sorenmulli commited on
Commit
e66e215
·
verified ·
1 Parent(s): 8cffba8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -181
README.md CHANGED
@@ -24,203 +24,53 @@ model-index:
24
  args: read_aloud
25
  metrics:
26
  - type: cer
27
- value: 4.5% ± 0.2%
28
  name: CER
29
  - type: wer
30
- value: 11.1% ± 0.4%
31
  name: WER
32
  ---
33
 
34
- # Model Card for Model ID
35
 
36
- <!--This is a Danish state-of-the-art speech recognition model, trained by [Alvenir](https://www.alvenir.ai/).-->
37
 
38
 
39
- ## Model Details
40
 
41
- ### Model Description
 
 
 
 
 
42
 
43
- <!-- Provide a longer summary of what this model is. -->
44
 
45
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
46
 
47
- - **Developed by:** [More Information Needed]
48
- - **Funded by [optional]:** [More Information Needed]
49
- - **Shared by [optional]:** [More Information Needed]
50
- - **Model type:** [More Information Needed]
51
- - **Language(s) (NLP):** [More Information Needed]
52
- - **License:** [More Information Needed]
53
- - **Finetuned from model [optional]:** [More Information Needed]
54
 
55
- ### Model Sources [optional]
 
56
 
57
- <!-- Provide the basic links for the model. -->
 
58
 
59
- - **Repository:** [More Information Needed]
60
- - **Paper [optional]:** [More Information Needed]
61
- - **Demo [optional]:** [More Information Needed]
62
 
63
- ## Uses
 
 
 
64
 
65
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
66
 
67
- ### Direct Use
 
 
68
 
69
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
70
-
71
- [More Information Needed]
72
-
73
- ### Downstream Use [optional]
74
-
75
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
76
-
77
- [More Information Needed]
78
-
79
- ### Out-of-Scope Use
80
-
81
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
82
-
83
- [More Information Needed]
84
-
85
- ## Bias, Risks, and Limitations
86
-
87
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
88
-
89
- [More Information Needed]
90
-
91
- ### Recommendations
92
-
93
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
94
-
95
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
96
-
97
- ## How to Get Started with the Model
98
-
99
- Use the code below to get started with the model.
100
-
101
- [More Information Needed]
102
-
103
- ## Training Details
104
-
105
- ### Training Data
106
-
107
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
108
-
109
- [More Information Needed]
110
-
111
- ### Training Procedure
112
-
113
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
114
-
115
- #### Preprocessing [optional]
116
-
117
- [More Information Needed]
118
-
119
-
120
- #### Training Hyperparameters
121
-
122
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
123
-
124
- #### Speeds, Sizes, Times [optional]
125
-
126
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
127
-
128
- [More Information Needed]
129
-
130
- ## Evaluation
131
-
132
- <!-- This section describes the evaluation protocols and provides the results. -->
133
-
134
- ### Testing Data, Factors & Metrics
135
-
136
- #### Testing Data
137
-
138
- <!-- This should link to a Dataset Card if possible. -->
139
-
140
- [More Information Needed]
141
-
142
- #### Factors
143
-
144
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
145
-
146
- [More Information Needed]
147
-
148
- #### Metrics
149
-
150
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
151
-
152
- [More Information Needed]
153
-
154
- ### Results
155
-
156
- [More Information Needed]
157
-
158
- #### Summary
159
-
160
-
161
-
162
- ## Model Examination [optional]
163
-
164
- <!-- Relevant interpretability work for the model goes here -->
165
-
166
- [More Information Needed]
167
-
168
- ## Environmental Impact
169
-
170
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
171
-
172
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
173
-
174
- - **Hardware Type:** [More Information Needed]
175
- - **Hours used:** [More Information Needed]
176
- - **Cloud Provider:** [More Information Needed]
177
- - **Compute Region:** [More Information Needed]
178
- - **Carbon Emitted:** [More Information Needed]
179
-
180
- ## Technical Specifications [optional]
181
-
182
- ### Model Architecture and Objective
183
-
184
- [More Information Needed]
185
-
186
- ### Compute Infrastructure
187
-
188
- [More Information Needed]
189
-
190
- #### Hardware
191
-
192
- [More Information Needed]
193
-
194
- #### Software
195
-
196
- [More Information Needed]
197
-
198
- ## Citation [optional]
199
-
200
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
201
-
202
- **BibTeX:**
203
-
204
- [More Information Needed]
205
-
206
- **APA:**
207
-
208
- [More Information Needed]
209
-
210
- ## Glossary [optional]
211
-
212
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
213
-
214
- [More Information Needed]
215
-
216
- ## More Information [optional]
217
-
218
- [More Information Needed]
219
-
220
- ## Model Card Authors [optional]
221
-
222
- [More Information Needed]
223
-
224
- ## Model Card Contact
225
-
226
- [More Information Needed]
 
