']
367
+ bboxes.append(_bbox)
368
+ bboxes_labels.append(label)
369
+ final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels}
370
+ else:
371
+ raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type))
372
+
373
+ final_answer = {
374
+ task: final_answer}
375
+ return final_answer
376
+
377
+ class BoxQuantizer(object):
378
+ def __init__(self, mode, bins):
379
+ self.mode = mode
380
+ self.bins = bins
381
+
382
+ def quantize(self, boxes: torch.Tensor, size):
383
+ bins_w, bins_h = self.bins # Quantization bins.
384
+ size_w, size_h = size # Original image size.
385
+ size_per_bin_w = size_w / bins_w
386
+ size_per_bin_h = size_h / bins_h
387
+ xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
388
+
389
+ if self.mode == 'floor':
390
+ quantized_xmin = (
391
+ xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
392
+ quantized_ymin = (
393
+ ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
394
+ quantized_xmax = (
395
+ xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
396
+ quantized_ymax = (
397
+ ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)
398
+
399
+ elif self.mode == 'round':
400
+ raise NotImplementedError()
401
+
402
+ else:
403
+ raise ValueError('Incorrect quantization type.')
404
+
405
+ quantized_boxes = torch.cat(
406
+ (quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
407
+ ).int()
408
+
409
+ return quantized_boxes
410
+
411
+ def dequantize(self, boxes: torch.Tensor, size):
412
+ bins_w, bins_h = self.bins # Quantization bins.
413
+ size_w, size_h = size # Original image size.
414
+ size_per_bin_w = size_w / bins_w
415
+ size_per_bin_h = size_h / bins_h
416
+ xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
417
+
418
+ if self.mode == 'floor':
419
+ # Add 0.5 to use the center position of the bin as the coordinate.
420
+ dequantized_xmin = (xmin + 0.5) * size_per_bin_w
421
+ dequantized_ymin = (ymin + 0.5) * size_per_bin_h
422
+ dequantized_xmax = (xmax + 0.5) * size_per_bin_w
423
+ dequantized_ymax = (ymax + 0.5) * size_per_bin_h
424
+
425
+ elif self.mode == 'round':
426
+ raise NotImplementedError()
427
+
428
+ else:
429
+ raise ValueError('Incorrect quantization type.')
430
+
431
+ dequantized_boxes = torch.cat(
432
+ (dequantized_xmin, dequantized_ymin,
433
+ dequantized_xmax, dequantized_ymax), dim=-1
434
+ )
435
+
436
+ return dequantized_boxes
437
+
438
+
439
+ class CoordinatesQuantizer(object):
440
+ """
441
+ Quantize coornidates (Nx2)
442
+ """
443
+
444
+ def __init__(self, mode, bins):
445
+ self.mode = mode
446
+ self.bins = bins
447
+
448
+ def quantize(self, coordinates: torch.Tensor, size):
449
+ bins_w, bins_h = self.bins # Quantization bins.
450
+ size_w, size_h = size # Original image size.
451
+ size_per_bin_w = size_w / bins_w
452
+ size_per_bin_h = size_h / bins_h
453
+ assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
454
+ x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
455
+
456
+ if self.mode == 'floor':
457
+ quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1)
458
+ quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1)
459
+
460
+ elif self.mode == 'round':
461
+ raise NotImplementedError()
462
+
463
+ else:
464
+ raise ValueError('Incorrect quantization type.')
465
+
466
+ quantized_coordinates = torch.cat(
467
+ (quantized_x, quantized_y), dim=-1
468
+ ).int()
469
+
470
+ return quantized_coordinates
471
+
472
+ def dequantize(self, coordinates: torch.Tensor, size):
473
+ bins_w, bins_h = self.bins # Quantization bins.
474
+ size_w, size_h = size # Original image size.
475
+ size_per_bin_w = size_w / bins_w
476
+ size_per_bin_h = size_h / bins_h
477
+ assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
478
+ x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
479
+
480
+ if self.mode == 'floor':
481
+ # Add 0.5 to use the center position of the bin as the coordinate.
482
+ dequantized_x = (x + 0.5) * size_per_bin_w
483
+ dequantized_y = (y + 0.5) * size_per_bin_h
484
+
485
+ elif self.mode == 'round':
486
+ raise NotImplementedError()
487
+
488
+ else:
489
+ raise ValueError('Incorrect quantization type.')
490
+
491
+ dequantized_coordinates = torch.cat(
492
+ (dequantized_x, dequantized_y), dim=-1
493
+ )
494
+
495
+ return dequantized_coordinates
496
+
497
+
498
+ class Florence2PostProcesser(object):
499
+ r"""
500
+ Florence-2 post process for converting text prediction to various tasks results.
501
+
502
+ Args:
503
+ config: A dict of configs.
504
+ tokenizer: A tokenizer for decoding text to spans.
505
+ sample config:
506
+ UNIFIED_POST_PROCESS:
507
+ # commom configs
508
+ NUM_BBOX_HEIGHT_BINS: 1000
509
+ NUM_BBOX_WIDTH_BINS: 1000
510
+ COORDINATES_HEIGHT_BINS: 1000
511
+ COORDINATES_WIDTH_BINS: 1000
512
+ # task specific configs, override the common configs
513
+ PRASE_TASKS:
514
+ - TASK_NAME: 'video_dense_caption'
515
+ PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)'
516
+ SCORE_MODE: 'avg_cat_name_scores'
517
+ NUM_BINS: 100
518
+ - TASK_NAME: 'od'
519
+ PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)'
520
+ SCORE_MODE: 'avg_cat_name_scores'
521
+
522
+ Returns:
523
+ parsed_dict (dict): A dict of parsed results.