24
  args: read_aloud
25
  metrics:
26
  - type: cer
27
+ value: 4.3% ± X.X%
28
  name: CER
29
  - type: wer
30
+ value: 10.4% ± X.X%
31
  name: WER
32
  ---
33
 
34
+ # Whisper-Large v.3 trained on CoRaL release 1
35
 
36
+ This is a Danish state-of-the-art speech recognition model, trained by [Alvenir](https://www.alvenir.ai/).
37
 
38
 
39
+ ## Evaluation Results
40
 
41
+ | Model | Number of parameters | [CoRal](https://huggingface.co/datasets/alexandrainst/coral/viewer/read_aloud/test) CER | [CoRal](https://huggingface.co/datasets/alexandrainst/coral/viewer/read_aloud/test) WER |
42
+ |:---|---:|---:|---:|
43
+ | [Alvenir/coral-1-whisper-large](https://huggingface.co/Alvenir/coral-1-whisper-large) | 1540M | **4.3% ± X.X%** | **10.4% ± X.X%** |
44
+ | [alexandrainst/roest-315m](https://huggingface.co/alexandrainst/roest-315m) | 315M | 6.6% ± 0.2% | 17.0% ± 0.4% |
45
+ | [mhenrichsen/hviske-v2](https://huggingface.co/syvai/hviske-v2) | 1540M | 4.7% ± 0.07% | 11.8% ± 0.3% |
46
+ | [openai/whisper-large-v3](https://hf.co/openai/whisper-large-v3) | 1540M | 11.4% ± 0.3% | 28.3% ± 0.6% |
47
 
48
+ Results of more models and more datasets can be seen in the [model card for Røst-315m](https://huggingface.co/alexandrainst/roest-315m).
49
 
50
+ ## Model details
51
 
52
+ This is simply the [Whisper Large v.3 model](https://hf.co/openai/whisper-large-v3) trained on the first release of [CoRaL data](https://huggingface.co/datasets/alexandrainst/coral).
 
 
 
 
 
 
53
 
54
+ The model was trained for 30K steps using the configuration from the [CoRaL repository](https://github.com/alexandrainst/coral) by running:
55
+ ```py
56
 
57
+ python src/scripts/finetune_asr_model.py model=whisper-large max_steps=30000 model.learning_rate=1e-5
58
+ ```
59
 
60
+ ## License
 
 
61
 
62
+ Note that the dataset used is licensed under a custom license, adapted from OpenRAIL-M, which allows
63
+ commercial use with a few restrictions (speech synthesis and biometric identification).
64
+ See
65
+ [license](https://huggingface.co/alexandrainst/roest-315m/blob/main/LICENSE).
66
 
 
67
 
68
+ ## Creators and Funders
69
+ The CoRal project is funded by the [Danish Innovation
70
+ Fund](https://innovationsfonden.dk/) and consists of the following partners:
71
 
72
+ - [Alexandra Institute](https://alexandra.dk/)
73
+ - [University of Copenhagen](https://www.ku.dk/)
74
+ - [Agency for Digital Government](https://digst.dk/)
75
+ - [Alvenir](https://www.alvenir.ai/)
76
+ - [Corti](https://www.corti.ai/)