524
+ """
525
+ def __init__(
526
+ self,
527
+ tokenizer=None
528
+ ):
529
+ parse_tasks = []
530
+ parse_task_configs = {}
531
+ config = self._create_default_config()
532
+ for task in config['PARSE_TASKS']:
533
+ parse_tasks.append(task['TASK_NAME'])
534
+ parse_task_configs[task['TASK_NAME']] = task
535
+
536
+ self.config = config
537
+ self.parse_tasks = parse_tasks
538
+ self.parse_tasks_configs = parse_task_configs
539
+
540
+ self.tokenizer = tokenizer
541
+ if self.tokenizer is not None:
542
+ self.all_special_tokens = set(self.tokenizer.all_special_tokens)
543
+
544
+ self.init_quantizers()
545
+ self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding()
546
+
547
+ def _create_black_list_of_phrase_grounding(self):
548
+ black_list = {}
549
+
550
+ if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']:
551
+ black_list = set(
552
+ ['it', 'I', 'me', 'mine',
553
+ 'you', 'your', 'yours',
554
+ 'he', 'him', 'his',
555
+ 'she', 'her', 'hers',
556
+ 'they', 'them', 'their', 'theirs',
557
+ 'one', 'oneself',
558
+ 'we', 'us', 'our', 'ours',
559
+ 'you', 'your', 'yours',
560
+ 'they', 'them', 'their', 'theirs',
561
+ 'mine', 'yours', 'his', 'hers', 'its',
562
+ 'ours', 'yours', 'theirs',
563
+ 'myself', 'yourself', 'himself', 'herself', 'itself',
564
+ 'ourselves', 'yourselves', 'themselves',
565
+ 'this', 'that',
566
+ 'these', 'those',
567
+ 'who', 'whom', 'whose', 'which', 'what',
568
+ 'who', 'whom', 'whose', 'which', 'that',
569
+ 'all', 'another', 'any', 'anybody', 'anyone', 'anything',
570
+ 'each', 'everybody', 'everyone', 'everything',
571
+ 'few', 'many', 'nobody', 'none', 'one', 'several',
572
+ 'some', 'somebody', 'someone', 'something',
573
+ 'each other', 'one another',
574
+ 'myself', 'yourself', 'himself', 'herself', 'itself',
575
+ 'ourselves', 'yourselves', 'themselves',
576
+ 'the image', 'image', 'images', 'the', 'a', 'an', 'a group',
577
+ 'other objects', 'lots', 'a set',
578
+ ]
579
+ )
580
+
581
+ return black_list
582
+
583
+ def _create_default_config(self):
584
+ config = {
585
+ 'NUM_BBOX_HEIGHT_BINS': 1000,
586
+ 'NUM_BBOX_WIDTH_BINS': 1000,
587
+ 'BOX_QUANTIZATION_MODE': 'floor',
588
+ 'COORDINATES_HEIGHT_BINS': 1000,
589
+ 'COORDINATES_WIDTH_BINS': 1000,
590
+ 'COORDINATES_QUANTIZATION_MODE': 'floor',
591
+ 'PARSE_TASKS': [
592
+ {
593
+ 'TASK_NAME': 'od',
594
+ 'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>'
595
+ },
596
+ {
597
+ 'TASK_NAME': 'ocr',
598
+ 'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>',
599
+ 'AREA_THRESHOLD': 0.00
600
+ },
601
+ {
602
+ 'TASK_NAME': 'phrase_grounding',
603
+ 'FILTER_BY_BLACK_LIST': True
604
+ },
605
+ {
606
+ 'TASK_NAME': 'pure_text',
607
+ },
608
+ {
609
+ 'TASK_NAME': 'description_with_bboxes',
610
+ },
611
+ {
612
+ 'TASK_NAME': 'description_with_polygons',
613
+ },
614
+ {
615
+ 'TASK_NAME': 'polygons',
616
+ },
617
+ {
618
+ 'TASK_NAME': 'bboxes',
619
+ },
620
+ {
621
+ 'TASK_NAME': 'description_with_bboxes_or_polygons',
622
+ }
623
+ ]
624
+ }
625
+
626
+ return config
627
+
628
+ def init_quantizers(self):
629
+ # we have box_quantizer (od, grounding) and coordinates_quantizer (ocr, referring_segmentation)
630
+ num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
631
+ num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
632
+ box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor')
633
+ self.box_quantizer = BoxQuantizer(
634
+ box_quantization_mode,
635
+ (num_bbox_width_bins, num_bbox_height_bins),
636
+ )
637
+
638
+ num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
639
+ num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
640
+ box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor')
641
+ self.coordinates_quantizer = CoordinatesQuantizer(
642
+ box_quantization_mode,
643
+ (num_bbox_width_bins, num_bbox_height_bins),
644
+ )
645
+
646
+ def decode_with_spans(self, tokenizer, token_ids):
647
+ filtered_tokens = tokenizer.convert_ids_to_tokens(
648
+ token_ids, skip_special_tokens=False)
649
+ assert len(filtered_tokens) == len(token_ids)
650
+
651
+ # To avoid mixing byte-level and unicode for byte-level BPT
652
+ # we need to build string separately for added tokens and byte-level tokens
653
+ # cf. https://github.com/huggingface/transformers/issues/1133
654
+ sub_texts = []
655
+ for token in filtered_tokens:
656
+ if token in self.all_special_tokens:
657
+ sub_texts.append(token)
658
+ else:
659
+ if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)):
660
+ sub_text = tokenizer.convert_tokens_to_string([token])
661
+ elif isinstance(tokenizer, (T5Tokenizer, T5TokenizerFast)):
662
+ # Ref: https://github.com/google/sentencepiece#whitespace-is-treated-as-a-basic-symbol
663
+ # Note: Do not strip sub_text as it may have functional whitespace
664
+ sub_text = token.replace('▁', ' ')
665
+ else:
666
+ raise ValueError(f'type {type(tokenizer)} not supported')
667
+ sub_texts.append(sub_text)
668
+
669
+ text = ''
670
+ spans = []
671
+ for sub_text in sub_texts:
672
+ span = (len(text), len(text) + len(sub_text)) # [start index, end index).
673
+ text += sub_text
674
+ spans.append(span)
675
+
676
+ # Text format:
677
+ # 1. T5Tokenizer/T5TokenizerFast:
678
+ # "<loc_1><loc_2><loc_3><loc_4> transplanting dog<loc_1><loc_2><loc_3><loc_4> cat</s>"
679
+ # Equivalent to t5_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
680
+ # 2. BartTokenizer (need to double check):
681
+ # "<s><loc_1><loc_2><loc_3><loc_4>transplanting dog<loc_1><loc_2><loc_3><loc_4>cat</s>"
682
+ # Equivalent to bart_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
683
+ return text, spans
684
+
685
+ def parse_od_from_text_and_spans(
686
+ self,
687
+ text,
688
+ pattern,
689
+ image_size,
690
+ phrase_centric=False
691
+ ):
692
+ parsed = list(re.finditer(pattern, text))
693
+
694
+ instances = []
695
+ for i in range(len(parsed)):
696
+ # Prepare instance.
697
+ instance = {}
698
+
699
+ if phrase_centric:
700
+ bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)]
701
+ else:
702
+ bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)]
703
+ instance['bbox'] = self.box_quantizer.dequantize(
704
+ boxes=torch.tensor(bbox_bins),
705
+ size=image_size
706
+ ).tolist()
707
+
708
+ if phrase_centric:
709
+ instance['cat_name'] = parsed[i].group(1).lower().strip()
710
+ else:
711
+ instance['cat_name'] = parsed[i].group(5).lower().strip()
712
+ instances.append(instance)
713
+
714
+ return instances
715
+
716
+ def parse_ocr_from_text_and_spans(self,
717
+ text,
718
+ pattern,
719
+ image_size,
720
+ area_threshold=-1.0,
721
+ ):
722
+ bboxes = []
723
+ labels = []
724
+ text = text.replace('<s>', '')
725
+ # ocr with regions
726
+ parsed = re.findall(pattern, text)
727
+ instances = []
728
+ image_width, image_height = image_size
729
+
730
+ for ocr_line in parsed:
731
+ ocr_content = ocr_line[0]
732
+ quad_box = ocr_line[1:]
733
+ quad_box = [int(i) for i in quad_box]
734
+ quad_box = self.coordinates_quantizer.dequantize(
735
+ torch.tensor(np.array(quad_box).reshape(-1, 2)),
736
+ size=image_size
737
+ ).reshape(-1).tolist()
738
+
739
+ if area_threshold > 0:
740
+ x_coords = [i for i in quad_box[0::2]]
741
+ y_coords = [i for i in quad_box[1::2]]
742
+
743
+ # apply the Shoelace formula
744
+ area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1)))
745
+
746
+ if area < (image_width * image_height) * area_threshold:
747
+ continue
748
+
749
+ bboxes.append(quad_box)
750
+ labels.append(ocr_content)
751
+ instances.append({
752
+ 'quad_box': quad_box,
753
+ 'text': ocr_content,
754
+ })
755
+ return instances
756
+
757
+ def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size):
758
+ # ignore <s> </s> and <pad>
759
+ cur_span = 0
760
+ if text.startswith('<s>'):
761
+ cur_span += 3
762
+
763
+ text = text.replace('<s>', '')
764
+ text = text.replace('</s>', '')
765
+ text = text.replace('<pad>', '')
766
+
767
+ pattern = r"([^<]+(?:<loc_\d+>){4,})"
768
+ phrases = re.findall(pattern, text)
769
+
770
+ # pattern should be text pattern and od pattern
771
+ pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
772
+ box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
773
+
774
+ instances = []
775
+ for pharse_text in phrases:
776
+ phrase_text_strip = pharse_text.replace('<ground>', '', 1)
777
+ phrase_text_strip = pharse_text.replace('<obj>', '', 1)
778
+
779
+ if phrase_text_strip == '':
780
+ cur_span += len(pharse_text)
781
+ continue
782
+
783
+ # Prepare instance.
784
+ instance = {}
785
+
786
+ # parse phrase, get string
787
+ phrase = re.search(pattern, phrase_text_strip)
788
+ if phrase is None:
789
+ cur_span += len(pharse_text)
790
+ continue
791
+
792
+ # parse bboxes by box_pattern
793
+ bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
794
+ if len(bboxes_parsed) == 0:
795
+ cur_span += len(pharse_text)
796
+ continue
797
+
798
+ phrase = phrase.group()
799
+ # remove leading and trailing spaces
800
+ phrase = phrase.strip()
801
+
802
+ if phrase in self.black_list_of_phrase_grounding:
803
+ cur_span += len(pharse_text)
804
+ continue
805
+
806
+ # a list of list
807
+ bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
808
+ instance['bbox'] = self.box_quantizer.dequantize(
809
+ boxes=torch.tensor(bbox_bins),
810
+ size=image_size
811
+ ).tolist()
812
+
813
+ # exclude non-ascii characters
814
+ phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
815
+ instance['cat_name'] = phrase
816
+
817
+ instances.append(instance)
818
+
819
+ return instances
820
+
821
+ def parse_description_with_bboxes_from_text_and_spans(self, text, pattern, image_size, allow_empty_phrase=False):
822
+ # temporary parse solution, split by '.'
823
+ # ignore <s> </s> and <pad>
824
+
825
+ text = text.replace('<s>', '')
826
+ text = text.replace('</s>', '')
827
+ text = text.replace('<pad>', '')
828
+
829
+ if allow_empty_phrase:
830
+ pattern = rf"(?:(?:<loc_\d+>){{4,}})"
831
+ else:
832
+ pattern = r"([^<]+(?:<loc_\d+>){4,})"
833
+ phrases = re.findall(pattern, text)
834
+
835
+ # pattern should be text pattern and od pattern
836
+ pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
837
+ box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
838
+
839
+ instances = []
840
+ for pharse_text in phrases:
841
+ phrase_text_strip = pharse_text.replace('<ground>', '', 1)
842
+ phrase_text_strip = pharse_text.replace('<obj>', '', 1)
843
+
844
+ if phrase_text_strip == '' and not allow_empty_phrase:
845
+ continue
846
+
847
+ # parse phrase, get string
848
+ phrase = re.search(pattern, phrase_text_strip)
849
+ if phrase is None:
850
+ continue
851
+
852
+ phrase = phrase.group()
853
+ # remove leading and trailing spaces
854
+ phrase = phrase.strip()
855
+
856
+ # parse bboxes by box_pattern
857
+ bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
858
+ if len(bboxes_parsed) == 0:
859
+ continue
860
+
861
+ # a list of list
862
+ bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
863
+
864
+ bboxes = self.box_quantizer.dequantize(
865
+ boxes=torch.tensor(bbox_bins),
866
+ size=image_size
867
+ ).tolist()
868
+
869
+ phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
870
+ for _bboxes in bboxes:
871
+ # Prepare instance.
872
+ instance = {}
873
+ instance['bbox'] = _bboxes
874
+ # exclude non-ascii characters
875
+ instance['cat_name'] = phrase
876
+ instances.append(instance)
877
+
878
+ return instances
879
+
880
+ def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size,
881
+ allow_empty_phrase=False,
882
+ polygon_sep_token='<sep>',
883
+ polygon_start_token='<poly>',
884
+ polygon_end_token='</poly>',
885
+ with_box_at_start=False,
886
+ ):
887
+
888
+ # ref_seg format: '<expression><x1><y1><x2><y2><><><sep><><><><>'
889
+ # ignore <s> </s> and <pad>
890
+
891
+ text = text.replace('<s>', '')
892
+ text = text.replace('</s>', '')
893
+ text = text.replace('<pad>', '')
894
+
895
+ if allow_empty_phrase:
896
+ pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
897
+ else:
898
+ # [^<]+: This part matches one or more characters that are not the < symbol.
899
+ # The ^ inside the square brackets [] is a negation, meaning it matches anything except <.
900
+ #
901
+ pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
902
+ phrases = re.findall(pattern, text)
903
+
904
+ phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)'
905
+ box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)'
906
+
907
+ # one polygons instance is separated by polygon_start_token and polygon_end_token
908
+ polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}'
909
+
910
+ instances = []
911
+ for phrase_text in phrases:
912
+
913
+ # exclude loc_\d+>
914
+ # need to get span if want to include category score
915
+ phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1)
916
+
917
+ # phrase = phrase.replace('<poly>', '')
918
+ # phrase = phrase.replace('poly>', '')
919
+
920
+ if phrase_text_strip == '' and not allow_empty_phrase:
921
+ continue
922
+
923
+
924
+ # parse phrase, get string
925
+ phrase = re.search(phrase_string_pattern, phrase_text_strip)
926
+ if phrase is None:
927
+ continue
928
+ phrase = phrase.group()
929
+ # remove leading and trailing spaces
930
+ phrase = phrase.strip()
931
+
932
+ # parse bboxes by box_pattern
933
+
934
+ # split by polygon_start_token and polygon_end_token first using polygons_instance_pattern
935
+ if polygon_start_token in phrase_text and polygon_end_token in phrase_text:
936
+ polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text))
937
+ else:
938
+ polygons_instances_parsed = [phrase_text]
939
+
940
+ for _polygons_instances_parsed in polygons_instances_parsed:
941
+ # Prepare instance.
942
+ instance = {}
943
+
944
+ # polygons_parsed= list(re.finditer(box_pattern, phrase_text))
945
+ if isinstance(_polygons_instances_parsed, str):
946
+ polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed))
947
+ else:
948
+ polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1)))
949
+ if len(polygons_parsed) == 0:
950
+ continue
951
+
952
+ # a list of list (polygon)
953
+ bbox = []
954
+ polygons = []
955
+ for _polygon_parsed in polygons_parsed:
956
+ # group 1: whole <loc_\d+>...</loc_\d+>
957
+ _polygon = _polygon_parsed.group(1)
958
+ # parse into list of int
959
+ _polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)]
960
+ if with_box_at_start and len(bbox) == 0:
961
+ if len(_polygon) > 4:
962
+ # no valid bbox prediction
963
+ bbox = _polygon[:4]
964
+ _polygon = _polygon[4:]
965
+ else:
966
+ bbox = [0, 0, 0, 0]
967
+ # abandon last element if is not paired
968
+ if len(_polygon) % 2 == 1:
969
+ _polygon = _polygon[:-1]
970
+
971
+ # reshape into (n, 2)
972
+ _polygon = self.coordinates_quantizer.dequantize(
973
+ torch.tensor(np.array(_polygon).reshape(-1, 2)),
974
+ size=image_size
975
+ ).reshape(-1).tolist()
976
+ # reshape back
977
+ polygons.append(_polygon)
978
+
979
+ instance['cat_name'] = phrase
980
+ instance['polygons'] = polygons
981
+ if len(bbox) != 0:
982
+ instance['bbox'] = self.box_quantizer.dequantize(
983
+ boxes=torch.tensor([bbox]),
984
+ size=image_size
985
+ ).tolist()[0]
986
+
987
+ instances.append(instance)
988
+
989
+ return instances
990
+
991
+ def __call__(
992
+ self,
993
+ text=None,
994
+ image_size=None,
995
+ parse_tasks=None,
996
+ ):
997
+ """
998
+ Args:
999
+ text: model outputs
1000
+ image_size: (width, height)
1001
+ parse_tasks: a list of tasks to parse, if None, parse all tasks.
1002
+
1003
+ """
1004
+ if parse_tasks is not None:
1005
+ if isinstance(parse_tasks, str):
1006
+ parse_tasks = [parse_tasks]
1007
+ for _parse_task in parse_tasks:
1008
+ assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported'
1009
+
1010
+ # sequence or text should be provided
1011
+ assert text is not None, 'text should be provided'
1012
+
1013
+ parsed_dict = {
1014
+ 'text': text
1015
+ }
1016
+
1017
+ for task in self.parse_tasks:
1018
+ if parse_tasks is not None and task not in parse_tasks:
1019
+ continue
1020
+
1021
+ pattern = self.parse_tasks_configs[task].get('PATTERN', None)
1022
+
1023
+ if task == 'ocr':
1024
+ instances = self.parse_ocr_from_text_and_spans(
1025
+ text,
1026
+ pattern=pattern,
1027
+ image_size=image_size,
1028
+ area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0),
1029
+ )
1030
+ parsed_dict['ocr'] = instances
1031
+ elif task == 'phrase_grounding':
1032
+ instances = self.parse_phrase_grounding_from_text_and_spans(
1033
+ text,
1034
+ pattern=pattern,
1035
+ image_size=image_size,
1036
+ )
1037
+ parsed_dict['phrase_grounding'] = instances
1038
+ elif task == 'pure_text':
1039
+ parsed_dict['pure_text'] = text
1040
+ elif task == 'description_with_bboxes':
1041
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1042
+ text,
1043
+ pattern=pattern,
1044
+ image_size=image_size,
1045
+ )
1046
+ parsed_dict['description_with_bboxes'] = instances
1047
+ elif task == 'description_with_polygons':
1048
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1049
+ text,
1050
+ pattern=pattern,
1051
+ image_size=image_size,
1052
+ )
1053
+ parsed_dict['description_with_polygons'] = instances
1054
+ elif task == 'polygons':
1055
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1056
+ text,
1057
+ pattern=pattern,
1058
+ image_size=image_size,
1059
+ allow_empty_phrase=True,
1060
+ )
1061
+ parsed_dict['polygons'] = instances
1062
+ elif task == 'bboxes':
1063
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1064
+ text,
1065
+ pattern=pattern,
1066
+ image_size=image_size,
1067
+ allow_empty_phrase=True,
1068
+ )
1069
+ parsed_dict['bboxes'] = instances
1070
+ elif task == 'description_with_bboxes_or_polygons':
1071
+ if '<poly>' in text:
1072
+ # only support either polygons or bboxes, not both at the same time
1073
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1074
+ text,
1075
+ pattern=pattern,
1076
+ image_size=image_size,
1077
+ )
1078
+ else:
1079
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1080
+ text,
1081
+ pattern=pattern,
1082
+ image_size=image_size,
1083
+ )
1084
+ parsed_dict['description_with_bboxes_or_polygons'] = instances
1085
+ else:
1086
+ raise ValueError("task {} is not supported".format(task))
1087
+
1088
+ return parsed_dict
LLM/Florence-2-large-PromptGen-v2.0/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoints/put_checkpoints_here ADDED
File without changes
ckpts/wget-log ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
0
  f8b990b 0%[ ] 0 --.-KB/s
 
 
 
 
1
+ --2024-11-26 12:45:57-- https://www.liblib.art/modelinfo/f8b990b20cb943e3aa0e96f34099d794?from=feed
2
+ Resolving www.liblib.art (www.liblib.art)... 47.93.126.33
3
+ Connecting to www.liblib.art (www.liblib.art)|47.93.126.33|:443... connected.
4
+ HTTP request sent, awaiting response... 200 OK
5
+ Length: 48128 (47K) [text/html]
6
+ Saving to: ‘f8b990b20cb943e3aa0e96f34099d794?from=feed’
7
+
8
+
9
  f8b990b 0%[ ] 0 --.-KB/s
10
+
11
+ 2024-11-26 12:45:59 (310 KB/s) - ‘f8b990b20cb943e3aa0e96f34099d794?from=feed’ saved [48128/48128]
12
+
clip/put_clip_or_text_encoder_models_here ADDED
File without changes
clip/siglip-so400m-patch14-384/README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision
5
+ widget:
6
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
7
+ candidate_labels: playing music, playing sports
8
+ example_title: Cat & Dog
9
+ ---
10
+
11
+ # SigLIP (shape-optimized model)
12
+
13
+ SigLIP model pre-trained on WebLi at resolution 384x384. It was introduced in the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Zhai et al. and first released in [this repository](https://github.com/google-research/big_vision).
14
+
15
+ This model has the SoViT-400m architecture, which is the shape-optimized version as presented in [Getting ViT in Shape: Scaling Laws for Compute-Optimal Model Design](https://arxiv.org/abs/2305.13035) by Alabdulmohsin et al.
16
+
17
+ Disclaimer: The team releasing SigLIP did not write a model card for this model so this model card has been written by the Hugging Face team.
18
+
19
+ ## Model description
20
+
21
+ SigLIP is [CLIP](https://huggingface.co/docs/transformers/model_doc/clip), a multimodal model, with a better loss function. The sigmoid loss operates solely on image-text pairs and does not require a global view of the pairwise similarities for normalization. This allows further scaling up the batch size, while also performing better at smaller batch sizes.
22
+
23
+ A TLDR of SigLIP by one of the authors can be found [here](https://twitter.com/giffmana/status/1692641733459267713).
24
+
25
+ ## Intended uses & limitations
26
+
27
+ You can use the raw model for tasks like zero-shot image classification and image-text retrieval. See the [model hub](https://huggingface.co/models?search=google/siglip) to look for
28
+ other versions on a task that interests you.
29
+
30
+ ### How to use
31
+
32
+ Here is how to use this model to perform zero-shot image classification:
33
+
34
+ ```python
35
+ from PIL import Image
36
+ import requests
37
+ from transformers import AutoProcessor, AutoModel
38
+ import torch
39
+
40
+ model = AutoModel.from_pretrained("google/siglip-so400m-patch14-384")
41
+ processor = AutoProcessor.from_pretrained("google/siglip-so400m-patch14-384")
42
+
43
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
44
+ image = Image.open(requests.get(url, stream=True).raw)
45
+
46
+ texts = ["a photo of 2 cats", "a photo of 2 dogs"]
47
+ inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
48
+
49
+ with torch.no_grad():
50
+ outputs = model(**inputs)
51
+
52
+ logits_per_image = outputs.logits_per_image
53
+ probs = torch.sigmoid(logits_per_image) # these are the probabilities
54
+ print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
55
+ ```
56
+
57
+ Alternatively, one can leverage the pipeline API which abstracts away the complexity for the user:
58
+
59
+ ```python
60
+ from transformers import pipeline
61
+ from PIL import Image
62
+ import requests
63
+
64
+ # load pipe
65
+ image_classifier = pipeline(task="zero-shot-image-classification", model="google/siglip-so400m-patch14-384")
66
+
67
+ # load image
68
+ url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
69
+ image = Image.open(requests.get(url, stream=True).raw)
70
+
71
+ # inference
72
+ outputs = image_classifier(image, candidate_labels=["2 cats", "a plane", "a remote"])
73
+ outputs = [{"score": round(output["score"], 4), "label": output["label"] } for output in outputs]
74
+ print(outputs)
75
+ ```
76
+ For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/siglip.html#).
77
+
78
+ ## Training procedure
79
+
80
+ ### Training data
81
+
82
+ SigLIP is pre-trained on the WebLI dataset [(Chen et al., 2023)](https://arxiv.org/abs/2209.06794).
83
+
84
+ ### Preprocessing
85
+
86
+ Images are resized/rescaled to the same resolution (384x384) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).
87
+
88
+ Texts are tokenized and padded to the same length (64 tokens).
89
+
90
+ ### Compute
91
+
92
+ The model was trained on 16 TPU-v4 chips for three days.
93
+
94
+ ## Evaluation results
95
+
96
+ Evaluation of SigLIP compared to CLIP is shown below (taken from the paper).
97
+
98
+ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/siglip_table.jpeg"
99
+ alt="drawing" width="600"/>
100
+
101
+ ### BibTeX entry and citation info
102
+
103
+ ```bibtex
104
+ @misc{zhai2023sigmoid,
105
+ title={Sigmoid Loss for Language Image Pre-Training},
106
+ author={Xiaohua Zhai and Basil Mustafa and Alexander Kolesnikov and Lucas Beyer},
107
+ year={2023},
108
+ eprint={2303.15343},
109
+ archivePrefix={arXiv},
110
+ primaryClass={cs.CV}
111
+ }
112
+ ```
clip/siglip-so400m-patch14-384/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SiglipModel"
4
+ ],
5
+ "initializer_factor": 1.0,
6
+ "model_type": "siglip",
7
+ "text_config": {
8
+ "hidden_size": 1152,
9
+ "intermediate_size": 4304,
10
+ "model_type": "siglip_text_model",
11
+ "num_attention_heads": 16,
12
+ "num_hidden_layers": 27
13
+ },
14
+ "torch_dtype": "float32",
15
+ "transformers_version": "4.37.0.dev0",
16
+ "vision_config": {
17
+ "hidden_size": 1152,
18
+ "image_size": 384,
19
+ "intermediate_size": 4304,
20
+ "model_type": "siglip_vision_model",
21
+ "num_attention_heads": 16,
22
+ "num_hidden_layers": 27,
23
+ "patch_size": 14
24
+ }
25
+ }
clip/siglip-so400m-patch14-384/preprocessor_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "image_mean": [
6
+ 0.5,
7
+ 0.5,
8
+ 0.5
9
+ ],
10
+ "image_processor_type": "SiglipImageProcessor",
11
+ "image_std": [
12
+ 0.5,
13
+ 0.5,
14
+ 0.5
15
+ ],
16
+ "processor_class": "SiglipProcessor",
17
+ "resample": 3,
18
+ "rescale_factor": 0.00392156862745098,
19
+ "size": {
20
+ "height": 384,
21
+ "width": 384
22
+ }
23
+ }
clip/siglip-so400m-patch14-384/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "</s>",
4
+ "lstrip": true,
5
+ "normalized": false,
6
+ "rstrip": true,
7
+ "single_word": false
8
+ },
9
+ "pad_token": {
10
+ "content": "</s>",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": true,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": true,
19
+ "normalized": false,
20
+ "rstrip": true,
21
+ "single_word": false
22
+ }
23
+ }
clip/siglip-so400m-patch14-384/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
clip/siglip-so400m-patch14-384/tokenizer_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "1": {
4
+ "content": "</s>",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "2": {
12
+ "content": "<unk>",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": true
18
+ }
19
+ },
20
+ "additional_special_tokens": [],
21
+ "clean_up_tokenization_spaces": true,
22
+ "do_lower_case": true,
23
+ "eos_token": "</s>",
24
+ "model_input_names": [
25
+ "input_ids"
26
+ ],
27
+ "model_max_length": 64,
28
+ "pad_token": "</s>",
29
+ "processor_class": "SiglipProcessor",
30
+ "sp_model_kwargs": {},
31
+ "tokenizer_class": "SiglipTokenizer",
32
+ "unk_token": "<unk>"
33
+ }
clip_vision/put_clip_vision_models_here ADDED
File without changes
configs/anything_v3.yaml ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 10000 ]
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 4
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
71
+ params:
72
+ layer: "hidden"
73
+ layer_idx: -2
configs/v1-inference.yaml ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 10000 ]
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 4
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
configs/v1-inference_clip_skip_2.yaml ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 10000 ]
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 4
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
71
+ params:
72
+ layer: "hidden"
73
+ layer_idx: -2
configs/v1-inference_clip_skip_2_fp16.yaml ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 10000 ]
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ use_fp16: True
33
+ image_size: 32 # unused
34
+ in_channels: 4
35
+ out_channels: 4
36
+ model_channels: 320
37
+ attention_resolutions: [ 4, 2, 1 ]
38
+ num_res_blocks: 2
39
+ channel_mult: [ 1, 2, 4, 4 ]
40
+ num_heads: 8
41
+ use_spatial_transformer: True
42
+ transformer_depth: 1
43
+ context_dim: 768
44
+ use_checkpoint: True
45
+ legacy: False
46
+
47
+ first_stage_config:
48
+ target: ldm.models.autoencoder.AutoencoderKL
49
+ params:
50
+ embed_dim: 4
51
+ monitor: val/rec_loss
52
+ ddconfig:
53
+ double_z: true
54
+ z_channels: 4
55
+ resolution: 256
56
+ in_channels: 3
57
+ out_ch: 3
58
+ ch: 128
59
+ ch_mult:
60
+ - 1
61
+ - 2
62
+ - 4
63
+ - 4
64
+ num_res_blocks: 2
65
+ attn_resolutions: []
66
+ dropout: 0.0
67
+ lossconfig:
68
+ target: torch.nn.Identity
69
+
70
+ cond_stage_config:
71
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
72
+ params:
73
+ layer: "hidden"
74
+ layer_idx: -2
configs/v1-inference_fp16.yaml ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-04
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 10000 ]
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ use_fp16: True
33
+ image_size: 32 # unused
34
+ in_channels: 4
35
+ out_channels: 4
36
+ model_channels: 320
37
+ attention_resolutions: [ 4, 2, 1 ]
38
+ num_res_blocks: 2
39
+ channel_mult: [ 1, 2, 4, 4 ]
40
+ num_heads: 8
41
+ use_spatial_transformer: True
42
+ transformer_depth: 1
43
+ context_dim: 768
44
+ use_checkpoint: True
45
+ legacy: False
46
+
47
+ first_stage_config:
48
+ target: ldm.models.autoencoder.AutoencoderKL
49
+ params:
50
+ embed_dim: 4
51
+ monitor: val/rec_loss
52
+ ddconfig:
53
+ double_z: true
54
+ z_channels: 4
55
+ resolution: 256
56
+ in_channels: 3
57
+ out_ch: 3
58
+ ch: 128
59
+ ch_mult:
60
+ - 1
61
+ - 2
62
+ - 4
63
+ - 4
64
+ num_res_blocks: 2
65
+ attn_resolutions: []
66
+ dropout: 0.0
67
+ lossconfig:
68
+ target: torch.nn.Identity
69
+
70
+ cond_stage_config:
71
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
configs/v1-inpainting-inference.yaml ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 7.5e-05
3
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false # Note: different from the one we trained before
15
+ conditioning_key: hybrid # important
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ finetune_keys: null
19
+
20
+ scheduler_config: # 10000 warmup steps
21
+ target: ldm.lr_scheduler.LambdaLinearScheduler
22
+ params:
23
+ warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
24
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
25
+ f_start: [ 1.e-6 ]
26
+ f_max: [ 1. ]
27
+ f_min: [ 1. ]
28
+
29
+ unet_config:
30
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
31
+ params:
32
+ image_size: 32 # unused
33
+ in_channels: 9 # 4 data + 4 downscaled image + 1 mask
34
+ out_channels: 4
35
+ model_channels: 320
36
+ attention_resolutions: [ 4, 2, 1 ]
37
+ num_res_blocks: 2
38
+ channel_mult: [ 1, 2, 4, 4 ]
39
+ num_heads: 8
40
+ use_spatial_transformer: True
41
+ transformer_depth: 1
42
+ context_dim: 768
43
+ use_checkpoint: True
44
+ legacy: False
45
+
46
+ first_stage_config:
47
+ target: ldm.models.autoencoder.AutoencoderKL
48
+ params:
49
+ embed_dim: 4
50
+ monitor: val/rec_loss
51
+ ddconfig:
52
+ double_z: true
53
+ z_channels: 4
54
+ resolution: 256
55
+ in_channels: 3
56
+ out_ch: 3
57
+ ch: 128
58
+ ch_mult:
59
+ - 1
60
+ - 2
61
+ - 4
62
+ - 4
63
+ num_res_blocks: 2
64
+ attn_resolutions: []
65
+ dropout: 0.0
66
+ lossconfig:
67
+ target: torch.nn.Identity
68
+
69
+ cond_stage_config:
70
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
71
+
configs/v2-inference-v.yaml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-4
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.0120
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: "jpg"
12
+ cond_stage_key: "txt"
13
+ image_size: 64
14
+ channels: 4
15
+ cond_stage_trainable: false
16
+ conditioning_key: crossattn
17
+ monitor: val/loss_simple_ema
18
+ scale_factor: 0.18215
19
+ use_ema: False # we set this to false because this is an inference only config
20
+
21
+ unet_config:
22
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
23
+ params:
24
+ use_checkpoint: True
25
+ use_fp16: True
26
+ image_size: 32 # unused
27
+ in_channels: 4
28
+ out_channels: 4
29
+ model_channels: 320
30
+ attention_resolutions: [ 4, 2, 1 ]
31
+ num_res_blocks: 2
32
+ channel_mult: [ 1, 2, 4, 4 ]
33
+ num_head_channels: 64 # need to fix for flash-attn
34
+ use_spatial_transformer: True
35
+ use_linear_in_transformer: True
36
+ transformer_depth: 1
37
+ context_dim: 1024
38
+ legacy: False
39
+
40
+ first_stage_config:
41
+ target: ldm.models.autoencoder.AutoencoderKL
42
+ params:
43
+ embed_dim: 4
44
+ monitor: val/rec_loss
45
+ ddconfig:
46
+ #attn_type: "vanilla-xformers"
47
+ double_z: true
48
+ z_channels: 4
49
+ resolution: 256
50
+ in_channels: 3
51
+ out_ch: 3
52
+ ch: 128
53
+ ch_mult:
54
+ - 1
55
+ - 2
56
+ - 4
57
+ - 4
58
+ num_res_blocks: 2
59
+ attn_resolutions: []
60
+ dropout: 0.0
61
+ lossconfig:
62
+ target: torch.nn.Identity
63
+
64
+ cond_stage_config:
65
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
66
+ params:
67
+ freeze: True
68
+ layer: "penultimate"
configs/v2-inference-v_fp32.yaml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-4
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ parameterization: "v"
6
+ linear_start: 0.00085
7
+ linear_end: 0.0120
8
+ num_timesteps_cond: 1
9
+ log_every_t: 200
10
+ timesteps: 1000
11
+ first_stage_key: "jpg"
12
+ cond_stage_key: "txt"
13
+ image_size: 64
14
+ channels: 4
15
+ cond_stage_trainable: false
16
+ conditioning_key: crossattn
17
+ monitor: val/loss_simple_ema
18
+ scale_factor: 0.18215
19
+ use_ema: False # we set this to false because this is an inference only config
20
+
21
+ unet_config:
22
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
23
+ params:
24
+ use_checkpoint: True
25
+ use_fp16: False
26
+ image_size: 32 # unused
27
+ in_channels: 4
28
+ out_channels: 4
29
+ model_channels: 320
30
+ attention_resolutions: [ 4, 2, 1 ]
31
+ num_res_blocks: 2
32
+ channel_mult: [ 1, 2, 4, 4 ]
33
+ num_head_channels: 64 # need to fix for flash-attn
34
+ use_spatial_transformer: True
35
+ use_linear_in_transformer: True
36
+ transformer_depth: 1
37
+ context_dim: 1024
38
+ legacy: False
39
+
40
+ first_stage_config:
41
+ target: ldm.models.autoencoder.AutoencoderKL
42
+ params:
43
+ embed_dim: 4
44
+ monitor: val/rec_loss
45
+ ddconfig:
46
+ #attn_type: "vanilla-xformers"
47
+ double_z: true
48
+ z_channels: 4
49
+ resolution: 256
50
+ in_channels: 3
51
+ out_ch: 3
52
+ ch: 128
53
+ ch_mult:
54
+ - 1
55
+ - 2
56
+ - 4
57
+ - 4
58
+ num_res_blocks: 2
59
+ attn_resolutions: []
60
+ dropout: 0.0
61
+ lossconfig:
62
+ target: torch.nn.Identity
63
+
64
+ cond_stage_config:
65
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
66
+ params:
67
+ freeze: True
68
+ layer: "penultimate"
configs/v2-inference.yaml ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-4
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False # we set this to false because this is an inference only config
19
+
20
+ unet_config:
21
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
22
+ params:
23
+ use_checkpoint: True
24
+ use_fp16: True
25
+ image_size: 32 # unused
26
+ in_channels: 4
27
+ out_channels: 4
28
+ model_channels: 320
29
+ attention_resolutions: [ 4, 2, 1 ]
30
+ num_res_blocks: 2
31
+ channel_mult: [ 1, 2, 4, 4 ]
32
+ num_head_channels: 64 # need to fix for flash-attn
33
+ use_spatial_transformer: True
34
+ use_linear_in_transformer: True
35
+ transformer_depth: 1
36
+ context_dim: 1024
37
+ legacy: False
38
+
39
+ first_stage_config:
40
+ target: ldm.models.autoencoder.AutoencoderKL
41
+ params:
42
+ embed_dim: 4
43
+ monitor: val/rec_loss
44
+ ddconfig:
45
+ #attn_type: "vanilla-xformers"
46
+ double_z: true
47
+ z_channels: 4
48
+ resolution: 256
49
+ in_channels: 3
50
+ out_ch: 3
51
+ ch: 128
52
+ ch_mult:
53
+ - 1
54
+ - 2
55
+ - 4
56
+ - 4
57
+ num_res_blocks: 2
58
+ attn_resolutions: []
59
+ dropout: 0.0
60
+ lossconfig:
61
+ target: torch.nn.Identity
62
+
63
+ cond_stage_config:
64
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
65
+ params:
66
+ freeze: True
67
+ layer: "penultimate"
configs/v2-inference_fp32.yaml ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 1.0e-4
3
+ target: ldm.models.diffusion.ddpm.LatentDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False # we set this to false because this is an inference only config
19
+
20
+ unet_config:
21
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
22
+ params:
23
+ use_checkpoint: True
24
+ use_fp16: False
25
+ image_size: 32 # unused
26
+ in_channels: 4
27
+ out_channels: 4
28
+ model_channels: 320
29
+ attention_resolutions: [ 4, 2, 1 ]
30
+ num_res_blocks: 2
31
+ channel_mult: [ 1, 2, 4, 4 ]
32
+ num_head_channels: 64 # need to fix for flash-attn
33
+ use_spatial_transformer: True
34
+ use_linear_in_transformer: True
35
+ transformer_depth: 1
36
+ context_dim: 1024
37
+ legacy: False
38
+
39
+ first_stage_config:
40
+ target: ldm.models.autoencoder.AutoencoderKL
41
+ params:
42
+ embed_dim: 4
43
+ monitor: val/rec_loss
44
+ ddconfig:
45
+ #attn_type: "vanilla-xformers"
46
+ double_z: true
47
+ z_channels: 4
48
+ resolution: 256
49
+ in_channels: 3
50
+ out_ch: 3
51
+ ch: 128
52
+ ch_mult:
53
+ - 1
54
+ - 2
55
+ - 4
56
+ - 4
57
+ num_res_blocks: 2
58
+ attn_resolutions: []
59
+ dropout: 0.0
60
+ lossconfig:
61
+ target: torch.nn.Identity
62
+
63
+ cond_stage_config:
64
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
65
+ params:
66
+ freeze: True
67
+ layer: "penultimate"
configs/v2-inpainting-inference.yaml ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 5.0e-05
3
+ target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
4
+ params:
5
+ linear_start: 0.00085
6
+ linear_end: 0.0120
7
+ num_timesteps_cond: 1
8
+ log_every_t: 200
9
+ timesteps: 1000
10
+ first_stage_key: "jpg"
11
+ cond_stage_key: "txt"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false
15
+ conditioning_key: hybrid
16
+ scale_factor: 0.18215
17
+ monitor: val/loss_simple_ema
18
+ finetune_keys: null
19
+ use_ema: False
20
+
21
+ unet_config:
22
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
23
+ params:
24
+ use_checkpoint: True
25
+ image_size: 32 # unused
26
+ in_channels: 9
27
+ out_channels: 4
28
+ model_channels: 320
29
+ attention_resolutions: [ 4, 2, 1 ]
30
+ num_res_blocks: 2
31
+ channel_mult: [ 1, 2, 4, 4 ]
32
+ num_head_channels: 64 # need to fix for flash-attn
33
+ use_spatial_transformer: True
34
+ use_linear_in_transformer: True
35
+ transformer_depth: 1
36
+ context_dim: 1024
37
+ legacy: False
38
+
39
+ first_stage_config:
40
+ target: ldm.models.autoencoder.AutoencoderKL
41
+ params:
42
+ embed_dim: 4
43
+ monitor: val/rec_loss
44
+ ddconfig:
45
+ #attn_type: "vanilla-xformers"
46
+ double_z: true
47
+ z_channels: 4
48
+ resolution: 256
49
+ in_channels: 3
50
+ out_ch: 3
51
+ ch: 128
52
+ ch_mult:
53
+ - 1
54
+ - 2
55
+ - 4
56
+ - 4
57
+ num_res_blocks: 2
58
+ attn_resolutions: [ ]
59
+ dropout: 0.0
60
+ lossconfig:
61
+ target: torch.nn.Identity
62
+
63
+ cond_stage_config:
64
+ target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
65
+ params:
66
+ freeze: True
67
+ layer: "penultimate"
68
+
69
+
70
+ data:
71
+ target: ldm.data.laion.WebDataModuleFromConfig
72
+ params:
73
+ tar_base: null # for concat as in LAION-A
74
+ p_unsafe_threshold: 0.1
75
+ filter_word_list: "data/filters.yaml"
76
+ max_pwatermark: 0.45
77
+ batch_size: 8
78
+ num_workers: 6
79
+ multinode: True
80
+ min_size: 512
81
+ train:
82
+ shards:
83
+ - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
84
+ - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
85
+ - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
86
+ - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
87
+ - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar"
88
+ shuffle: 10000
89
+ image_key: jpg
90
+ image_transforms:
91
+ - target: torchvision.transforms.Resize
92
+ params:
93
+ size: 512
94
+ interpolation: 3
95
+ - target: torchvision.transforms.RandomCrop
96
+ params:
97
+ size: 512
98
+ postprocess:
99
+ target: ldm.data.laion.AddMask
100
+ params:
101
+ mode: "512train-large"
102
+ p_drop: 0.25
103
+ # NOTE use enough shards to avoid empty validation loops in workers
104
+ validation:
105
+ shards:
106
+ - "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
107
+ shuffle: 0
108
+ image_key: jpg
109
+ image_transforms:
110
+ - target: torchvision.transforms.Resize
111
+ params:
112
+ size: 512
113
+ interpolation: 3
114
+ - target: torchvision.transforms.CenterCrop
115
+ params:
116
+ size: 512
117
+ postprocess:
118
+ target: ldm.data.laion.AddMask
119
+ params:
120
+ mode: "512train-large"
121
+ p_drop: 0.25
122
+
123
+ lightning:
124
+ find_unused_parameters: True
125
+ modelcheckpoint:
126
+ params:
127
+ every_n_train_steps: 5000
128
+
129
+ callbacks:
130
+ metrics_over_trainsteps_checkpoint:
131
+ params:
132
+ every_n_train_steps: 10000
133
+
134
+ image_logger:
135
+ target: main.ImageLogger
136
+ params:
137
+ enable_autocast: False
138
+ disabled: False
139
+ batch_frequency: 1000
140
+ max_images: 4
141
+ increase_log_steps: False
142
+ log_first_step: False
143
+ log_images_kwargs:
144
+ use_ema_scope: False
145
+ inpaint: False
146
+ plot_progressive_rows: False
147
+ plot_diffusion_rows: False
148
+ N: 4
149
+ unconditional_guidance_scale: 5.0
150
+ unconditional_guidance_label: [""]
151
+ ddim_steps: 50 # todo check these out for depth2img,
152
+ ddim_eta: 0.0 # todo check these out for depth2img,
153
+
154
+ trainer:
155
+ benchmark: True
156
+ val_check_interval: 5000000
157
+ num_sanity_val_steps: 0
158
+ accumulate_grad_batches: 1
controlnet/put_controlnets_and_t2i_here ADDED
File without changes
controlnet/sd1.5/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ Safetensors/FP16 versions of the new [ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1) checkpoints.
2
+
3
+ Best used with [ComfyUI](https://github.com/comfyanonymous/ComfyUI) but should work fine with all other UIs that support controlnets.
controlnet/sd1.5/control_v11e_sd15_ip2p.yaml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: cldm.cldm.ControlLDM
3
+ params:
4
+ linear_start: 0.00085
5
+ linear_end: 0.0120
6
+ num_timesteps_cond: 1
7
+ log_every_t: 200
8
+ timesteps: 1000
9
+ first_stage_key: "jpg"
10
+ cond_stage_key: "txt"
11
+ control_key: "hint"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+ only_mid_control: False
20
+
21
+ control_stage_config:
22
+ target: cldm.cldm.ControlNet
23
+ params:
24
+ image_size: 32 # unused
25
+ in_channels: 4
26
+ hint_channels: 3
27
+ model_channels: 320
28
+ attention_resolutions: [ 4, 2, 1 ]
29
+ num_res_blocks: 2
30
+ channel_mult: [ 1, 2, 4, 4 ]
31
+ num_heads: 8
32
+ use_spatial_transformer: True
33
+ transformer_depth: 1
34
+ context_dim: 768
35
+ use_checkpoint: True
36
+ legacy: False
37
+
38
+ unet_config:
39
+ target: cldm.cldm.ControlledUnetModel
40
+ params:
41
+ image_size: 32 # unused
42
+ in_channels: 4
43
+ out_channels: 4
44
+ model_channels: 320
45
+ attention_resolutions: [ 4, 2, 1 ]
46
+ num_res_blocks: 2
47
+ channel_mult: [ 1, 2, 4, 4 ]
48
+ num_heads: 8
49
+ use_spatial_transformer: True
50
+ transformer_depth: 1
51
+ context_dim: 768
52
+ use_checkpoint: True
53
+ legacy: False
54
+
55
+ first_stage_config:
56
+ target: ldm.models.autoencoder.AutoencoderKL
57
+ params:
58
+ embed_dim: 4
59
+ monitor: val/rec_loss
60
+ ddconfig:
61
+ double_z: true
62
+ z_channels: 4
63
+ resolution: 256
64
+ in_channels: 3
65
+ out_ch: 3
66
+ ch: 128
67
+ ch_mult:
68
+ - 1
69
+ - 2
70
+ - 4
71
+ - 4
72
+ num_res_blocks: 2
73
+ attn_resolutions: []
74
+ dropout: 0.0
75
+ lossconfig:
76
+ target: torch.nn.Identity
77
+
78
+ cond_stage_config:
79
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
controlnet/sd1.5/control_v11e_sd15_shuffle.yaml ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: cldm.cldm.ControlLDM
3
+ params:
4
+ linear_start: 0.00085
5
+ linear_end: 0.0120
6
+ num_timesteps_cond: 1
7
+ log_every_t: 200
8
+ timesteps: 1000
9
+ first_stage_key: "jpg"
10
+ cond_stage_key: "txt"
11
+ control_key: "hint"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+ only_mid_control: False
20
+ global_average_pooling: True
21
+
22
+ control_stage_config:
23
+ target: cldm.cldm.ControlNet
24
+ params:
25
+ image_size: 32 # unused
26
+ in_channels: 4
27
+ hint_channels: 3
28
+ model_channels: 320
29
+ attention_resolutions: [ 4, 2, 1 ]
30
+ num_res_blocks: 2
31
+ channel_mult: [ 1, 2, 4, 4 ]
32
+ num_heads: 8
33
+ use_spatial_transformer: True
34
+ transformer_depth: 1
35
+ context_dim: 768
36
+ use_checkpoint: True
37
+ legacy: False
38
+
39
+ unet_config:
40
+ target: cldm.cldm.ControlledUnetModel
41
+ params:
42
+ image_size: 32 # unused
43
+ in_channels: 4
44
+ out_channels: 4
45
+ model_channels: 320
46
+ attention_resolutions: [ 4, 2, 1 ]
47
+ num_res_blocks: 2
48
+ channel_mult: [ 1, 2, 4, 4 ]
49
+ num_heads: 8
50
+ use_spatial_transformer: True
51
+ transformer_depth: 1
52
+ context_dim: 768
53
+ use_checkpoint: True
54
+ legacy: False
55
+
56
+ first_stage_config:
57
+ target: ldm.models.autoencoder.AutoencoderKL
58
+ params:
59
+ embed_dim: 4
60
+ monitor: val/rec_loss
61
+ ddconfig:
62
+ double_z: true
63
+ z_channels: 4
64
+ resolution: 256
65
+ in_channels: 3
66
+ out_ch: 3
67
+ ch: 128
68
+ ch_mult:
69
+ - 1
70
+ - 2
71
+ - 4
72
+ - 4
73
+ num_res_blocks: 2
74
+ attn_resolutions: []
75
+ dropout: 0.0
76
+ lossconfig:
77
+ target: torch.nn.Identity
78
+
79
+ cond_stage_config:
80
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
controlnet/sd1.5/control_v11f1e_sd15_tile.yaml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: cldm.cldm.ControlLDM
3
+ params:
4
+ linear_start: 0.00085
5
+ linear_end: 0.0120
6
+ num_timesteps_cond: 1
7
+ log_every_t: 200
8
+ timesteps: 1000
9
+ first_stage_key: "jpg"
10
+ cond_stage_key: "txt"
11
+ control_key: "hint"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+ only_mid_control: False
20
+
21
+ control_stage_config:
22
+ target: cldm.cldm.ControlNet
23
+ params:
24
+ image_size: 32 # unused
25
+ in_channels: 4
26
+ hint_channels: 3
27
+ model_channels: 320
28
+ attention_resolutions: [ 4, 2, 1 ]
29
+ num_res_blocks: 2
30
+ channel_mult: [ 1, 2, 4, 4 ]
31
+ num_heads: 8
32
+ use_spatial_transformer: True
33
+ transformer_depth: 1
34
+ context_dim: 768
35
+ use_checkpoint: True
36
+ legacy: False
37
+
38
+ unet_config:
39
+ target: cldm.cldm.ControlledUnetModel
40
+ params:
41
+ image_size: 32 # unused
42
+ in_channels: 4
43
+ out_channels: 4
44
+ model_channels: 320
45
+ attention_resolutions: [ 4, 2, 1 ]
46
+ num_res_blocks: 2
47
+ channel_mult: [ 1, 2, 4, 4 ]
48
+ num_heads: 8
49
+ use_spatial_transformer: True
50
+ transformer_depth: 1
51
+ context_dim: 768
52
+ use_checkpoint: True
53
+ legacy: False
54
+
55
+ first_stage_config:
56
+ target: ldm.models.autoencoder.AutoencoderKL
57
+ params:
58
+ embed_dim: 4
59
+ monitor: val/rec_loss
60
+ ddconfig:
61
+ double_z: true
62
+ z_channels: 4
63
+ resolution: 256
64
+ in_channels: 3
65
+ out_ch: 3
66
+ ch: 128
67
+ ch_mult:
68
+ - 1
69
+ - 2
70
+ - 4
71
+ - 4
72
+ num_res_blocks: 2
73
+ attn_resolutions: []
74
+ dropout: 0.0
75
+ lossconfig:
76
+ target: torch.nn.Identity
77
+
78
+ cond_stage_config:
79
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
controlnet/sd1.5/control_v11f1p_sd15_depth.yaml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: cldm.cldm.ControlLDM
3
+ params:
4
+ linear_start: 0.00085
5
+ linear_end: 0.0120
6
+ num_timesteps_cond: 1
7
+ log_every_t: 200
8
+ timesteps: 1000
9
+ first_stage_key: "jpg"
10
+ cond_stage_key: "txt"
11
+ control_key: "hint"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+ only_mid_control: False
20
+
21
+ control_stage_config:
22
+ target: cldm.cldm.ControlNet
23
+ params:
24
+ image_size: 32 # unused
25
+ in_channels: 4
26
+ hint_channels: 3
27
+ model_channels: 320
28
+ attention_resolutions: [ 4, 2, 1 ]
29
+ num_res_blocks: 2
30
+ channel_mult: [ 1, 2, 4, 4 ]
31
+ num_heads: 8
32
+ use_spatial_transformer: True
33
+ transformer_depth: 1
34
+ context_dim: 768
35
+ use_checkpoint: True
36
+ legacy: False
37
+
38
+ unet_config:
39
+ target: cldm.cldm.ControlledUnetModel
40
+ params:
41
+ image_size: 32 # unused
42
+ in_channels: 4
43
+ out_channels: 4
44
+ model_channels: 320
45
+ attention_resolutions: [ 4, 2, 1 ]
46
+ num_res_blocks: 2
47
+ channel_mult: [ 1, 2, 4, 4 ]
48
+ num_heads: 8
49
+ use_spatial_transformer: True
50
+ transformer_depth: 1
51
+ context_dim: 768
52
+ use_checkpoint: True
53
+ legacy: False
54
+
55
+ first_stage_config:
56
+ target: ldm.models.autoencoder.AutoencoderKL
57
+ params:
58
+ embed_dim: 4
59
+ monitor: val/rec_loss
60
+ ddconfig:
61
+ double_z: true
62
+ z_channels: 4
63
+ resolution: 256
64
+ in_channels: 3
65
+ out_ch: 3
66
+ ch: 128
67
+ ch_mult:
68
+ - 1
69
+ - 2
70
+ - 4
71
+ - 4
72
+ num_res_blocks: 2
73
+ attn_resolutions: []
74
+ dropout: 0.0
75
+ lossconfig:
76
+ target: torch.nn.Identity
77
+
78
+ cond_stage_config:
79
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
controlnet/sd1.5/control_v11p_sd15_canny.yaml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ target: cldm.cldm.ControlLDM
3
+ params:
4
+ linear_start: 0.00085
5
+ linear_end: 0.0120
6
+ num_timesteps_cond: 1
7
+ log_every_t: 200
8
+ timesteps: 1000
9
+ first_stage_key: "jpg"
10
+ cond_stage_key: "txt"
11
+ control_key: "hint"
12
+ image_size: 64
13
+ channels: 4
14
+ cond_stage_trainable: false
15
+ conditioning_key: crossattn
16
+ monitor: val/loss_simple_ema
17
+ scale_factor: 0.18215
18
+ use_ema: False
19
+ only_mid_control: False
20
+
21
+ control_stage_config:
22
+ target: cldm.cldm.ControlNet
23
+ params:
24
+ image_size: 32 # unused
25
+ in_channels: 4
26
+ hint_channels: 3
27
+ model_channels: 320
28
+ attention_resolutions: [ 4, 2, 1 ]
29
+ num_res_blocks: 2
30
+ channel_mult: [ 1, 2, 4, 4 ]
31
+ num_heads: 8
32
+ use_spatial_transformer: True
33
+ transformer_depth: 1
34
+ context_dim: 768
35
+ use_checkpoint: True
36
+ legacy: False
37
+
38
+ unet_config:
39
+ target: cldm.cldm.ControlledUnetModel
40
+ params:
41
+ image_size: 32 # unused
42
+ in_channels: 4
43
+ out_channels: 4
44
+ model_channels: 320
45
+ attention_resolutions: [ 4, 2, 1 ]
46
+ num_res_blocks: 2
47
+ channel_mult: [ 1, 2, 4, 4 ]
48
+ num_heads: 8
49
+ use_spatial_transformer: True
50
+ transformer_depth: 1
51
+ context_dim: 768
52
+ use_checkpoint: True
53
+ legacy: False
54
+
55
+ first_stage_config:
56
+ target: ldm.models.autoencoder.AutoencoderKL
57
+ params:
58
+ embed_dim: 4
59
+ monitor: val/rec_loss
60
+ ddconfig:
61
+ double_z: true
62
+ z_channels: 4
63
+ resolution: 256
64
+ in_channels: 3
65
+ out_ch: 3
66
+ ch: 128
67
+ ch_mult:
68
+ - 1
69
+ - 2
70
+ - 4
71
+ - 4
72
+ num_res_blocks: 2
73
+ attn_resolutions: []
74
+ dropout: 0.0
75
+ lossconfig:
76
+ target: torch.nn.Identity
77
+
78
+ cond_stage_config:
79
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder